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Let X be a random vector uniformly distributed on the unit cube and
f:[0,1]° ».% be a measurable function. An objective of many computer
experiments is to estimate u = E(f X) by computing f at a set of points
in [0, 1]%. There is a design issue in choosing these points. Recently Owen
and Tang independently suggested using randomized orthogonal arrays in
the choice of such a set. This paper investigates the convergence rate to
normality of the distribution of the average of a set of f values taken from
one of these designs.

1. Introduction. Let d, n and ¢ be positive integers with ¢ < d. An
orthogonal array of strength ¢ is a matrix of n rows and d columns with
elements taken from the set {0,1,...,¢ — 1} such that in any n X # subma-
trix, each of the g’ possible rows occurs the same number of times. The class
of all such arrays is denoted by OA(n, d, q, ) and a more detailed description
can be found in Raghavarao (1971).

Owen (1992, 1994) and Tang (1993) independently suggested the use of
randomized orthogonal arrays in sampling designs for computer experiments
on the d-dimensional unit hypercube [0, 1]¢. The main attraction of these
designs is that they, in contrast to simple random sampling, stratify on all
t-variate margins simultaneously.

In this paper we shall be concerned with the following orthogonal
array—based sampling design on the unit cube [0, 1]%. Let:

(a) 7, my, w3 be random permutations of {0, 1,...,q — 1}, each uniformly
distributed on all the ¢! possible permutations;

® U, ;5 0<iiyiz<q—1 1<j<3, be [0,1] uniform random
variables; and
© U, ;, ., s and m,’s be all stochastically independent.

An orthogonal array—based sample of size g2 (taken from [0, 1]®) is defined to
be {X(my(a; 1), my(a; 5), m5(a; 5)): 1 <i < q?}, where, for all 0 <iy,i,,i5 <
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Xi(iy,09,03) = (§; + U, i, i)/ V1<j<3,
X(iy,ig,15) = (Xi(i1, 19, 05), Xo(ir, 19, 03), X3(i1,1s,13))s

and a; ; is the (i, j)th element of some arbitrary but fixed A € OA(q?, 3, q, 2).

REMARK. The above sampling design is a special case of those proposed by
Owen (1992).

Let X be a random vector uniformly distributed on [0,1]® and f be a
measurable function from [0, 1]® to .%. An objective of many computer experi-
ments [see, e.g.,, McKay, Conover and Beckman (1979), Stein (1987), Owen
(1992) and Tang (1993)] is to estimate u = E(f+ X) by computing f at a fixed
number of points. The estimator for u that we are concerned with here is one
based on an orthogonal array; namely

2

(1) h=q? ; lf"X(Wl(ai,l)ﬂTz(ai,z)’773(‘11',3))’

Q

where @ is the usual average of the orthogonal array—based sample

{f° X(ﬂ'l(ai,l)a m9(a;2)s 773(%’,3))3 1<ic< qz}

and is an unbiased estimator of u.

In 1972, Stein introduced a powerful and general method for obtaining an
explicit bound for the error in the normal approximation to the distribution of
a sum of dependent random variables. Even though since then Stein’s method
has found considerable applications in combinatorics, probability and statis-
tics [see, e.g., Stein (1986) and the references cited therein], it appears to
have largely escaped the attention of researchers in the area of computer
experiments. In Section 2 Stein’s method is used to investigate the rate of
convergence to normality of the distribution of g. In particular, Theorem 2
shows that f is asymptotically normal (as g — <) under the finiteness of rth
moments with a corresponding error bound of the order O(q ("~2/r~=2),
whether r is an even integer greater than or equal to 4.

The Appendix contains a number of somewhat technical lemmas that are
needed in the proof of Theorem 2.

Throughout this paper, ® and ¢ denote the cumulative distribution func-
tion and probability density function of the standard normal distribution,
respectively. Given any event B, I(B) denotes its indicator function, and if
x € %3, then x' is the transpose of x. Finally, if g: # — % is a differentiable
function, we write g’ as its derivative.

REMARK. From an application viewpoint, it would be highly desirable to
extend the results of this paper to the case of an orthogonal array
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0OA(q?,d, q,2) with d arbitrary. While we believe that such results should
still hold true, the proof here does not appear to be easily adaptable to the
case of an arbitrary d.

2. Stein’s method. In this section, we shall use Stein’s method to inves-
tigate the rate of convergence to normality of the distribution of g, where [
is defined as in (1) with A € OA(q?, 3, q, 2). Central to this normal approxi-
mation technique is the following lemma.

