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Let X, = ¥j_,a;e,_;, where the & are iid with mean 0 and finite
fourth moment and the a; are regularly varying with index —p where
B<(1/2,1) so that {X,} has long-range dependence. This covers an
important class of the fractional ARIMA process. For r > 0, let Yy , =
SN Eicj< < 1i1a;6, 5, Yy o=N, o5, =Var(Yy ,) and F©" =

s n- S,
the rth derivative of tljle diJstribution function of X,. The Yy , are
uncorrelated and are stochastically decreasing in r. For any positive
integer p < (28 — 1)71, it is shown under mild regularity conditions that,
with probability 1,

N p
Y I(X, <x)= ) (~1)'FO(x)Yy,, +o(N *oy ,)

n=1 r=0

uniformly forall x e R VO <A < (B—-1/2) A (1/2 — p(B - 1/2)).

This generalizes a host of existing results and provides the vehicle for a
number of statistical applications.

1. Introduction. Let {g;} be iid random variables with marginal distri-
bution G, which has zero mean and finite variance. For some g8 € (1/2,1), let
a;, 1 > 1, be regularly varying at « with index —p, denoted by a, € RV_,
[i.e., @, = i PL(i) for some slowly varying function L; cf. Feller (1971)]. Define
the moving-average process

(1.1) X, =Yas_,, nx>1l

i>1

Since Y7_,a? < o, {X,} is a well-defined, strictly stationary process. In this
paper, we give an asymptotic expansion of the empirical process of {X,} and
some ensuing applications. This paper is organized as follows. The assump-
tions and main results together with some remarks are stated in Section 2
which also contains a heuristic argument of why the main results can be
expected. Applications to density estimation are given in Section 3, and
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LONG-MEMORY MOVING AVERAGES 993

applications to partial sums, empirical characteristic functions and U and
von Mises statistics are given in Section 4. A Bahadur-type representation
which gives an asymptotic expansion of the quantile process is given in
Section 5. Proofs and technical details are delayed until Section 6.

It is clear that p, := E(X,X;) € RV,_,; is not summable, which roughly
corresponds to the spectral density of {X,} having a pole at the zeroth
frequency. Expressions commonly used to describe second-order stationary
processes possessing this property include long memory, long-range depen-
dence, strong dependence and so on.

The long-memory phenomena were first recorded quite some time ago. A
practical motivation came from hydrology. The expression “Hurst effect”
describes the long-range dependence of the so-called R /S statistic in hydrol-
ogy. See Hurst (1951) and Mandelbrot and Taqqu (1979). On the other hand,
a concrete example of a long-memory Gaussian sequence was first delivered
by Rosenblatt (1961). Applying a certain nonlinear function on a Gaussian
sequence which is not strongly mixing, he obtained a new type of non-
Gaussian limit law for the partial sums. Nowadays models with long-range
dependence are recognized to have an ever-increasing importance in various
areas of human and natural sciences. This is reflected in the rapidly growing
literature on that subject. See the review papers of Tagqu (1985), Kiunsch
(1986), Beran (1992), Robinson (1994) and the references therein.

For a variety of reasons, two classes of models are of distinct importance in
the family of long-memory processes. They are moving averages and func-
tions of Gaussian processes. The moving-average process {X,} considered in
this paper covers an important subset of the so-called fractional ARIMA
process. See Remark 2.4 and the review paper by Robinson (1994) which
emphasizes the time series aspect of long-range dependence. A number of
recent papers study the asymptotic behavior of partial sums and empirical
processes of random variables from these models. Without intending to be
complete, we mention the following papers which are the most relevant ones
to the present theme. Davydov (1970) considers the partial sum process of a
long-memory moving-average process. Rosenblatt (1961), Taqqu (1975, 1979)
and Dobrushin and Major (1979) study partial sums of nonlinear functions of
strongly dependent Gaussian sequences. Surgailis (1983) and Avram and
Taqqu (1987) investigate the partial sums of certain smooth nonlinear func-
tions (certain entire functions and Appell polynomials) of moving averages
with long memory. Finally, Dehling and Taqqu (1989) consider the empirical
process of nonlinear functions of Gaussian sequences with long-range depen-
dence. They establish the weak convergence in D([ —, +«] X [0, 1]) equipped
with the sup-norm and obtain an orthogonal expansion for the empirical
process. On the other end of the spectrum, results concerning empirical
processes of “short’-memory moving averages can be found in Billingsley
(1968), Chanda and Ruymggart (1990) and Hesse (1990a).

As can be seen, the asymptotic behavior of the empirical process of
long-memory moving averages has been mostly left untouched. One would
naturally like to know whether or not an expansion in orthogonal terms like
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that derived by Dehling and Taqqu (1989) exists under the (non-Gaussian)
moving-average setting.

While a formal expansion of the empirical process is possible using orthog-
onal polynomials, as is done in Dehling and Taqqu (1989) in the Gaussian
case, it is by no means the most natural approach in the present setting. We
show, based on a conditioning argument and recursive Taylor expansions,
that it is possible to approximate the empirical process by an expansion of
p + 1 uncorrelated terms, where p depends primarily on B. Each term is the
product of a derivative of F, the distribution function of X,, and a random
variable which (after normalization) converges in distribution to a limit
expressible by a multiple Wiener—Ito integral. The error of the approximation
is a.s. o(oy ,) in the sup-norm, where oy, p is the standard deviation of the
stochastlcally smallest term in the expansion with N denoting sample size.
This description may give the impression that the expansion is similar in
spirit to Taylor expansions. Indeed, what we do is essentially Taylor expan-
sions of indicators, which is possible in the long-range setting.

Since the empirical process contains all the information of the sample, one
expects that the asymptotic expansion can be used to derive, for example, the
asymptotic distributions of a class of statistics. Among applications that
directly or indirectly follow, we mention the Kolmogorov—Smirnov statistic,
density estimation, partial sums, empirical characteristic functions, U and
von Mises statistics and a Bahadur-type representation for the quantile
process. Most of these results are new and, in some cases, extensions of
existing ones. Naturally, these are just a few of an array of possibilities in
which our expansion plays a role. We anticipate other applications to surface
in due course.

2. Main results. Let {X,} be the moving-average process defined in (1.1).
Recall that G is the distribution function of ¢,, and let F be the distribution
of X,. Define

YN,r= Z Z l:[ En—j,

n=11<j;< - <j. $
For any positive integer r such that r(28 — 1) < 1, we have (cf. Lemma 6.1)
GN ,=Var(Yy ,) ~ N2 r@B-DI2r(N),

where the notation b, ~ ¢y means by/cy — 1 as N — «. Let

N p
Sy(x)= Y I(X,<x)— L (-1)'F"(x)Yy,, p=12,....

n=1 r=0

Our main results are Theorems 2.1 and 2.2.

THEOREM 2.1. Assume that [udG(uw) =0 and [u*dG(u) <=, and a; €
RV_, for some B € (1/2,1). Also assume that G is p + 3 times differentiable
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with bounded, continuous and integrable derivatives, where p is any positive
integer less than (28 — 1)~ 1. Then, for any (> 0, there exists a constant
C < o such that, for all b > 0,

P{UN » sup|SN H(x)] > b} < Cb 2(1V b {)N-7BP*+C

xeN

where y(B,p) =2 -1 A1 —-p2B— 1)).

