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We consider two problems in nonparametric survival analysis under
the restriction of stochastic ordering. The first problem is that of estimat-
ing a survival function F(¢) under the restriction F(¢) > Fy(¢), all ¢,
where Fy(t) is known. The second problem consists of estimating two
unknown survival functions FM(¢) and F®(¢) when it is known that
FO(t) > FA(t), all ¢. The nonparametric maximum likelihood estimators
in these problems were derived by Brunk, Franck, Hansen and Hogg and
Dykstra. In the present paper we derive their large-sample distributions.
We present two sets of proofs depending on whether or not the data are
right-censored. When centered and scaled by n'/2, the estimators con-
verge in distribution to limiting processes related to the concave majorant
of Brownian motion. The limiting distributions are not known in closed
form, but can be simulated for the purpose of forming asymptotic point-
wise confidence limits.

1. Introduction. In the present article we consider two estimation prob-
lems which arise in survival analysis when order restrictions are present. For
the first problem suppose that the unobserved survival times X;,..., X, are
iid with survival function F = 1 — F, and that, independent hereof, C,,...,C,
are iid censoring times with distribution G. What we observe is, in the usual
right-censoring setup, the smallest of survival and censoring time and whether
the observation was due to death or censoring; that is, the observations are
iid pairs (Z;,A;) = (X; A C,, I(X; < C,))). Let F, be some fixed survival func-
tion, for example, the population survival curve available from demographical
studies. The first estimation problem we consider is estimating F' subject to
the restriction

(1.1) F(t) = Fy(t) forall0 <t <1.

Fo(t), may, for instance, be a survival function for a known reference popula-
tion.

For the second problem we assume that we have two different sets of
right-censored survival data from two different populations; that is, with
obvious notation,

(209, A0) = (X A CO, I(XD < C9)),  i=1,...,n,,j=1,2,
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where (X{,..., X,(Lf)) and (C{", .. .,C,(li)), j = 1,2, are independent and X}?
~aFY, CY ~ 4GV, Denoting the underlying survival curves by F"’ and
F® respectively, problem 2 consists of estimating F’ and F® subject to the
order restriction

(1.2) FO(t) > FO(t) forall0 <¢< 1.

[This may, for instance, be relevant in studies such as the one reported by
Dykstra (1982) where F' and F® denote male and female survival func-
tions, and it is necessary to incorporate knowledge that females live longer
than males.]

In the case of no censoring, the NLMLEs in the second problem were found
by Brunk, Franck, Hanson and Hogg (1966); see also Barlow and Brunk
(1972). Dykstra (1982) considered both problems under right censoring and
found the noparametric maximum likelihood estimators of F, F© and F®.
As described later, these can be viewed as Kaplan—Meier estimators with a
risk set so adjusted that the estimators meet the inequalities imposed in (1.1)
and (1.2).

In this paper we derive the asymptotic distribution of the estimators in
cases (1.1) and (1.2). We use two different sets of methods, depending on
whether or not censoring is present. In the case of no censoring, it is possible
to work with the original construction of Brunk, Franck, Hanson, and Hogg
(1966) and minimal assumptions to get a limit theorem. Censoring compli-
cates the problem somewhat and forces us to impose (slightly) more restric-
tive assumptions, such as the standard one of estimating F(t) only on [0, 1],
where F(1) > 0. The tools used in the censored case are chiefly the product
integral and empirical processes indexed by monotone functions.