LEMMA 1 (Stein). Let z € %. The unique bounded solution g,: # — X% of
the differential equation

gP(w) —wg(w) =I(w<z)—-P(z) VYweR,
is given by

(w) O(w)[1-P(2)]/Pp(w), ifw<z,
. P(2)[1 - d(w)]/Pp(w), ifw >z,

with 0 < g (w) <1 and |gP(w)l < 1 for all w € %.

ProoF. Lemma 1 is due to Stein (1972), and we refer the reader to his
paper for a proof. O

Next we state a simple expression for the asymptotic variance of & due to
Owen (1992).

THEOREM 1. Suppose E(fo X)* < ». Let o2, = Var( ) with j as in (1)

for some A € OA(q?,3, q,2). Then, as ¢ — », we have
2_2 _ / 2
q 045 = frem x) dx + 0(1)’
[o,113
where, for all x = (x,, x4, x3)" € [0, 1]3,

filx) = [

[0,1]2
Fo(xp, %)) = fol[f(x) — u = fi(x) — fi(x)] ,Qldxj
Vi<k<l<3,

3
frem(x) =f(x) — pn — glf_‘](xj) - Z fk,l(xk’xl)'

1<k<l<3

[£(x) — ] kl_[ de, V1<j<3,
#J

(2)

Assuming that Var( ) = g,2, > 0, we define

W= O-O;i( /:(‘ - /‘L)
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For all 0 <iy,i5,i3 < q — 1, we write
EfoX(iy,i5,13) = m(iy,02,13),

qg-1
'““j(ij)zqz{n ) }[M(il’iz’is)_ﬂ] V1<j<3,

k#ji,=0

g-1
M, (U 1) = ql{ 1_[ )y }[M(ipiwis) — = (i) — m(iy)]

(3) J#k, =0
V1<k<l<3,
Y(iy,05,05) = qzo'oasllf°X(i17i2ai3) M
3
-2 () - X me(ins i)
Jj=1 1<k<l<3

and
(4) (g, 09,05) = EY(iy,15,05).
A useful consequence of the above construction is that

g-1
(5) Y iy, iy, i3) =0 V1<j<3.

i;=0

Since the orthogonal array A has strength 2, we also observe that W can be
rewritten as
2

(6) W= Y(Wl(ai,l),ﬂ'z(ai,z)’77'3(%‘,3))-

i=1

Q

We shall now state and prove the main result of this paper.

THEOREM 2. Let W be as in (6) for some A € OA(q?,3, q, 2). Suppose that
E(f- X)" < o for some even integer r > 4, and

(7) | fEa(x)dx>0,
[0,1]?
with from(x) as in (2). Then

sup{|P(W < w) — ®(w)|: —0 <w <o} = O(q~""2/Cr2)

as q — .

Proor. Theorem 1 and (7) ensure that o,,, > 0 and hence that W is well
defined for sufficiently large q.
Let (J,, J,) be a random vector uniformly distributed over the set

{(J1,d2) €10,1,...,q = 1}*: jy #js).
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Also, we assume that they are independent of all other random quantities
previously defined (e.g., W). Define

W = Y(TJl,Jz°771(ai,1)’772(ai,2)’773(ai,3)),
i=1
where 7; ; is a random permutation of {0,..., g — 1} which transposes oJ,
and J,, leavmg all other elements fixed. We observe that (W, W*) is an
exchangeable pair of random variables in that (W, W *) and (W *, W) have the
same joint distribution.
Since the orthogonal array A is of strength 2, we note that W can be
rewritten as

g—1qg-1

(8) W= Z Z Y(i1>i2apw(i1>i2)),

i1=0iy=0

where p_ is a random function that maps {0,...,q — 1}*> to {0,...,q — 1} such
that

(il’ iy, Pr(i1, iz)) = (Wl(ai,l)’ Wz(ai,z)’ 773(ai,3))
for some 1 < i < q2. Thus it follows from the definition of W* and (8) that

qg-1 g-1
W =Ww- )} Y(J1, 00, pr(J115)) — )y Y(Jy, s, p-(J2,03))
ig=0 ig=0
(9) a1 01
+ Z Y(Jz’lwpﬁ(Jl’ 2)) + Z Y(J1’l2,Pw(J2,l2))
ip=0 ip=

=W-S5,-S,-8S;,-8,,
say, respectively. For convenience, we write
V=W-S,-8,.
Let 7 be the o-field generated by the random quantities