THEOREM 2.2. Under the conditions of Theorem 2.1, for any A <
v(B, p)/2, we have

A

sup|SN p(x)| -0 a.s.
ON, p xef

REMARK 2.1. The value of B restricts the possible number of terms p in
the asymptotic expansion. The condition p < (23 — 1)~ ! is needed to ensure
that N/oy » — 0, which is crucial for the expansion. It is clear, however,
that a one-term expansion is always possible for any g € (1/2,1).

REMARK 2.2. Tt is obvious that the Yy , are uncorrelated. If a; € RV_g,
Be(1/2,1)and r < (2B — 1)7!, then

-1
O-N,rYN,r_)d Zr asN—)OO,

where the random variable Z, can be represented by the multiple Wiener-Ito
integral

Z,=x(B,r)[ f{fo 1:[ (w-up']”’ dv}dB(ul)---dB(u,)

—o<y < <u, <1

with B denoting standard Brownian motion and

k(B,r) = {r'(l - r(ﬂ— —))(1 -r(2B-1))

X [/:(x +22) 7" dx]_r}l/z,

ensuring EZ% =1 (cf. Lemma 6.1). It can be shown that Z; is standard
normal and Z, is nonnormal for r > 2. See Taqqu (1979), Major (1981),
Surgailis (1983) and Avram and Taqqu (1987).

(2.1)

REMARK 2.3. The conditions on the differentiability of G are needed for
technical reasons. The important thing is that F(-) = P{X]_,a,s, ; < '}
should converge to F(-) “fast” enough, and F should satisfy the differentia-
bility conditions that are now assumed for G. Those do not seem too stringent

in view of the discussion on page 273 of Hall and Hart (1990). As a result, we
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conjecture that our assumptions on G can be removed, or at least relaxed,
with appropriate smoothing arguments. However, effort will not be made to
justify that claim in this paper.

REMARK 2.4. A parsimonious device to model long-range dependence is
the now well-known fractional ARIMA process introduced by Granger and
Joyeux (1980) and Hosking (1981). A process {Y,} is said to be fractional
ARIMA(p, d, q) with d € (-=1/2,1/2) if Y, is a stationary solution of the
difference equation [cf. Brockwell and Davis (1987), page 469]

¢(B)V'Y, = 0(B)Z,.
Here B is the backward shift operator, that is, BY, =Y, _;, {Z,} is white

noise with EZ, = 0 and EZ? < «, ¢(z) and 6(z) are polynomials of degrees
p and g, respectively, and in the form of

d(2) =1 = 1z — ¢p2% — - —¢,z"
and
0(z) =1+ 6,z+ - +6,2%

The fractional differencing operator V¢ = (1 — B)? is expressed as V¢ = (1 —
B)! = ¥%_omB’ with m; = I'(j — d)II'(j + DI'(=d)]"'. The moving-average
process {X,} in this paper covers a class of the fractional ARIMA process with
0 <d < 1/2 [cf. Granger and Joyeux (1980)].

The proofs of Theorems 2.1 and 2.2 will be given in Section 6. At this point,
it might be helpful to explain heuristically why such an expansion exists
without providing detailed justifications. Define the truncations

(2.2) X, ;= ¥ ae, X,.,=Xae,_;, n,j=1l
1<i<j i>j
Also let
(23) F(x)=P(X,,<x}, F(x)=P{X,;<x}, n,j=1
Let X, o = X, and Fy(x) = I(x > 0). Write
N N 0
LUK, =x)-F)= L L (Fo(x =X, ,-1) - F(x - X, )

For large j, by the Taylor expansion,
F._l(x — Xn,j_l) — F}(x — an)

J
= F}(x _Xn,j—l) - F(x -X )

(2.4) =F(x-X,,—-as, ;) -Fx-X, )

=~ —qa.& 4F}(1)(x _Xn,j)

Jn—Jj

—a;s, ;F(x).

U
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Thus, we obtain the first and second term of the expansion:
N N o

(2.5) Y I(X, <x) =NF(x) —FV(x) ¥ Y aje, ; +ey(x),

n=1 n=1j =1

where e{’(x) denotes the error part. We came to (2.4) by dropping the
quantity

N o
(2.6) - X X ajgn—j(F}(l)(x _Xn,j) - F(l)(x)),

n=1j=1

where the same tactic as before gives

F}(l)(‘x _Xn,j) - F(l)(x) = i (Flgljl(x _Xn,kfl) - Flg,l)(x _Xn,k))‘
k=j+1
Again, by Taylor expansion,

]

)y (F/g91(x - Xn,kﬂ) - F,gl)(x _Xn,k))
k=j+1

~- X aksn—kFng)(x_Xn,k)
kE=j+1

_F(z)(x) Z ArEn—t>

k=j+1

u

so that the error e{P(x) of (2.5) contains the term

N ) )
F(2)(x) Y X X a;Qp &, _;En_p-
n=1j=1k=j+1
Hence, by (2.5) and (2.6),
N

Y I(X, <x) =NF(x) - FV(x) ZZV: i a;e, ;
n-1 n=1j=1

N o ©
+F(2)(IXJ) Z Z Z ajaken—jgn—k +€§\2/)(X).

n=1j=1k=j+1
It is clear that the same story can be told again to obtaina the next term in
the expansion and so on. What is left is then a careful analysis of the
magnitude of the size of the error e{’(x) in each step. To do that simultane-
ously for all x € N, we use an argument which is similar in spirit to one used
by Dehling and Taqqu (1989).

3. Kolmogorov-Smirnov statistic and density estimation. Denote
by Fy the empirical process of X,,..., Xy; that is,

1 N
FN(x)=N Y I(X, <x), x €N,
n=1
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Assume the conditions of Theorem 2.1 with p = 1. Then Theorem 2.2 implies
that

(3.1)

sup |Fy(x) — F(x) + f(x)N"'Yy ;| >0 as,

ON,1 xeh
where f is the density of F. By Remark 2.2,
0'1?7,11YN,1 ~q Z,

where Z is standard normal, and hence it follows from (3.1) that

(3.2) sup |Fy(x) — F(x)| =4 |Zlsup f(x)

UN,l xE€B x€B

for any Borel set B. That is, we derived the limiting distribution of the
Kolmogorov—Smirnov statistic.

We note in passing that if B contains only a single point y, then what
determines the variance of the empirical distribution is the concentration of
probability mass at y, that is, f(y), rather than the accumulation of probabil-
ity mass up to y, that is, F(y), as in the short-range case. It is also worth
noting that for each fixed x, the empirical distribution Fy(x,) can serve as a
statistic to test the null hypothesis f(x,) =0, and, by Theorem 2.2,
the critical region will be determined by the distribution of Z; provided
328 — 1) <1 (cf. Remark 2.2). Another frequently encountered occasion
which needs Theorem 2.2 with p > 1 for making statistical inference will be
presented later in Section 4.

In order, for example, to find a confidence band for F using normal
approximation based on (3.2), a consistent estimate of sup, f(x) should be
available beforehand. This and some other asymptotic properties related to
density estimation are discussed as follows.

Let us consider estimating f using a sample X,,..., Xy. The popular
kernel density estimator of f is

where K is a density function unless otherwise specified and % is the
bandwidth.