The asymptotic distributions in cases (1.1) and (1.2) depend on whether or
not the constraints are active or inactive. The constraints are said to be
active for a ¢ such that equality holds and inactive if the inequality is strict.
It is folklore in order-restricted inference that the order-restricted estimators
are n'/? equivalent to ordinary maximum likelihood estimators if the con-
straint is inactive, whereas an active constraint produces a usually nonnor-
mal limiting law. This is true in our problem, too; if there is strict inequality
for all ¢ in (1.1) or (1.2), then the limiting laws are those of the respective
Kaplan—Meier estimators. We mention this fact without proof; it is not
surprising and easily shown. A more interesting situation occurs when the
constraints are active for every ¢. In this case the limiting distributions are
no longer Gaussian processes, but related to the concave majorant of Brown-
ian motion. We focus our effort on this special case, since an everywhere
active constraint illustrates our techniques and is the most important under-
lying model. The general situation in which the constraint is part active, part
inactive on [0, 1] is treated in the technical report preceding this paper; see
Prastgaard and Huang (1995). The limiting law is, roughly, “in between” the
laws from the everywhere active and everywhere inactive cases; in particular,
the limiting distribution for any fixed ¢ is nonnormal if only the constraint is
active somewhere in [0, 1].
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2. Main results. We now state our first main result: the asymptotic
distribution of the estimator from problem (1.1) when F(t) = F,(¢) for all
0 <t < 1. Assume that the distribution function F(¢) is differentiable on
10, 1[ with bounded and continuous intensity function, A(z) = F(¢)/F(¢). Let
G(¢) denote the censoring distribution and assume G(1) > 0. Assume that
ANt) is strictly positive on [0, 1]. Let p(¢) = F(¢)G(¢) denote the probability of
remaining under study at time ¢ and define the “time scale” ¢(¢) =
JEMw) /p(u) du, 0 < t < 1. Note that p(1) > 0 and ¢(1) = 7 < = since F(1) >
0, G(1) > 0. This is a standard assumption in survival analysis: that the life
and censoring variables have positive probability of falling outside of the
interval [0, 1] at which we do the estimation; since the choice of finite interval
[0, 1] is arbitrary, this is not a real restriction.

With these definitions the following result holds.

THEOREM 2.1. Let Fn denote Dykstra’s nonparametric estimator of the
survival function under the restriction (1.1). Let W be a standard Brownian
motion on [0, and let K(t) be the smallest nondecreasing concave function
which majorizes W on [0, 7] = [0, ¢(1)]. Then

Vn (F,(¢) = F(2)) = —F(t)(W((2)) — K($(1)))
weakly in 170, 1].

The process K(t) is formally defined as
K(t) = inf{K*(t): K* concave and nondecreasing,
K*(u) > W(u),allu € [0,7]}.

This process has been studied extensively in Groeneboom (1983), following
Groeneboom and Pyke (1983). From these references it follows that the
concave majorant of Brownian motion on all of R, is a.s. increasing. We,
however, consider a concave majorant only on [0,7], and it might well
decrease on the last part of the interval;, hence the requirement that it be
nondecreasing.

In the special case of no censoring, we have a theorem which avoids the
technicality of assuming positive probability outside of [0, 1] and, in turn,
uses the concave majorant on the whole real line. To state this result, we
recall that by the Doob transformation B(¢) =1 — £)W(t/(1 —¢)) is a
Brownian bridge on [0,1] when W(¢) is Brownian motion on R,. If K(#)
denotes the concave majorant of W(¢) on all of R, and M(¢) denotes the
concave majorant of B(¢) on [0, 1], then Groeneboom (1983) showed that

(2.3) M(t)=(1—t)K(%) forall0 <¢ < 1.

In the case of no censoring, it holds that ¢(t) = F(¢)/F(t), and hence, by
(2.3),

(2.4) F(t)(W($(1)) — K((t))) = M(F(t)) — B(F(t)).

Theorem 2.1 can now be strengthened.
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THEOREM 2.2. Suppose that F is continuous and strictly increasing. Then
there exists a Brownian bridge B(t) so that

sup |Vn (F,(x) — F(x)) + (M(F(x)) — B(F(x)))| >,0 asn - <.

—X<x<®

For estimation under the restriction (1.2), we get similar results. Again, we
consider a constraint which is everywhere active, that is, FV(¢) = F®(¢) for
all ¢. Let the common force of mortality and not necessarily common censor-
ing intensities be, respectively, A(¢) and u,(¢). Make the same assumptions
about these as in Theorem 2.1. Let n = n,; + n, be the combined sample size
and assume that n,/n — ¢, €]0,1[. Define ¢,(¢) = [A,(¢)/(c; p,(2)) dt and
d.(t) = ¢i(¢) + Py(2). Let ¢,(¢) denote the derivative of ¢,(¢) and so on. We
then have the following result.