{(Wl(al 1) 772(al 2) 773((11 3)) mi(a; 1), ma(a; 9), m3(a; 3),J " l1<i< q 1 <J < 3}

We observe that W and p, are both 7Z“measurable.
Nextlet z €e#Z and g,: # — % be as in Lemma 1. For the exchangeability
of (W, W*), we have

0=EW*-W)[g.(W) +g.(W¥)]
=2E[E(W* - W) g (W)] + E(W* = W)[g.(W*) —g.(W)].
Consequently, we observe from Lemma 3 (see the Appendix) that
EWg,(W) = (a/9)E(W* — W)[g.(W*) — g.(W)] - A

(10) = E[gP(V +w)K(w) dw — A
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where

1 g-1¢q9-1
3o Bl (0) T T b (i)

i1=0iy=0
and, for all w € %,

(g/H(W* =W), ifW-V<w<W*-V,
K(w) ={(q/9)(W—-W*), ifW*-V<w<W-V,
0, otherwise.
We further observe that

1 1/2 1/2
[ Be2(w)] (B <

11 |A] < )
(11) - p—

since 0 < g,(w) < 1 for all w € %. Now we observe from Lemma 1 and (10)
that

|P(W<z) - ®(2)]
=|E{g"(W) — Wg.(W))]
<[ B[ le0w) - g0 + ) k()
(12)
+‘Eg§1)(W)EfK(w) dw — E[g;D(W)fK(w) de

+|EgMO(W)] ‘1 - E/K(w) dw‘ + A

Thus, to prove Theorem 2, it suffices to obtain appropriate bounds for the
terms on the right-hand side of (12). This is achieved by (11) and Lemmas 4,
5, and 6 (see the Appendix). Hence we conclude that

sup{|P(W < w) — ®(w)|: —0c <w <o} = O(q~ " 2/Cr2)

as ¢ — . This proves Theorem 2. O

REMARK. We would like to add that the first two terms on the right-hand
side of (12) have been studied in some detail by Ho and Chen (1978) in the
context of investigating the convergence rate of Hoeffding’s combinatorial
central limit theorem and our proof of Lemma 6 in this paper was motivated
by their results.

APPENDIX

LEMMA 2. Let W and S; be defined as in (8) and (9), respectively. Then

qul qg—1qg-1 1
(13) E— Y Y Y YZ2(i, iy i) =140 5),

i1=0iy=0i3=0
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and, if E(f o X)" < « for some positive even integer r, then
(14) E(S) =0(q""?)

as q —> .

ProoF. We observe from (8) that

1=EW?
q—1 qg-1
=E Z Z Yz(ihiza pw(il’iz))
11=0i,=0
q-1 gq-1

+E Y, Y Y X (i is, p,(i1,09))(J1s das Pr(J1sJ2))

11=0iy=0 ji#iy joFig

q—1 qg—-1

+E Z Z Z ﬂ(i1,i2’Pw(i1’i2))ﬁ(i1,j2’Pw(i1’j2))

1,=0iy=0 jy#ig
q—1 qg-1

+E Z Z Z /:L(ilii27pﬂ—(il’i2))l:°(jl’i1’pw(jl’iZ))

i1=0i3=0 j;#i;

19-1¢-1¢g-1

_E Z Z ZY(l1:lzal3)

11=0i,=01i3=0

1 q—1 qg—1 ¢g—-1
YoX X X X Ay, is)R(Jrs e is)
q(q ) 11=0i5=01i3=0 ji#i; joFig

q_2 g—1q9g-1 g-1

N Z Z Z Z Z Z iy, iqg,13) B(J1sJosJ3)

Q(q_l) 11=0i9=01i3=0 j1#iy joFig J3*i3

1 g—14q9g-1 qg-1
Z YooY X X iy, i5) iy, Jasds)
q(q 11=0i9=01i3=0 jo#ig j3*is

g—1g-1gqg-1

Z Z Z Z Z (i1, 20,13) 1(J1,12,73)

q(q 11=0i3=01i3=0 j;#1i; jg#ig3

19-1¢-1¢g-1

E— Y Y Y Y? (i1,19,15)

11=0iy=0i3=0
29 —1 9-1a-la-1

2 Z Z ZM(Z1’12>13)

( _1) 11=0iy,=01i3=0

g—1q9g-1qg—-1
q))Ez Y Y Y20y i)