The issues of density estimation for long-memory moving-average pro-
cesses were first studied by Hall and Hart (1990). They computed the mean
integrated squared error of fy and concluded, without providing limit laws,
that its rate of convergence cannot be faster than N!™2#, the rate at which
Xy converges to 0. We use the maximum absolute deviation criterion and
show that the best rate N!~2# can be reached under regularity conditions.
The maximum absolute deviation criterion for density estimation was used in
Bickel and Rosenblatt (1973) in the iid setting.
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THEOREM 3.1. Assume that K is of bounded total variation and
[lulK(w) du < o, and that the conditions of Theorem 2.1 hold for p = 1. Let
h =N7° where 0 < § < (2B — 1) A 1/2. Then, for

(3.3) A<(B=3)A8A[((2B-1) A %) - 8],
we have

(34) N":161§|fAN(x) —f(x)| -0 a.s.

If, additionally, 1/2 < B < 5/6,

(3.5) i(B—3)<8<(B-3)A(1-B)
and

qu(u) du=0 and fuzK(u) du < o,

then

suprN (%) = f(x)| =4 1ZIsup | f'(x)| asN - .

N,1 xe) xeNf

(3.6)

Relations (3.3) and (3.4) are consistent with the message of Hall and Hart
(1990) that the rate of convergence of the kernel density estimator is bounded
by the rate of X, converging to 0. On the other hand, (3.6) shows that the
optimal rate can be reached for 1/2 < 8 < 5/6. Note that the condition
B < 5/6 is required to ensure that the choice of § in (3.5) is possible. This is
indeed a troublesome issue, which arises from the bias of the kernel density
estimator. The result below serves two purposes. First, it extends (3.4) and
(3.6) to include the estimation for the derivatives of f. Second, it shows that
the condition B < 5/6 can be relaxed if one is willing to use higher-order
kernels.

Let £ be the jth derivative of f. The estimator we consider for ) is

sz( hX )

(J) x) — N

THEOREM 3.2. Suppose the conditions of Theorem 2.1 hold with p = 1. For
a nonnegative integer q, let f be q + 1 times differentiable with bounded,
continuous and integrable derivatives. Assume that the kernel K is q times
differentiable and K© is of bounded total variation. Let h = N~° with
0<6<[(2B8—-1) A1/2]/(q + 1). Then, for

A<(B=3)ASA[((2B-1) A %) — (g +1)38],
we have

(3.7) N*sup | A?(x) — fD(x)| >0 a.s.

xeN
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Assume, additionally, that for some integer
(g +1)(B—-1/2)
1-8 ’
such that 9V is bounded and continuous and that K is of order | — 1, that
is, [WK(u)du =0,1<j <1 -1, and satisfies [lul'K(w) du < ». If

B_1/2<5< (B-1/2) A(1-8)

(3.8) I>(qg+1)V

3.9 )
(3.9) l qg+1
then
sup | A7 (x) = F@(x)]
(3.10) ON,1 xed
-, 1Zlsup | f9*V(x)| asN — .
xe€N

4. Partial sums, empirical characteristic functions, U and von
Mises statistics. The random variables listed in the heading form a body of
important statistics in practice. We now explain how to derive their asymp-
totic distributions for the sample X;,..., X,;. We consider first partial sums.

The same ideas in the proofs of Theorems 2.1 and 2.2 are still useful for
studying partial sums. But the volume of additional details involved is
considerable. It therefore seems prudent to leave them to a subsequent paper.
Nevertheless, it is useful to describe what kind of theory is possible and the
relationship with existing results.

Let K: i — N be a measurable function. Define

K (x) =EK(x +X,),

which is assumed to be finite and p-times differentiable at 0, where p is any
positive integer less than (28 — 1) 1. Then, under suitable regularity condi-
tions, we can obtain, with probability 1,

N P
(41) Y K(X;)= Y KP(0)Yy, + o(a'N,pN_A) for some A > 0.
Jj=1 r=0

If K(u)=1I(u <x) for some x € N, then (4.1) reduces to the empirical
process case for a fixed x. This is related to the weak convergence results of
Surgailis (1983) and Avram and Taqqu (1987). Note that here K{(0) plays
the role of EK"(X,) in Surgailis (1983) and Avram and Taqqu (1987). While
these existing results require that K be smooth, we can bypass that with
smoothness on F. We also note that if the unknown parameter 6 =
JK(x) dF(x) of interest is one for which K{’(0) =0, 1 <r <p — 1, with
p < (2B —1) and is estimated by N"'YY_, K(X)), then, by (4.1), the confi-
dence interval for 6 should be constructed via Z, as specified in Remark 2.2.
A commonly seen example is 6 = Var(X,) and K(x) = (x — EX,)? with
p=2.
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In the investigation of (4.1), we also plan to address a uniformity issue.
That is, what is a natural and general class % for which

N p
sup | Y K(X,) — X K(0)Yy | =o(oy ,) as?
KeXZ|j=1 r=0

See Pollard (1984), Chapter 2. These questions are more general and more
difficult to answer than the ones we have dealt with so far in this paper. Our
preliminary investigations show that there is a good prospect that we will be
able to resolve them to some extent in the near future.

To illustrate the above, we give a complete proof of the following result. Let
Fy be the empirical process based on a sample X, ..., X. Define

$(t) = [e*dF(x) and ¢y(t) = [e dFy(x),
the characteristic function and empirical characteristic function, respectively.

THEOREM 4.1. Assume that [udG(u) = 0, [u* dG(u) < » and a; € RV_,
Be(1/2,1). Then, forallt € N,

1+A

—— o (1) = &(t) —itd()Yy N
(4.2) N1

-0 as. VAL

1
B— 5) A(1=B)
(Yy, 1N~ " is the sample mean), and hence
(4.3) in’N(t) — (1)) =4 itd(1)Z,
N1
where Z ~ N(0, 1).

The proof, which uses the ideas of Theorem 2.2, is given in Section 6. For
the Gaussian case, Beran and Ghosh (1991) obtain the weak convergence of
sup, c gloy (&) — ¢(¢)] for any bounded interval B. While this can also be done
in our setting, we choose not to pursue it here.

Similar to the partial sum case, the basic approach in the proof of Theo-
rems 2.1 and 2.2 can be extended to treat U and von Mises statistics in
general. Again, it seems prudent to leave that to a subsequent paper which is
solely dedicated to such statistics. To give a flavor of what could be expected,
we present the following simplified version, as a direct application of Theo-
rem 2.2. The formulation is adopted from Dehling and Tagqu (1989).

Let w: N* > R be a measurable function satisfying the following: (1) w(-)
is invariant under the permutations of its arguments and (2) w(-) is degener-
ate in the sense that

Jlw(ys.oos %) |dF (%) ... dF () <
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and
/w(xl,...,xk)dF(x1)=0 Vxg,...,x.

Define the nonnormalized U and von Mises statistics Uy (w) and Vy(w) with
the kernel w as

Uy(w) = X w(X,....X;)
1<ji,...,Ji<N
JsFJi, S#FL
and
Vy(w) = Z w(Xh"“’Xjk)'

1<jy,eee <N

Due to the degeneracy of w, Uy(w) and Vy(w) can be written as
Uy(w) = Nkakw(xl,..., x,) d[Fy(x1) = F(x1)] ... d[Fy(x,) — F(x,)],

Vy(w) = Nkf%kw(xl,...,xk) d[FN(xl) - F(xl)] "'d[FN(xk) - F(xk)]’
where A* = {(x,,..., x,) € ERkai #x; Vi # j}

THEOREM 4.2. Assume that the degenerate kernel w is of bounded total
variation and that the conditions of Theorem 2.1 hold for p = 1. If

= (—l)kf%kf’(xl) o f)w (%, 2y) daty . dxy # 0,

then oy*Uy(w) and oy*Vy(w) both converge in distribution to Z*u,, where
Z ~ N(O) 1).