THEOREM 2.3. Let F,gi), i = 1,2, denote Dykstra’s nonparametric maxi-
mum likelihood estimator of F" under the restriction (1.2). Let W, and W,, be
independent Brownian motions and define

(2.5) V(t) = Wi( (o7 (2))) — Wa(da(o71(2)))-
Let K(t) denote the smallest nondecreasing concave majorant of V(t) on
[0, 7] = [0, ¢(D)]. Then

FV(t) - F(t)
F?(t) — F(t)

(2.6) [ W(i(0) = [R(8 () ds(w) du
= —F(t)

Wa(92(0) + [ "K(d(u))dby(u) du

Here we take K(u) to denote the right derivative at u, although this is
not important since K is differentiable except in countably many points.
The convergence in distribution in Theorems 2.1 and 2.3 is according to
Hoffmann-Jérgensen (1984); see Dudley (1985) or Van der Vaart and Wellner
(1995) for a description.

The limiting distribution in Theorem 2.3 becomes more tractable if it can
be assumed that the censoring distributions agree for all ¢, that is, u(¢) =
no(2), all t. In this case it holds that p,(u) = py(v) = p(w) and ¢,(¢) =
JEMw) /(c;p(w) du = ¢(¢)/c;. Tt follows that ¢ () = ¢(¢)/(cicy), and
¢, ° ¢(¢) = (1 — ¢;)t. The expression (2.5) hence reduces to
(2.7) V(u) = Wi(cou) — Wy(cyu).

Note that

jtK(¢(u))¢z(u) du = (1 - cl—)ftK(qb(u)/(clcz))q'ﬁ(u)/(clc2) du
0 0
=(1-¢)K(od(t)/(cicy)),
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which is by linearity equal to (1 — ¢;)L(¢$(¢)) with L(¢) the least nondecreas-
ing concave majorant on [0, ¢(1)] of V(¢/(cic,)) = Wi(t/c;) — Wy(¢/c,). By
Brownian scaling, the latter difference equals

V(t/(cie9)) =y VPWHE(E) — eg V/2WS ()

for W.*(¢) = ¢}/2W.(t /c;) iid Brownian motions. The limit (2.6) now reduces to

(2.8) R M) —ch(¢<t))).

cy VAW (d(t)) + 1 L(¢(2))
If there is no censoring present, ¢(t) = F(t)/F(t), and (2.8) becomes
ey VAW (F(8) /F(¢)) — ¢, L(F(2) /F(2))

- (
(2.9) F(t) ey VW5 (F(t)/F(t)) + ¢;L(F(t)/F(t))

Define now, for 0 <t¢/(cic(1 —¢) <7, M) =0 —¢)L(/(1 — ). Then
M(t) is concave, and by the Doob transformation it can be recognized as the
least concave majorant (on [0, 7*] where 7* /(c;co(1 — 7)) = 7) of

t
a-ov| =)

This quantity equals

t
cica(1 —t) )

t t
- (Clle*( T e (5 —t))

= (1= £)(er'/*By(¢) — ¢y '/*By(2))

(1- t)V(

(2.10)

for independent Brownian bridges B;(¢) = (1 — )W*(¢/(1 — t)). Equation
(2.9) can now be rewritten further as

~ (cIWBl(F(t)) — ¢, M(F(t))

(2.11) ¢; V/2By(F(t)) + ¢, M(F(t))

Analogously to Theorem 2.2, we can in the case of no censoring prove a
version of Theorem 2.3 which strengthens the result (2.11). For this, we rely
on the explicit description of the NPMLEs of Brunk, Franck, Hanson and
Hogg (1966). This version extends the weak convergence to the whole real
line in that the assumption F(1) > 0 is no longer needed. For the same
reason we can work with a concave majorant of Brownian bridge on all of
[0, 1], that is, not restricted to [0, 7*]. The smoothness assumptions on the
underlying distributions, which were needed in Theorem 2.3, can also be
reduced.
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THEOREM 2.4. Suppose that F is continuous and strictly increasing. Then
there exist two independent Brownian bridges so that

6)) _xsilp<w|\/5(17,§”(x) — F(x))
+[e7V/2By(F(x)) — ¢, M(F(x))]| - »0,
(ii) sup Vn (F?(x) — F(x))

+[e3"?By(F(2)) + e; M(F(x))]| = 50,
where M(t) is the least concave majorant of ¢y */2B(t) — c5 1/2B,(t) on [0, 1].