1,=0i,=01i3=0

1+0

q

as q¢ — . The second last equality follows from (5). This proves (13).
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Next we observe from the definition of S; that

g-1 g
E(S])=E| ¥ Y(Jl’i27pw(J1’i2))]
i5=0
(15) ’ .
1 q—-1[q-1
=E— Z Z Y(ilﬂiz’ pw(il’iZ))] .
i -0l|i,=0

We observe that on expansion, the right-hand side of (15) consists of a finite
(independent of ¢) sum of terms each of the form

E’l qi > {nYr"(il,iz,j’Pw(il’i2,j))}

q i1=0 (iz,l ,,,,, iz,m)eﬁ(m) J=1

X{ ﬁ Y(ipiz,k’Pﬁ(ipiz,k))}
E=1F1

(g —m)!

q(q!)

> )y )» {l_[ Yrj(il’iz,j’iS,j)}

0120 (g 1,.ryin, ) EB(M) (ig q,...,i5 ) EB(M) \J=1

(16) =E

m
X{ I ﬁ(ilaiz,k>i3,k)}
k=1l+1

for some 0 <l <m <r, where r: > 2 for all 1 <j <1, m—l+Z§-=1rJ-=r
and %(m) is the subset of {0, ..., ¢ — 1} with all its coordinates distinct.

If m — 1 > 1, it follows from (4) and (5) that the number of summations on
the right-hand side of (16) can be reduced by 2, namely the variables i, ,;,
and iz,,, can be eliminated. Proceeding in this way, we observe that the
right-hand side of (16) can eventually be rewritten as a finite (which does not
depend on ¢) sum of terms each of the form

(g —m)!
q(q!)

1) x ¥ > Y {

i1=0 (in 1,0 ig ) EB(mM, D) (5 1,..ri5 ) €E(m, 1) \J=1

1
UY”f(il,iz,i?),j)}
X{ I ﬁ(ipiz,k,i&k)}
E=1+1
for some 0 <! <m <r, where €(m, 1) = {(iy,...,i,) €1{0,...,q — 1} i, =
i; for some j # k of Il + 1 <k < m}. Since r; > 2 for all 1 <j <[, this implies

J
that the number of distinct coordinates of each point in #(m,[) is at most
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r/2. Hence, by Hoélder’s inequality, we conclude that the absolute value of
(17) is bounded by
g-1q9g-1 ¢g-1
0(q"=9%) X X X E[Y'(iy,iy,i5)] = O(q™"/?)
i1=0iy=0i3=0
as g — «. The last equality follows from Theorem 1 and (3) and this proves
(14). O
LEMMA 3. With the notation and assumptions of Theorem 2,
q—1 qg—-1

2 2
EW*-W»7)=-——W-—- — (i, 09, pr(11,29)).
( ) q q(q_]-) L'EO izgo (1 2 (1 2))

Proor. We observe from (9) that
E(W* = Wli7)

2 q—-1 ¢g-1 2
= —_1E Z Z Z Y(jl’i2’ pﬂ'(JQ’I’Z))|W - W
(18) a(q =1 | ;504,70 jy2i q

2
- —W.
q

2(q =1 | ;505,50 jyeis

9 qg-1qg-1
= —El Z Z Z ﬁ(j1:izapw(j2ai2))|%

The last equality follows from the observation that, given 7, U, i, ,_(j,, i, 18
still a uniform [0, 1] random variable whenever j; # j; and 1 < £ < 3. Lemma
3 follows from (5) and (18). O

LEMMA 4. With the notation and assumptions of Theorem 2, we have

|Eg§1)(W)|‘E]K(w)dw - 1‘ < 1

PRrROOF. Since |g™(w)| < 1 for all w € %, it suffices only to prove

1
‘EfK(w)dw—l‘s 1
By replacing g, (W) by W in (10), we have
1 q—1 qg-1
1=E(W?) = E[K(w)dw - TTTE(WE X (i, pr(in i) |
i1=0 iy=0

Lemma 4 follows since, as in (11), we observe that the last term of the above
equation is bounded by 1/(¢ — 1). O
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LEMMA 5. With the notation and assumptions of Theorem 2, we have
B (V) E [K(w) du B 2'(7) [K(w) du|| = 0(¢ %)

as g — © uniformly over z € %.

Proor. We observe from (9), Lemma 4 and the definition of K(w) that

B (W) B [K(w) duw — E| (W) [K(w) du |

sﬂEUK@mdw—uw}+

qg—1

, 1
(19) Ehmf—W)—mm+q_

IA

q 1
+§ Z ElE(SJSkV/)l-F . 1

1<j<k<4

To prove the lemma, it suffices to find appropriate bounds for the terms on
the right-hand side of (19). For the sake of clarity, we shall break the proof
down into five steps.