The proof of Theorem 4.2 follows basically the same line of arguments
given by Dehling and Taqqu (1989) and is omitted.

5. A Bahadur-type representation. In a now classic paper, Bahadur
(1966) described the asymptotic relationship between the empirical distribu-
tion function and the empirical quantile function. Similar results also hold for
stationary processes, for example, ¢-mixing sequences [Sen (1972)], and
linear processes, possibly having infinite variance, with coefficients a; and
the iid random variable &, satisfying El¢,|* < ©, a > 0, and Iajl =0(9),
g > 1+ (2/a) [Hesse (1990b)].

Based on the expansion of Theorem 2.2, we show that, using ideas similar
to those in Bahadur (1966), it is possible to obtain a “Bahadur-type” repre-
sentation for the long-memory moving averages discussed here.

Define the quantile function

Q(y) =F '(y) = inf{x: F(x) >y},
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and, for a given sample X;, X,,..., Xy, with order statistics Xj.q,
Xy.95---» Xy. n, define the empirical quantile function
Qn(y) = Fy'(y) = infla: Fy(x) 2y} = Xy,
k-1

if

k
<y<—.k=1,... N.
N “Y=N

The following result gives a Bahadur-type representation.

THEOREM 5.1. Assume the conditions of Theorem 2.1 for p = 1. Let
0 <a <b <1 besuch that infy, . .. qu) [(x) > 0. Then

_ ON,1
=0 N1+A

1
a.s.VO<)\<(,8—§

Yy
N

sup |Q@y(y) — Q(y) —
a<y<b

(5.1)
A (1= pB).

Hence, for all y € (a, b),
N

(5.2) —(Qv(¥) —Q(Y)) ~u Z,
N1

where Z is standard normal.

It is interesting to note that the first-order behavior of @,(y) — Q(y) is
independent of y. Is there an expansion for @,(y) which mirrors that for
Fy(x)? This is certainly a topic that needs further investigation.

Beran (1991) observes that the M estimator of location for long-memory
Gaussian sequences is as efficient as the sample mean. We show in the next
corollary that in the case of symmetric, possibly non-Gaussian {X,}, the same
holds for the trimmed mean. For 0 < o < 1/2, define the a-trimmed mean

1 ]VEEYa]
TNJ¥= AT ol AT 1 ‘XN:W
N — 2[ Na] n=[Nal+1
Clearly,
5.3 o o ) dyl = O(N1
(53) v~ Toga) @u()dy|=O(NT) as.
and
5.4 'Q(y) dy = EX
(54) 1_2(1]& (y) dy = EX,,.

The following corollary is evident from (5.1), (5.3) and (5.4).
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COROLLARY 5.2. Assume the conditions of Theorem 2.1 with p = 1. Sup-
pose the distribution of X, is symmetric about its mean u. Then, for all
0<a<1/2,

(Ty o — 1) —q Z,
ox 1 N, d

provided that infy . . < g1 -a) F(x) > 0.

6. Proofs. Throughout this section, let F; and Xn’ ; be as defined by (2.2)
and (2.3). We first give a few lemmas.

LEMMA 6.1. Assume that a;, = i PL(i), where B € (1/2,1) and L is slowly
varying at . If [udG(u) = 0 and [u® dG(u) < «© and p is any positive integer
less than (28 — 1)1, then

Var(Yy ,) ~ (B, p) N?*"P@P=DL2P(N),
where k( 3, p) is defined in (2.1).

Proor. It is easy to show that

2 N-1 m 00 P
Var(Yy ,) ~ o Y ) ( Zajan+j) )

*m=1n=1\j=1

Now, for large n,

oo p . p
( Zajamj) ~np(231)L2p(n)(f (x +x2) " dx) .
j=1 0
The rest of the proof is straightforward. O

LEMMA 6.2. Under the assumption on G in Theorem 2.1, for each j > 1, F;
is p + 3 times differentiable with bounded, continuous and integrable deriva-
tives. Further, the integrals [IF}(i)I, 1 <i<p+ 3, are nonincreasing in j.
Similarly, F is p + 3 times differentiable with bounded, continuous and
integrable derivatives.

Proor. We only show the part for F;, since the part for F is proved

similarly. Clearly, F;, has the desired properties. Suppose the conclusions
hold for j = 1,..., k. We show that they hold for j = £ + 1. First,

Fyoa(%) = [F(x = ay,19) dG(y).

Since F{V is integrable and continuous, it follows from Fubini’s theorem that

Fi(x) = [FP(x = ay.17) dG(y),
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which is bounded, continuous and integrable, and [|F{?,| < [|F{"|. The same
argument applies to higher-order derivatives. The proof follows from induc-
tion. O

LEMMA 6.3. Forall x,n, as k — «,

k
Y (Foa(x =X, 1) ~F(x - X, ))) > I(X, <x) - F(x)

almost surely and in L.

Proor. Observe that

k
Yy (Fj_l(x _Xn,j—l) — Fj(x —X’n’j)) =I(X,<x)— Fk(x —X’n’k).

Jj=1

Since F, — F and X'n,k — 0 as k& — » almost surely and in L,, the result
follows. O

LEMMA 6.4. Forallx,x' € Wandn,n',j,j = 1suchthatn' —j #n —j,
61) Cov(Fj,l(x — X’i’jl) — Fj(x — X'n,j?,
Bl =) - B %)) -0
and

(6.2) COV(F}_l(x _Xn,j—l) - F(x -X ,4),1?}(,1_)1(x’ —Xn,)j,_l)sn,_j,) =0.

ProOF. Let
&(x) =I(X, <x) - F(x)
and
§n’j(x)=F}_1(x—X'n’j_1)—F}(x—)fn)j), j=>1.
Let & be the o-field generated by ¢;, i <. Clearly,

£,,(%) = E(£(2)|%_;11) — E(&(2)|7_)),

and hence ¢, /(x) is measurable with respect to .7, _;, ;. Assume that n' —j’
<n-—jso that 1 ©F,_;. It is clear that

E(fsn,xx)fn,f(x ))
— E(& (2 E(E(6,(0)|7_,01) — B(&(2)F )T ye1))
= E( & () E(6(0)]F) — E(6(0)] 5 ,.0))) = 0.

This proves (6.1). A similar argument proves (6.2). O
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LEMMA 6.5. Given constants vyy,...,7v, > 1/2, t > 1, there exists C < ©
such that, forall l > 1,

Y T+l " <c il Lit+n]

I<ji<je< - <j:

1
-2y+1 : _
(6.3) cr—=r-, zfvE(Z,l),
< log ! )
T ify=1
cl, ify>1,

where y =Y. _1v, — (t — 1)/2.