3. An application to pacemaker survival data. Dykstra (1982) de-
scribes a data set consisting of right-censored survival times of patients after
pacemaker implant. He estimated the survival functions of males and fe-
males separately, under the restriction that the female survival function be
at any time larger than the male; that is, F)(t) > F™)(t) for all ¢t > 0. We
compute the NPMLEs F(¢) and F("(¢) under this restriction and graph
them with two sets of pointwise 95% confidence limits. Figures 1 and 2 show
the estimated survival functions for females and males, respectively. The
dashed curves are the confidence limits under an assumption of strict in-
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Fic. 1. Female survival curves.
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Fic. 2. Male survival curves.

equalty, that is, an everywhere inactive constraint. The dotted curves are
confidence bands calculated under an assumption of strict equality, that is,
an everywhere active constraint. We assumed that the censoring distribu-
tions were the same for males and females. For the inactive constraint case,
the asymptotic distribution is the same as that of the usual Kaplan—Meier
estimators, so pointwise confidence bands can be based on a normal approxi-
mation, that is, Greenwood’s formula; see Breslow and Crowley (1974). For
the second case the confidence limits are based on evaluating the distribution
in (2.8). Since this distribution is not known to us in a closed form, it must be
simulated. 1000 realizations of (2.8) went into each of the dotted curves; on a
Sun IPX SPARCstation using C and Splus, it took three minutes to generate
these realizations. For both sets of bands we estimated the function ¢(¢) =
JEMw) /p(w) du by [¢n dN(w)/Y(w)?, where N(u) and Y(u) denote the scaled
counting process and risk set of the pooled data. This gives a better compari-
son, since the Greenwood bounds are then based on the Brownian motion
parts of (2.8). The proportion ¢; was estimated by the ratio of the number of
females to the number of patients, 85/205 = 0.415.

The pointwise confidence bounds based on an active constraint are seen to
be asymmetric. In the case of females, who have the supposedly larger
survival probability, the lower pointwise bounds are a little wider than the
Greenwood bounds, whereas the upper bounds are substantially narrower
than the Greenwood bounds. The opposite situation is true for the males.
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That the better bound is the upper bound for the females can be explained as
follows. When the constraint is active, there is no difference between male
and female survivor, so when using an estimator which has been increased
relative to the Kaplan—Meier estimator, the upper bounds need to be de-
creased relative to those of the Kaplan—-Meier estimator. In practice, it is
unknown whether the constraint is active or inactive. In view of this, a
suggestion for a conservative set of pointwise confidence bands for the
order-restricted estimator is to use Greewood’s formula just as if the estima-
tor were Kaplan—Meier, but more simulations are needed to justify this point.

4. The uncensored case. In this section we prove the results for the
uncensored case, that is, Theorems 2.2 and 2.4.

4.1. Computation of the estimator. For the one-sample problem, the
NPMLE F, is described in Robertson, Wright and Dykstra (1988) as follows.
Let F, be the empirical distribution function of X,..., X,. One first forms
the least concave majorant of the cumulative sum diagram of the points

(Fn(X(i)),FO(X(i))), i=1,...,n,
plus the origin (0, 0). Let H(t), 0 <t < 1, denote this least concave majorant.
Then F,(x) = H(F,(x)). Based on this expression, the asymptotic properties
of F, can be obtained analogously to those of the NPMLE in the two-sample
problem. So we will focus on the two-sample problem.

In the two-sample case, the graphic representation of the NPMLE, due to
Brunk, Franck, Hanson and Hogg (1966), goes as follows. First, order the
combined observations from the smallest one to the largest one. Then take a
random walk in the plane starting at the origin, moving one unit up for an
X® observation and one unit to the right for an X® observation. Next, draw
the least concave majorant of the points visited during the random walk. The
following pattern of data are graphically depicted in Figure 3:

XP < X® <X <XP<XP <XP < XP <X <XP < XP <XV,
In the figure an X observation is indicated by X1, and an X® observation
is indicated by X2.