Step 1. From the Cauchy—Schwarz inequality, we observe that

{E|E(qslz - 1|%)|}2 ={EE q qi Y(Jl’iz’ pn-(Jl’iZ))) - 1|%w

lg=

2
q—1

)»

i1=0

(20) qi Y(ilai2> pn—(il’iZ))] }

iy=0

g—1

Z Y(il’i2’pw(i17i2))] +1

i3=0

'Y

i1=0

We note from (5) and (13) that
2

g-1[qg-1 g—1qg-1g-1
E Z Z Y(ipiz,Pw(il’iz)) —E Z Z Z Y? (i1,09,13)
11=0]i,=0 11=0i,=01i3=0
1 g-1g-14q-1
(21) Yo X X (i, iy, i)

q(q_]‘) i;=0i,=0i3=0

3
q K

-1+0
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1
q
as q¢ — «. Thus we conclude from (20) and the symmetry of S,, 1 <k < 2,
that

and similarly (though more tediously),

g-1

Y Y(il,iz,pw(il,iQ))] } -1+0

i3=0

q—-1

)»

i1=0

E

(22) E|E(¢S? — 1) + E|E(¢S3 — 17)| = O(q~'/?)

as q — .

Step 2. Next, we have

E(qS;\7') = E|q

q-1 2
Z Y(J27i27 pﬂ-(Jl?iZ))) v

ig=

=F|— _1 Z Z Z Yy? (ll,lgypr(h’lz))

q 11=0 j1#i,i9=0

4

q—Z > Z Zﬂ(halz’l)w(h,‘z))

11=0 j1#11 i2=0 jo#ip

(23)
+

X/l(il’j21 pw(Jl’JZ))|W]

=E(S;,|7) + E(S;,17"),

say, respectively. We observe from (13) that

(EIE(S,, - 17)))’

<E(S;, - 1)2
E 1_ e Z Z Z Y (111127 pﬂ'(Jl’lZ))
q— 11 0 ji#i,15=0
1 2g-1 g—1 ¢g-1
(24) (4] T sEE 5 T Vi i)
i11=0 j1#i1i9=0a;=0 by#a; ay=0

XYZ(al, a27 pw(bl’a?,))
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as q — . Also we note from (5) that
E(S3 )
1 q-1 g-1
E——msy X X X X (P15 i35 P (J1512)) (015 Jo» Pr(J15 J2))
(@ = 1) i1=0 jiriy in=0 joris
(25) q-1 q-1
X Y X X iag,ay, p(bysay))i(ar, by, pr(dy,b5))

a;=0b#a, ag=0 by#a,

1
o)
q
as q — . Thus we conclude from (23), (24), (25) and the symmetry between
S; and S, that
(26) E|E(qS; — 17')| + E|E(qS; — 17")| = O(q~'/?)
as g - .

Step 3. We observe that
qE|E(S,S,\7")

1 q—-1 g-1¢-1
= jE XX X X Y (i1, iz, pr(i1,02))Y (15 Jos Pr(J1sJ2))
q i1=0 ji#iy ig=0 j,=0
(27) 1 1 g-1]qg-1 2
< ——E(W?) + E Y(iy, iy, p, (i, 1
q— 1 ( ) q - 1 ilgo izgo ( 1> %2 ( 1 2))

as g — o from (21).

Step 4. Now we note from (9) that
qE|E(S,S,7)|

X|E

qi Z qi qi [’“(il’i2>p':r(jl’iz))'a“(jlajZa pﬂT(il’jZ))|W)‘

11=0 j1#11 i3=0 j,=0
1 g_1
<—— X X
q(q - 1) i3:0j37&i3
g-2 9

+t—— L L

q(q — 1)" ;=0 j,#i,

1 a1

b L

q(q - 1) iz=0

qg—-1 g-1
Z Z Z ﬁ(i17i2,i3)/‘1(j1’i2’j3)

i1=0 j1#i;i3=0

(28)

N TUR R ATIE AN

i1=0 j1#i1 i2=0 jy#ig

i E i Z ﬁ(ilaiZ’iB):a“(jlajwiB)

i1=0 j1#1; i5=0 jo# iy
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Thus it follows from (5) and (13) that the right-hand side of (28) is bounded
by

29 —3 91 g-1q-1
———5 L L | X XL iy, iy, i5) A(iy, 15, J5)
q(q —1)” ;=0 js#is|iy=0iy=0
(29)
1 q—1|g—1qg—-1 1
R a— Z Z Z ﬁg(ipiz,is) :O(_)
q(q —1)" i;=0]i—0iy-0 q
as q — .