ProoF. The result can be proved by induction, as follows. For ¢ = 1, (6.3)
obviously holds; for example, if y; € (1/2, 1),

s

L+ )] <2 [Ty +9)] " dy < CLn
0

Jj=1

where the other two cases can be analyzed similarly using elementary

arguments. Suppose now (6.3) holds for ¢ = 7. Then, by the Cauchy—Schwarz
inequality,

)y f[[Js(l+Js 1"

1<j1<ja< = <Jr41

< X » ( IT (L +i)] )( X 2””)1/2( )y j‘z”*l)l/2

1<j1<2< L \s=1 J>J- J>1+];

<C Z o ( 11[1 [Js(l +js)]7s)[j7(l +J-T)]*(y7+171/2)'

1<j;1<Je< AR
Thus (6.3) holds for £ = 7 + 1 by the induction assumption. O
We are now ready to prove Theorem 2.1. To streamline the notation, we

shall drop the “p” in Sy , and oy , and simply write Sy and oy. For
convenience, if f is a function on N, let

f(x,y) =f(y) — f(x).
ProOF OoF THEOREM 2.1. Define

A(y) = 2/ |FCD(u)|du,  x € R;

-0 " —®
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A is continuous, bounded and nondecreasing. The main ingredient of our
approach is the so-called “chain argument” used by Dehling and Taqqu
(1989). For £ =1,..., K, where K will be determined later, let

y:(k) =infly: A(y) = A(+=)i/2%}, i=0,...,2"%
For k=1,...,K and x € R, let i,(x) be such that
Yiuo(R) 2 <y 0y41(k),

whereas y; (,,(0) == —c°. Thus,

K-1
Sy(x) = kZ SN(yik(x)(k)’yikH(x)(k + 1)) + SN(yiK(x)(K)’ x)
-0

First,
1 1 |K-1
—|Sy(x)| < —| X SN(yik(x)(k)’yikH(x)(k + 1))
O-N O-N k=0
1
+0__|SN(yiK(x)(K)?yiK(x)+1(K))|
N
N
(6.4) + 20__NF(yiK(x)(K)’ Yig()+ 1(K))

- §1(|F<’>(x> — FO(y;00(K))|

1
#|FO (%) - F(”(yim)ﬂ(K))DU_N|YN7'"|'

Now, for a given b > 0, choose

NDL
(65) K= 10g2(T
for some a > 0 which is large enough to guarantee
Nl~« 1 P 0']\%

6.6 < — d T o(N-@B-DY.
(6.6) oy 4 an E’l N2 2 o )
Thus,

N b
(6.7) SUPZ_F(yiK(x)(K)ayiK(x)+1(K)) =35>
xeR ON 2

max sup (|F(r)(X) - F(r)(yiK(x)(K))|

1<r<p yen

(6.8) +|F(’)(x) _F(r)(yiK(x)+1(K))|)

<2-27K=2N"p.
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By (6.7), (6.4) and Boole’s inequality,
P{a&l sup|Sy ()| > b}

<P by SN(yik(x)(k)’ yikﬂ(x)(k + 1))

K-1 ‘
k=0

max (

+ Sy (Vipo(K)s Yipiar 1(K))|

b}
> —
4

b
+|F(r)(x) - F(r)(yiK(x)+1(K))|)UI§1|YN,r| > E}'

By (6.8), Lemma 6.6 and Chebyshev’s inequality, for any / > 0 there exists
C < « such that the sum on the right is bounded by

" le{ sup (| FO(x) = FO(3,,0(K))|

2

Cb 2(1V b F)N-"FPE 4 (8p)? Z N
The conclusion of the theorem follows from (6.6). O

To complete the proof of Theorem 2.1, it suffices to prove the following
lemma.

LEMMA 6.6. Assume the conditions of Theorem 2.1 and let K be chosen by
(6.5). Then, for any ¢ > 0, there exists a constant C < «© such that, for all
b>0,

K-1
P \

> SN(yik(x)(k)’yikH(x)(k + 1))
k=0

max
x

+|SN(yiK(x)(K)’ Yig(o)+ 1(K))|

> bO’N}

< Cb2(1V b {)N 7 EP*L

ProOOF. In the following, B and C are generic constants whose values may
change from line to line. Write

N
Ty (%) = gl(I(Xn <x) — F(x))

N r
SNETED D VI T

r=1 n=12<j;<-<j, 8§

N ~
LR PRV (H @ ) Fx =%,
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and

N p
Tos®) =0 Y L (e, (R0 - B2 (x- X, )

n=12<j < <j, \$=1
and
p N r
TN,S(x) = - Z (-1 F(r)(x) Z Z a8, 4 najsgn—jsa
r=1 n=11<jy< =+ <j, s=2
so that
Sy(x) = Ty (%) + Ty o(x) + Ty 5(x),
where we use the convention Y°_, - = 0 and X, <p< oo <j11_1§:2 - = 1. It clearly
suffices to show the claim in the lemma with Sy replaced by Ty ;, Ty , and
TN 3-
By Boole’s inequality and the fact that X;_,(k + 3)72 < 1/2,
K-1
P max( Z TN,m(yik(x)(k)?yik+1(x)(k + 1))‘
x k=0

+|TN,m(yiK(x)(K)’ yiK(x)+ I(K))|

> b}
K_

(6.9) 1
<) P{max|TN,m(yik(x)(k),yik“(x)(k + 1))| >
k=0 x

b
(k + 3)°
P mas Ty, (31,00 K) i s E))| >
+ P{ max : s Vi > —— .
x N’m(le(x) yK( )+1 ) (K+ 3)2
For k < K, observe that y; (k) and y; . (k + 1) are neighboring points in

yo(k +1),..., yorei(k + 1).

By Boole’s and Chebyshev’s inequalities,

b
P{me|TN,m(yik(x)(k),yikﬂ(x)(k + 1))| > m}
2k+1_1 b
6.10 < PUTy (y:(k + 1), 5, (k + 1)) > ——
(6.10) EB {| w,m (i ( )s Yieal NI (k+3)2}

(k + 3)4 ok+1_1q
< —

b2 Z Var(TN,m(yi(k + 1), y(k + 1)))
i=0
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The term P{max [Ty (3 (K, ¥; . o ED>b/(K + 3)*} is handled in

the same way. By (6.9), (6.10) and the choice of K [cf. (6.5)], for any ¢ > 0
there exists C < o such that

pP

K-1 1 ‘

Z _TN,m(yik(x)(k)’yi;ﬁl(x)(k + 1))
oN

max(
k=0

X

1
+ . |TN,m(yiK(x)(K)? Yig(x)+ 1(K))|
N

b}
(6.11) 2 K-1 L2t
< —gpp L (k+3)" L Var(Ty . (i(k + 1), y.0(k + 1))
oxb .
N k=0 i=0
< Coy?b7%(1V b ¢)N*
9k+1_q

X  max Y. Var(Ty .(y;(k + 1), y;,1(k + 1))).
0<k<K-1 ;_ ’

From this point on, we will drop the “6 + 17 in y,(k + 1) and y,, (2 + 1) to
simplify the notation.
Our plan is to show that, for some universal constant B < oo,

2k+171
(6.12) > Var(TN,l( Yi» yi+1)) < BN,
i=0
2k+1_1
(6.13) Y. Var(Ty,s(¥;, ¥i41)) < BN,
i=0

and, for any given small > 0, there exists C < », independent of %, such
that

2k+1 1
(6.14) Y Var(Ty o(;, ¥i41)) < C(N V N2 (p+D@E-D+L)
i=0

Since oy € RV, 441, (cf. Lemma 6.1), the result follows from (6.11), (6.12),
(6.13) and (6.14).
First, we show (6.12). For ¢ = 1,..., p, define