Observations are said to be in the ith string if they occur after the
(i — Dth vertex up to and including the ith vertex. The origin is taken to be
the zeroth vertex. Let j, denote the number of X®’s in the vth string and k&,
the number of X’s in the vth string. Let B be the total number of strings.
In the example here, j, =0, 2, =1, j, =1, ky =2, j, =2, k3 =2, j, = 2,
k, =1 and B = 4. Theorem 1 of Brunk, Franck, Hanson and Hogg (1966)
states that the NPMLEs of F, and F,, subject to F\)(x) < F®(x) for every
x, are given by

Fél)(X) = Z /‘\(Xi(l))l[Xfl)g x] + al(x)7
(4.12) i=1

S
N

14

Frgz)(x) = é?(Xi(z))l[X}”g Pl ay(x),
1
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X1

X2

X1

X2

Fi16. 3. The random walk and its least concave majorant.

where

when X is in the vth string,

A , Tk
flxm) =2

v

S Iy +k

sER) =55
Here a(x) = k,/n 1f]1 = 0and x > X{), otherwise a,(x) = 0; a,(x) = jz/n
if k=0 and x > X, otherwise ay(x)=0. Here X{) is the smallest
observation in the first sample, and X, (2)) is the largest one in the second
sample. Straightforward calculation shows that a,(x)=0,(n"1) and a,(x) =
Op("1). Thus both a,(x) and a,(x) are asymptotically negligible and will not
be considered in the following. It is useful to write Ax)=Q+ (G Ju/ k) /n
and g(x)=Q + (k,/j,))/n. So f and ¢ depend on J, and &, only through
k,/J,, which can be seen as the slope of the least concave majorant in the vth
string. That is, let s(x), 0 < x < n,, be the left-continuous slope of this least
concave majorant, then for 0 < x < n,, if x is in the vth string, s(x) = &,/J,
and s(0) = s(1).

when X® is in the vth string.
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Denote empirical distribution functions by F,(x) =n; 'L/ 1xm_,, and
F,(x) =ny'Yi2 1 xe_ . Let X§), X§),..., X((,{)) be the order statistics of
X (” , X (j) j=1,2.For 0 <t < 1, define the left-continuous inverse func-
tion Fn1 of F, and the right-continuous inverse function Fn2 of F, by

Fn_ll(t) = inf{x: F,(x) > t} and Fn_zl(t) = sup{y: F,(y) < t},

respectively, where F, '(0) = —o and F, '(1) = «. Then it can be seen that
the least concave majorant of the points of the random walk is the same as
the least concave majorant of the points

(noF, (X2),niF,(X2)),  i=0,1,...,n,,

plus the origin (0,0). Here we define X, ) = «. Since X{),, = F, '(i/n,),
i=0,1,...,n,, the slope s(x) of this least concave majorant at x = i is the
same as n,/n, times u,(t) evaluated at ¢ = F, (X®), i = 1,..., n,, where,
for 1/n, <t <1, u,(t) is the left-continuous slope of the Zeast concave
majorant [denoted by U (2], of F, (F 1(¢)), t €[0,1], plus (0,0), and u,(¢) =
u,(F, (X)) for 0 <t < 1/n,. Let U(t) = F, F.\(¢).

By . 12), with probabilty 1 and without cons1der1ng a,(x), we can write

FO(r) - S ¥ lym @
n (.’)C) - ; Z 1[X§2)g] + ; Z n_un(Fnz(XL ))1[XL-(2)§ x]
i=1 =1 "2

= 2R, (0) + -2 [ u,(F (%)) dF, (%)
(4.13) -

ny 1y (F, ()
= —F,(x) + 7[() u,(t) dt
ny ny ny A
= 7F”2(x) + zUn(Fnz(x)) + zUn(O)

Notice that (j (F,(x)) is U (t) evaluated at ¢=F, (x). Since U (0) =
F,F, '(0)=F, ( (1)3 0,(n"” 1)by a straightforward calculation, so the term
(n1 / n)U (0) is asymptotlcally negligible. Similarly, for 0 < ¢ < 1, let V (t) be
the greatest convex minorant (GCM) of V,(¢) = F, F, 1(t) and let v,(2) be the
left-continuous slope of V (¢). Now we always have V (0) = 0. Similarly to
(4.13), we have

(4.14) FO(x) = 2B, (%) + “2V,(F(%)) = “2V,(0).

With these expressions, to obtain the large-sample properties of F® and
F™®, we only need to consider the processes U'n(Fnz(x)) and Vn(Fnl(x)), because
the asymptotic properties of the empirical distribution functions are well
known. The treatment of V,(F, (x)) is very similar to U,(F, (x)), so we will
focus on the latter one.