Step 5. We observe from (5) and (13) that
qE|E(S,S;l7)]

g—1q9g-1 qg-1

Z Z ZY(il’izaPw(il’iz))[‘«(ipjz’Pw(ipjz))‘

- —E
-1 |, Z0i,=0,-0

g-1 g-1qg-1
= 2E Z Z Z Z Y(il’i2>i3)/:b(i1’i2’j3)
q(q —1)" ;.20 jy#ig|ip=0iy=0
1 g-1]g-1¢q-1
+—_1E Z Z Z Y(il’iz’iS)[L(i17i2’i3)
q(q ) i3=0]i;=0iy=0

o}

as ¢ — . Thus it follows by symmetry that

1
(30) GE|E(S,S,7)) + qEIE(S,S,7)| = o(g)
and

1
(31) qE|E(S,S,17°)| + qE|E(S,S,7) = O .
as q — .

Now we conclude from (19) and the results of the above five steps, namely
(22), (26), (27), (29), (30), and (31), that

B (W) E [K(w) du — B| (W) [K(w) dw | - 0(¢~7)

as g — « uniformly over z € %. This proves Lemma 5. O

LEMMA 6. With the notation and assumptions of Theorem 2, we have

E[[gP(W) - g®(V + w)]| K(w) dw

= O(q r-v/er-2)

as ¢ — % uniformly over z € %.
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ProOF. Let & > 0. We observe as in Ho and Chen (1978), page 247, that
Ef|gP(W) - gP(V + w)|K(w) dw

<2E K(w)dw+2E[ I(1S, + S, > 26)K(w) dw
lw|>2¢ lw|l<2e
(32)
+ 4¢E (Wl +1)K(w) dw

lwl<2e

+ E I(z-2e<V<z+3¢)K(w)dw.

lwl<2e

Now, to prove Lemma 6, it suffices to get appropriate bounds for the terms on
the right-hand side of (32). To do so, we shall divide the remainder of this
proof into four steps.

Step 1. First, we observe as in Lemma 4.6 of Ho and Chen (1978) that

(3) E lwb%K(w) dw < 2qk§1E[skI(|sk| > ¢)]

< 8qE[S(IS,| > ¢)],
since S,, 1 <k < 4, all share the same marginal probability distribution.

Hence, using Holder and Markov inequalities and (14), the right-hand side of
(33) is bounded by

8q[E(S))]*"[P(184l > &)]" ™" < 8qE(Sy) /&7 2 = & "~ P0(q~ "~ ?/?)

as g — o uniformly over £ > 0.

Step 2. Also by Holder and Markov inequalities, we have

E I(1S; + Syl > 2&)K(w) dw
lwl<2e
q 4
< 5¢E YASHI(IS,] > &) + I(1S,] > &)]
j=1

< 4qs[E(S))]"[P(18)] > &))" "
<4qE(S7)/e"?
= & D0(q" " 2/2)

as ¢ — o uniformly over £ > 0.
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Step 3. Next, we observe from (14) that

¢E (IW|+ 1)K(w) dw < qeE(IW| + 1)

lwl<2e

4 2
y sk)
k=1
= 0(qs)[E(81)]"”
=0(¢)

as ¢ — o uniformly over ¢ > 0.
Step 4. Define

—4e, ifw<z—4e,
h(w)={w-2z, ifz—4e<w <z + 4e,
4e, if z+4e<w.
Consequently,
E[h(V+w)K(w)dw=E[ I(z-2e<V<z+28)K(w)dw.
lwl<2e
Thus we observe as in (10) that
E I(z-2e<V<z+2e)K(w)dw
lwl<2e

g-1gqg-1

E hz(W) Z Zola‘(il7i27 pn(ilﬂiZ))

i1=0iy=

<EWh (W) + 7= 1

g—1gqg-1

Z Zoﬁ(ip iy, Pw(il’iz))

<4e¢E|\W +
qg-—-1 i1=0 iy=

=0(¢)
as ¢ — o uniformly over £ > 0 and z € %.

Now Lemma 6 follows from (32) and Steps 1 to 4, by taking &=
q—(r—2)/(2r—2). O
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