N
T(x) = X (I(X, %) ~ F(x)
—2( 1)F<r><x)21 z 1] i

_(_1)t Z (1_[ &n Js) J(tt)l(x _Xn,jz)'

n=1 2<J1<
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We shall show inductively that, for t = 1,..., p,

2k+171

(6.15) Y. Var(T{\(y;,y;+1)) < BN.
i=0

First, we show (6.15) for ¢ = 1. By Lemma 6.3,
I(y; <X, <yiv1) = F(9i,5i01)
= Z (F}fl(yi _Xn,jﬂaywl _Xn,jfl) - Fj(yi _Xn,j’yiJrl _Xn,j))’
j=1
where the sum converges a.s. and in L,. Hence,

TJS/'l,)l( Yi» Yit1)
N

= 2 (I(y: <X, <5i:1) —F(y:,5i41))
n=1
N o B B
+ Z Zajan jF(l)( - n,j?yi+1_Xn,j)
n=1 ;=2
N ©
= Z ZRn](yz’yH—l)
=1j=1
where
R, (x) =F}_1(x _Xn,j—l) —F;(x —Xn’j) +I(j=> 2)F}(P1(x - X, )ajsn e

By Lemma 6.4, R, (y;,y;.,) and R, (y,,y;,,) are uncorrelated if n —j #
n' —j'. Letting j' = n’ — n +j, we get
gk+1_1
Z Var(TZSIl,)l( Yis Yi+ 1))

(6.16) .

<2 E > Z ZCOV( n,j(yiayi+1)’Rn’,j’(yi’yi+1))‘

= n=1n'=nj=1

We first explain the main idea in handling the covariance. For the moment,
let us focus on the case j > 2. By the Taylor expansion, taking into account
that [udG(u) = 0,

F‘—l(x _Xn,j_l) N F(.‘)C _Xn’j)

- f(F;‘l(x _Xnyj—l) - F}'—l(x _Xn,j—l +a;(e,_;— u))) dG(u)

= —a;e,_ JF(”( Xn j_l)

a- ~
+ é[(an,j ~u)’F®(x =X, ;| + 8(uw)) dG(u),
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where |6(w)| < la,(&,_; — w)l. Another Taylor expansion shows that

FO(x-X, ) -FY(x-X, ;) = —q,

En JF(2)(x _Xn j-1 + 7)),
where |n| < Iajan,jl, and hence

R, i(x) = I"J-_l(x _Xn,j—l) - Fj(x - X, ) +a;s, JF(I) (x - X'nj)
(6.17) = afel F(x ~ X, 0+ )

Cl» ~
+Ef/(en,j ~u)’F®(x =X, ;| + 6(u)) dG(u).

Using essentially this idea, we obtain, for j > 2 and n’ > n,
ok+1_1

Z COV(Rn,j(yi’yi+1)’Rn’,j’(yi’yi+1))
i=0
2k+171
= X E[ajzgr%—jl’}(g)1(yi =X, i1t M Vi — X, o T ”'7n,j)
i=0
a? y
i -
+?/(‘9n—j —u) F}(g)l(yi _Xn,jfl + Sn,j(u)’
Yit1 _Xn,j—1 + 5n,j(u)) dG(u)l

2 2 2 % %
X|aie _jF}(,_)l(yi — Xy o1t My s Vo1 — Xy o1 U;L',j')

J "2 2 > '
+? (8nfj_u) F}(’f)l(yi_Xn’,j’fl+6r,z’,j’(u)7
Yigr = Xp jo1 Tt Sé,’j,(u')) dG(u')l,
where Inn’ | < Iajsn JI I'q;,’j,I < Iaj,sn_jl, |8n’j(u)| < Iaj(an_j — u)l and

16, (wl < Iaj(en _;—wl It is worth noting that we applied the Taylor
expansion to the whole sum, not to the summands individually, so that
My, j» Mo, j» On, ”, 8, ; are free of i. This is a crucial point in this approach.
Recall that fu* dG(u) < =, F®), is bounded and
2k+1 1

sup Y |FO(y; + 5,50 ty)| < [IED] <o,

yEWf i=0
Therefore, we conclude that, for j > 2 and n’ > n G.e, j' =j = 2),

ok+1_q
Z COV(Rn,j(yi7 Yis1)s B i (¥is ¥is 1)) =< Bajzajz',
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where B is a universal constant. Now, for the case j =1 and n’ =n (e,
j' ' =j=1), we use the boundedness and monotonicity of the distribution
function to conclude

2k+171

Z Cov(Rn,l(yi, Yir1)s Rn,l(yi’ Yi+ 1))
i=0

< 4,

and, similarly, for the case j=1 and n'>n + 1 (e., j/ >j=1), using
(6.17), we obtain

2k+1_1

h COV(Rn,l(yi’yi+1)’Rn’,j’(yi’yi+1)) SBaJZ"-
i=0

Combining these three cases and making use of the fact that g8 > 1/2, we
conclude that

2k*1_1 N N
by )

i=0 n=1n

h COV(Rn,j(yi7 Yis1)s B o (¥is ¥is 1)) < BN.
j=1

n

Thus, (6.15) with ¢ = 1 follows from (6.16).

Suppose now (6.15) holds for ¢ equals some 7 satisfying 1 < 7 < p. We
show that (6.15) holds for ¢ = 7+ 1, and then mathematical induction gives
(6.12). Define

Zy(x) = TV P(x) = TV (x)

N T ;
= (_1)7 )y )Y (slj[lajsgnjs)(ﬁ}(,_ﬂl(x _Xn,j,) - F(T)(x))

n=12<j,< - <j,

N 7+ 1
+(- 1)T )» L ( [ ais‘c"an)F}(fil)l(x N X”’J}H)'

n=12<j< - <jq \8=1

By the induction assumption and the Cauchy—Schwarz inequality, it suffices
to show

2k+1_1

(618) Z Var(Zn(yi’yH—l)) SBN
i=0

Using arguments similar to those in Lemma 6.3, we can write
N T
Z@ = (DL T (Haye R, 0.
n=12<j;< = <joyq V5=1

where, in this instance,

R, (x) =F%(x =X, ;1) - F7(x - X, ;) + aje, ;FTV(x - X, ).