The heuristics behind the formal treatment of U (F, (x)) are quite simple.
First, consider U(t) for 0 < ¢ < 1. Since U,(t) = F F 1(t) converges to ¢,
U (¢) should converge to the least concave majorant of t, *which is ¢ itself. So
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U (F, (x)) should be close to F, (x) when n, is large. By (4.13), it is seen that
F(z) is consistent. For a different proof of consistency, see Brunk, Franck,
Hanson and Hogg (1966). It is also seen that the right centering for U (t)
should be ¢. And we naturally expect that the normalized processes Vn (U (t)

t) converges weakly to some limiting process associated with Brownian
bridges, since it can be shown that Vn (F, F,, 1(¢) — t) converges weakly to a
weighted sum of two independent Brownian bridges. By concavity, for every
x, \/_[U(F (x)) — U/(F(x))] is sandwiched between \/_u (F, (x))(F (x)
—F(x)) and \/_u AF(x))F,5(x) — F(x)). But the slope u,(#) converges to 1,
the slope of ¢, for all 0 <t < 1. Hence Vn U(F, (x)) should be close to
\/_U (F(x)) + \/_(F(x) F(x)). This is proved in Corollary 4.1. So the task
of finding the 11m1t1ng distribution of U,(F, (x)) reduces to finding the
limiting distribution of U (F(x)). This is done 1n Theorem 4.1.

4.2. No censoring: auxiliary results and proofs. Recall that F' is assumed
to be continuous and strictly increasing. Let F~! be the inverse of F. For
0 <t <1, define

(415) B,(t) =y/n,(F,F'(t) —¢) and B,(t) =+/ny(F, F'(¢) —t).
Let D[0,1] be the space of real-valued functions on [0, 1] that are right
continuous and have left limits. Let p be the supremum norm on D[0, 1]; that
is, for any f and g in D0, 1],
p(f,g) = sup [f(x) —g(x)l.
O<x<1

Then there exist special constructions of independent Brownian bridges B,
and B, such that

(416) p(Bn17Bl) _)a.s.O and p(an’BZ) _)a.s.o‘
See Pyke and Shorack (1968), (2.2), page 757. For ¢ € [0, 1], let
(4.17) B(t) =c;Y2B(t) — c;'/?By(t).

Recall M(#) is the least concave majorant of B(¢) on [0, 1].

LEMMA 4.1. Suppose that F is continuous and strictly increasing. Then, as
n — o,

(‘/_<F"1F"21 B I)’ B) =0,
where I is the identity map, that is, I(¢) = t.
Proor. The proof uses a representation similar to that in Lemma 3.1 of

Pyke and Shorack (1968), and it then follows from Lemma 2.4 of that
paper. O

Let & be the class of all finite discrete probability measures on [0, 1]. The
least concave majorant g(¢) of a function g(¢) on [0, 1] can be written as

g(t) = sup f g(u) dP:/ udP=t,Pe®p,;.
(0,1] [0,1]
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See, for example, Rockafellar (1970), page 36, or Groeneboom and Pyke
(1983), page 339. It follows that

Vn (U,(t) — t)

4.18
(4.18) =sup{\/;f[0,1](vn(u) —u)dP: [ 1]udP=t,Pe<@}.

o,
Combining Lemma 4.1 and (4.18), we have the following theorem.

THEOREM 4.1. Suppose that F is continuous and strictly increasing. Then,
as n — o,

(4.19) sup |V (U,(¢) —t) — M(t)| - »O0.

0<t<

ProOOF. By (4.18), it suffices to show that

sup{/[‘(),l]\/;(Un(u) —u)dP: j;

sup
0<t<1

udP=t,P egf’}
0,1]

(4.20)
— M(t)

—>PO

as n — «. By (4.18), we can write
M(t)=SUP{f B(u)dP:f udP=t,Peng},
[0,1] [0,1]

By the triangle inequality for the supremum norm, the left-hand side of (4.20)
is less than
sup [Vn (U, (1) - t) = B(2)],
O0<t<1
which converges to 0 in probability by Lemma 4.1. O

COROLLARY 4.1. Let D,(x) = Vn[U/(F,(x) — U,(F(x)) — (F,(x) —
F(x))]. Then
sup | D,(x)] - »0.

—X<x<%®

ProOF. By the triangle inequality,

_sup [Dy(x)]
< %sgf(wl«ﬁ [U,(F, (2)) = F,(x)] = M(F,(x))|
+ uplﬁ [0.(F(2)) = F()] = M(Fy(2)]
+ _msilf;JM(Fnz(x)) — M(F(x))]
<2 supﬁ ;/ﬁ[ﬁn(t) —t]| - M(t)|+ sup |M(F,(x))—M(F(x))|.