Jen—j
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Using arguments similar to those in Lemma 6.4, it is straightforward to show
that

ok+1_1

> Var(ZN(yi’ yi+1))
i=0

'=n 2<ji< <oy
XE(Rn,jM(ynyi+1)Rn’,j’,-+1(yi,yi+1))a
with ji = n’ — n + j, [cf. (6.16)] where, again, the Taylor expansion gives
Rn,j(x)
= —ajsn_j(F}(Zgl)(x - Xn,j_l) - F}(fil)(x - an))

2
a.e,_:—a._U ~
+f( i En—j 5 j-1%) F}(I+22)(x_Xn,j71+8(u))dG(u)

)2Fj(1+22)(x - Xn,jfl)

(ajgnfj

2
a.e,_.—a. U ~
+f( JTnoJ 5 IBL) F}(ZEQ)(x—Xn,j—l+6(u))dG(u)

—aje,_;

(a;e,_;—a;_ u)2 -
| 5 ——F50(x =X, 4+ n(w)) dG(u),

with |[6(w)l <la;e,_; — a;_,ul and In(w)| <la,e,_; — a;_,ul. Using this plus
the assumptions sup; .|F{?(x)| < o, sup; [F"*¥(x)| < o, sup; [|F{™?] < o
and sup; | IF}(T+ Y| < o, we obtain, as in the previous step of the induction,

2k+171

by E(Rn,j7+1(yi’yi+1)Rn’,j;+1(yi’yi+1)) < Ba} a;
i=0

-
Jre1 Jre1?

and therefore

2k+1_1

Z Var(ZN(yi’ Yi+ 1))
(6.19) e

N N T
<EY LT (Mlasl) T o,

'=n 2<j;< - <J; Jre1>Jr
where B is a universal constant. For any { > 0, there exists C < « such that

Bt
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Choose 0 < { < B — 1/2. Simple algebra shows that the right-hand side of
(6.19) is bounded by

N-1
C(NY X (r[ Li(n +)] ’“4) L Lealn +7)]
n=0 2<j;< - <j \S= Jr+1>Jx
for some C < », By Lemma 6.5, for n > 1,
IR s [PRUR ) Rl I VN TACR AN s
<J

2<j1<Jj2< VST Jr+1>Jx

< C Z [](n +J~)]7[(7+1)(B*§*1/2)+ﬁ+1/2]

[](n+J)] (B+1/2)3Cn7(ﬁ+1/2),

MS

<C

J

which is summable. It is then clear that (6.18) holds. We have shown (6.15)
for t = 7 + 1 and this concludes the proof of (6.12).
To show (6.13) for p > 1, simply note that

2

p
2
Var(TN,B(yi’ Yir1)) = by (F(r)(yi’yi+1)) NaiEs} Z 1_[ aj

r=1 1<jo< =+ <J, s=2

from which (6.13) is immediate.
Finally, we show (6.14). As before,

p
(( l_I ) A (x), (S].:.[laj;sn’—j;)Rn',j’p(x)) =0
if n —j, # n' — j., for some 1 < s < p, where now
R, j(x) = F¥(x) ~ F#)(x - X, ).
Thus,

gk+1_1

Z Var(TN,Z(yi> yi+1))
i=0

x

n 2<j;

p
81:[1 a;a;,

XCov(R, ; (¥i, ¥is1)s Ru (365 ¥is1))
where j, = n' —n + j, [cf. (6.16)]. Note that

R, (%) = [(F2)(x —u) = F#)(x - X, )| dF;_y(u)

<Jp

= [(X,.; = u)Fo (2 = 8(w)) dE,_y(w),
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where 6(u) is between u and X'nj Using this, the assumption sup, [|F?*?| <
o and an argument used twice already, we obtain

9k+1_1

Z COV(Rnhjp(yi,yi+1)>Rn’,j;)(yi7yi+1))

i=0

(6.21)
<C(BIX, X, | + BIX, BIX, , |+ EX, , B, )

for some C < oo. By the Cauchy—Schwarz inequality, forany 0 < { < 8 — 1/2,
there exists C such that, for all j, j’' > 2,

E|X, |E|X, ;IvVEX, X,
(6.22) T
By (6.20), (6.21) and (6.22),

9k+1_1

Z Var(TN,2(yi7 Yi+ 1))
i=0

<C % % (ﬁm a; |)(J,,Jp) (o1

n= 1n—nZ<]1 s=1

coNy ¥ (ﬁ[Js<n+Jsl‘*“)[jp<n+jp>]<“/2”4

n=02<j;< - <j, \s=1

By Lemma 6.5, for n > 1,

Z ( ﬁ [Js(n +Js ] B+{)[jp(n +J.p)]—(/3—1/2)+§

2<j1< 0 <J,

< C Z [J(n +j)]*[(p+1)(ﬁ*§*1/2)+1/2]‘
=2

Note that there are two possibilities: for small { > 0,(p + I(B - ¢—1/2) +
1/2 is greater than 1 or less than 1, where, by Lemma 6.5, in the first case
the right-hand side of the preceding inequality is summable in n and in the
second case it is bounded by Cn~2(P*D(E=¢(=1/2) Thys, for some C < o,
2k+1_1
Y Var(Ty o(yi, ¥i41)) < C(N v N2720rAm1/2),
i=0

This shows (6.14) and completes the proof. O

PRrROOF OF THEOREM 2.2. Define
M(N) = sup|Sy(x)| and M(N;,N,) = M(N,) — M(N;,).

xeN
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Clearly, for N, < N,,
|M(N,, N,)| < Sul))|SN2(x) - SNl(x)|
xeNR
=a Sup |SN2—N1(x)| = M(N, — N;)

xeN
by stationarity. Fix A < y( 8, p)/2. Set
N,=2% k=1,2,....
By Theorem 2.1 and the Borel-Cantelli lemma, it is easy to show that

N/\
(6.23) —kM(Nk) -0 as.ask —> o
By (6.23) and stationarity, it suffices to show that

A

Nk
— max |[M(N)|—>0 as.ask — .
On, 0<N<2*

Using the method of dyadic expansion [ef. Dehling and Taqqu (1989), the
proof of Theorem 3.1] we get, for each N, 0 < N < 2%,

N k-1 (N} b
P{=t max |M(N)|>b} < Y ok-i-ip/ k| pr(2hy| > —}.
ON, 0<N<2* i=0 On, k

Fix b > 0 and pick ¢, ¢’ > 0 to satisfy

(6.24) Y(B,p) =240 — {(A+1) —2¢' >0,
which is possible since y( 8, p) > 2A. By Theorem 2.1, for the { we chose
there exists C < « such that

N b
U_N,,|M(2 )| > %

p

1 ; b0-2k
= P{oy | M(21)] > S
i

2
O9i

< C_22k2+§2k/\(2+§)2—i(7(ﬁ717)—Z).
gk

Since oy € RVy, by Lemma 2 on page 277 of Feller (1971), there exists
C < « such that the rightmost term of the previous inequality is bounded by
CR2+{QiUH+{N9—k(H-{)9kA2+{)Q=i(¥(B, P)={)
= CR2T{Q FH- A2+~ {19i(H=y(B, p)+(+{))

Hence,
k-1 ) N} _ b
Y 2k P S M (2| >
i=0 O-Nk k

< CR2+EQ RIH-A2+ 1)~ ¢~ 1gk(H—y(B,p)~1+(+()
— CR2+ (2 kY(B.p)=2A~({(A+1)~2(]
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By (6.24), the last expression is summable (in &), and hence the result follows
from the Borel-Cantelli lemma. O

This completes the proofs of Theorems 2.1 and 2.2. We proceed to prove
Theorems 3.1 and 3.2.