O0<t<1 —o<x<©
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The first term in the last line converges to 0 in probability by Theorem 4.1.
The second term converges to 0 in probability, since M(¢) is concave and
hence has almost surely continuous sample path, and since F, (x) converges
to F(x) uniformly almost surely by the Glivenco—Cantelli theorem. O

ProOF OF THEOREM 2.4. We prove part (ii). Part (i) can be proved in a
completely analogous way. By Corollary 4.1,

U,(F(x)) = U,(F(x)) +F,(x) = F(x) +n""0p(1),

where here and in the following 0,(1) converges to 0 in probability uniformly
in x. By (4.13), it follows that

Vr (E(x) — F(x))

= ﬁ%(FnZ(x) —F(x))+ ﬁ%(UH(Fnz(x)) —F(x)) + %UH(O)

= Vi “2(F, () = F(x)) + Vn “2(U,(F(%)) = F(x) +F,(x) ~F(x))

+n"20,(1)

n \Y2 n, .
P e (B = F(a) + " (O,(F()) - F(x)

ng

+n " 2%0,(1).

So the theorem follows from (4.16) and Theorem 4.1. O
5. Censored case.

5.1. Description of the estimators. With censoring, the MPMLEs are due
to Dykstra (1982). In this case there are no graphic representations or explicit
expressions available for the estimators. They are best described by using
counting processes and the product integral. Consider first Theorem 2.1. Let
N, (¢) denote the (scaled) counting process of deaths at time ¢ and let Y, (¢)
denote the (scaled) risk set at time ¢, that is,

N, (1)

1 1
— 2 I(Z,<t,A;=1), Y,(t)=— Y I(Z >1).
n ;- n ;7

If IT denotes the product integration operator, then the usual Kaplan—-Meier

estimator S,(¢) based on (Z;,A,), i = 1,..., n, may be written as
dN,(u) )
S.(t)y= 1] [1- )
() 10, t]( Y.(u)

For an explanation of the product integral and its merits in counting pro-
cesses and survival analysis, see Gill and Johansen (1990), in particular,
Section 4.
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In this setup, the maximum likelihood estimator in the first problem (1.1),
given in Dykstra (1982), Theorem 2.1, may be conveniently described as
follows. For each 0 <s <¢ < 1, define B,(s,t) as the solution for B to the
equation

A0
Fo(s)

(5.21) m(Bs,t) = I1

Is, t]

(1 _dN,(w)
Y,(u) + B

(and introduce at the same time a more compact notation). Then define
further a stochastic process v,(¢) by

(5.22) %(t) = (min maxp,(s,u)) v 0.
s<t ux>t
Then the nonparametric maximum likelihood estimator is given by
dN,(u)
Y.(u) + y(w) ]

The situation in Theorem 2.3 can be handled by a similar technique. Define
(ND YD), j=1,2, as the counting process of deaths and the risk set for
both samples:

(5.23) F(t)= T1

Is, t]

| 1 | | 1
NO(t) = — L I(Z0 <t,80 = 1), Y(6) = — L I(Z = 1),
i=1 i=1

(Recall that n = n; + n,.) Then the maximum likelihood estimators F" and
F® given in Dykstra (1982), Theorem 2.2, emerge as follows. Define B (s, t)
as the solution to the equation
dN,;"(u)
sl YO(u) + B
0 AN (u)
Is, ¢] Y P(u) - B

Then, on setting ¥;(¢) = (min, _, max,., B5(s,u)) vV 0, the NPMLEs are
given by, respectively,

I1

77751)( B: S, t)

(5.24)

=73 (—-B,s,t).