PrOOF OF THEOREM 3.1. Write

N . 1 x—u
o) = Bf(x) = 1 K5 ) dlFu(w) = F],
Efy(x) —f(x) = f[f(x — hu) = f(x)]| K(u) du.
Then integration by parts gives

sup | () — f(x)]

xeN

(6.25) = sup

xeNR

—ff(x —hu)K(u) du

+W/SN’1(x — hu)dK(u) + hff’(u*)uK(u) dul,

where Yy ; /N is the sample mean XN, and |u* — x| < |hul. By Lai and Stout
(1980), Theorem 7,

N*Xy —>0 as.forA<p—3.
Since oy ; € RV; 5_4, it follows from Theorem 2.2 that

,1 1
-0 a.s. for)\<Y(B )+,8———6;

sup —- 2

K
SUP — hu) dK(u)

(3.4) follows using these and (6.25). Rewrite (6.25) as

sup | fy(x) — f(2)]

ON,1 xeR

= sup
xe€N

/f(x—hu)K(u)du+ 1h/le(x hu) dK(u)

ON,1

ff”(u*)uzK(u) du|,

20’N

where |u* — x| < |hul. Clearly (3.6) holds. The proof is complete. O
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ProOF OF THEOREM 3.2. The same arguments leading to (6.25) and re-
peated integration by parts give

sup | A (x) — F@(x)|

xeN

= sup
xeN

hu)K(u) du
(6.26)

th+1 [Sw.i(x = hu) dK(u)

+hff(q“)(u*)uK(u) du

for some u* satisfying |u* — x| < |hul. Thus, (3.7) follows as (3.4). Now rewrite
(6.26) as

sup | i (x) — F@(x)|

ON,1 xeht
= sup /f(‘”(x—hu)K(u) du
xeR| ON,1
(6.27) .
+ W[sN (x — hu) dKD(u)
N
+ (—ff(q”)(u*)ulK(u) du|,
loy

where |u* — x| < |hul. Note that (3.8) ensures that the inequality (3.9) is not
vacant, and then (3.10) follows from verifying that the second and third term
of the right-hand side of (6.27) tends to 0 a.s. O

Next we prove Theorem 4.1.

ProOOF OF THEOREM 4.1. The proof is a simplified version of those of
Theorems 2.1 and 2.2. For a fixed ¢, let K(x) = cos(#x) [or sin(#x)]. Recall that
K (x)=EK(x + X,) and Fj(x) P{X < x}. Consider the quantity

n_]_

N N
Ry= Y (K(X,) - EK(X,)) - K(0) X Yy 1.

n=1 n=1

Define

K,(x) =EK(x +X, )= [K(x +y)dF(y), Jj=0,1,....
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Thus,

where the sum converges both a.s. and in L,. Clearly,

Var(Ry) < 2 Z Z E‘,Cov( R, ,R, ),

n=1n'=nj=1

where j' =n' —n + j. By the Taylor expansion,

n,j_ 9 /(gn —Jj u) K” (-n j—1+8(u)) dG(u)

+ aje,_j( Kjo( X, ,-1) — KA0)),
where |6(u)| < Ia-(s i u)|. Another Taylor expansion gives

K (%, 1) - KA0)| < (1%, , 1+ EIX, ).

Thus, by the Cauchy—Schwarz inequality, for any ¢ > 0 there exists C < «
such that

Y ¥ YCowR, R, ;)<CY ¥ T (aka}+laa;l(i) *)

n=1n'=nj=1 n=1n'=nj=1
< C(N v N2~ 2@p-1-20))
[cf. (6.14) with p = 1]. Hence, for any ¢ > 0 there exists C < o such that
Var(oy' Ry) < CN~7(FD*E,
The same proof of Theorem 2.2 then shows that

= ( g" (K(X,) — NEK(X,)) - K(0)Yy,| 20 as. VA< @

N, 1
Since
N N
dy(x) = ) cos(tX,) +i ), sin(tX,)
n=1 n=1
and

—tE(sin(¢X,)), if K(x) = cos(tx),

K(0) = tE(cos(tX,)), if K(x) = sin(x),

(4.2) follows. Clearly, (4.3) follows from (4.2) and Remark 2.2. O



LONG-MEMORY MOVING AVERAGES 1021

We next prove Theorem 5.1. We need some notation and a few lemmas. Set
IFy = Fll; = sup |Fy(x) — F(x)]

u<x<v

and

1Qy — QIS = supleN(y) - Q(y)].

a<x<

LEMMA 6.7. Assume the conditions of Theorem 2.1 with p = 1. Then, for
each 6 > 0,

N|Fy - FI*.
1+8)/2 -

U'N,l(l(’g)

Proor. The proof follows from a direct application of Theorem 2.2 and Lai
and Stout (1980), Theorem 7. O

For any fixed 0 < a < b < 1, define f, , = infg ), < g¢) [(x). Also, define
Z,=F(X,),

N
Ey(y)=N' Y I(Z,<y), 0<y<]l,
n=1

0, y=0,
k-1

N

Ey'(y) = inf{u: Ey(u) >y} = F(Xy.,),

<y<—,1<k<N.

k
N

LEMMA 6.8. Assume that f, , > 0. Then

1@y — Qllc < £, LI Fy — FII().
Proor. Forall (¢ —1)/N <y <k/N,
Qn(y) — Q(y) =Xy, — F'(y)
=F Y (F(Xy.,)) - F (y) =F (Ex'(9)) = F ().

Hence, by the Taylor expansion,

1Qy — QIS < £, Y sup |Ex'(y) —y|="r.4IFy — FISY. O

a<y<b
Define

R,(y) = {Fx(Qn(¥)) — Fy(Q(¥))} — {F(Qx(¥)) — F(Q(¥))},
dy=N" 10'N,1(10g N)(1+8)/2,
and the interval

Iy(y) = [Q(y) —dy,Q(y) +dN]-
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LEMMA 6.9. With probability 1,
sup Ry(y) =o(dy VN Yoy 1d)/?) VO<A<(B—3)A(1-B).

a<y<b

Proor. By Lemmas 6.7 and 6.8, with probability 1 for all large N,
|[Ry()| < sup [{Fy(x) — Fy(Q(¥))} — {F(x) — F(Q(y)}I,

xely(y)

which is equal to

sup |Ay(x,Q(y)) + By(x,Q())],

xely(y)

where

Ay(x,2) = (f(2) —f(x))Yy N*
and

By(x,z) = (SN,I(x) - SN,1(Z))N_1-
Fix —o < u < v < », By Lemma 6.7, we conclude readily

sup sup Ay(x,x+8) =o(dy) as.

u<x<v |§|<dy

For each 8§ > 0, a slightly modified chain argument in the proof of Theorem
2.1 shows that for any ¢ > 0 there exists C < o« such that

P{ sup By(x,x +8) > b} <Cb2(1VbE)SNVEPH  ¥h 5> 0.

u<x<v

Another chain argument on & then gives

P{ sup sup By(x,x +8) > b} <Cb2(1Vvb ¢)dyN "EP+ V¥ p>0.

u<x<v [8|<dy
Finally, an argument similar to the proof of Theorem 2.2 gives

sup sup By(x,x + 8) =o(dy*N" Yoy ;) as.
u<x<v |§|<dp

The details of these derivations do not contain new ideas and are therefore
omitted. O

We are now ready to prove Theorem 5.1.

ProoOF oF THEOREM 5.1. Note that

sup |Fy(Qy(y)) —y|=N"".

0<y<1
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Applying a Taylor expansion on R,, we have, with probability 1 for all
y € (a, b),
@n(y) — Q(y)
y — Fy(Q(y))

= Gy T OB N+ 0((Qu(y) Q)Y

Yy
T’ +O(Sy1(Q(y))N ' +Ry(y) + N 1)

+0((Qy(¥) = Q())?),

where we used the fact that f(Q(y)) is bounded away from 0. By Theorem 2.2
and Lemma 6.9,

1+

sup |SN,1(Q(J’))N71 +Ry(y) +N71| -0 a.s.

UN,l a<y<b

This completes the proof. O
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