S gy — dN, " (u)
(5.25) FD(t) = ]1(:!] (1 Y O(u) + vn*(u))
and
~ dN,*(u)
() = -
(5.26) E2(1) ]ﬂ] (1 Y, (1) — % (u) )

The proofs of Theorems 2.1 and 2.3 are quite similar. We now briefly
explain the ideas in proving Theorem 2.1. The first step is to investigate the
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asymptotic behavior of the adjustment to the risk set, v,(¢), which is defined
in (5.22). The “population” version of m,( B3, s, t) is

B - dEN,(u)
mo( B, 8, ¢) = ]Eltl( EY,(u) + B
AMu)p(u)
- 1 -~ 27
(5.27) ]E[”( pu) + B

[since EN,(u) = fou)\(u)p(u) du, EY,(u) = p(u)

t Mu)p(u)
= eXp(_-/;p(u)—-i-Bdu)’

where the last equality is a general property of the product integral of a
continuous interval function, described in Gill and Johansen (1990). Since the
constraint is everywhere active, the solution to m,(B,s,t) = Fy(¢)/F,(s)
(= F(t)/F(s))is B = 0. Hence we expect that n'/?8 (s, t) converges in law to
a centered Gaussian process indexed by s and ¢. This is the content of
Theorem 5.1. Having shown this, we use a continuous mapping theorem
(Lemma 5.4) for the min—max functional defined in (5.22) to show that
n'/2y (t) converges along an a.s. representation to the left derivative of the
least nondecreasing concave majorant of a Brownian motion sample path.
Finally, we use asymptotic linearity of the product integral in (5.21) to find
the limit of n'/2(F, — F). The last part of the proof (Lemma 5.5) is similar to
Gill and Johansen’s (1990) §-method proof for asymptotic normality of the
Kaplan—Meier estimator, which corresponds to the situation in which no
adjustment to the risk set is made, that is, y,(¢) = 0. It is known from
Groeneboom (1983) that the derivative of the least concave majorant of
Brownian motion on [0, has right limit « at 0 a.s. Hence some uniform
integrability of n'/%y is needed; this is established by empirical process
methods in Lemma 5.3. To explain briefly why such tools are useful, let
P=FXGandP, = n_IZ}Llé( X,C) denote the true and empirical probabil-
ity measures for the (partly) unobserved data in problem (1.1). Let X, =
n'/2(P, — P) denote the empirical process. If we use the notation

P(f) =Ef(X,,C,), P,(f)= X f(X;.C)),
j=1
then we have that

D) g g ist))

J

s Yn( u)
and

+dEN, (u
(5.28) fTLE)) =P(g,(,;5,1)),
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where the function (x,¢) = g,(x, ¢; s, ¢) is given by

1
gu(x,c58,t) = 51, t](x)l{x<c), 0<s<t<l,n=1,2,....

Y, (x)
Due to the work of Dudley (1978, 1984, 1985, 1987), Giné and Zinn (1984,
1986) and Pollard (1984, 1990) (to mention a few key references), much is
known about empirical processes indexed by functions as above. For our
purposes it is, in view of (5.28), useful to consider the class of functions given

by

H(K)={m(x)ls q(x)1, 0 0<s<t<1,
(5.29) { s, 110X Lz < )
m nondecreasing, [m| < K }

By Dudley (1987), Theorem 2.1, the class of nondecreasing functions f:
[0,1] - [0, K], K > 0, is a @-Donsker class for any probability @ on [0, 1]. It
is a simple corollary that in particular the class .#(K) defined above is a
P-Donsker class (recall P = F X G). This fact is crucial for our asymptotic
results. For related uses of empirical processes in survival analysis, see
Pollard (1990), Chapter 13.

5.2. Auxiliary results for the censored case. The following lemmas provide
some inequalities which are important for determining the asymptotic distri-
bution of the B, process.

LEMMA 5.1. Defined, =Y, (1) ' and K, = sup,., -, 1Y, ()" — p(w) 7! =
Op(n~1/2). We then have for all s < t that

|7,(0,5,8) = m,(B,(5,2),5,¢)]

8 J udN,(v) — dEN,(v) CK
+ t—
< 8, exp(dJ,) ueS]itI?t] j; Y.(0) ot —8)
-0 a.s.,
where C is a constant.
Proor. We have by the definition of B,(s, ¢) that
7,00, 5,8) — m,(Bu(5,¢),5,¢)|
F(t
= Wn(O,s,t) - _(—)
F(s)
(5.30) 0 (1 dN,(u) ) (1 dEN,(u) )‘
Is, t] Y, (u) Is, ] p(u)
=| TT (@ = ay(s,¢,du)) - TT (1- a(s,t,du))‘,
] Is, ]

s, t
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where we define for fixed s, ¢# the additive interval functions

0, ifu<s,
'/‘uYn(vf1 dN,(v), ifs=<uc<t,
a,(s,t,u) =<"’s

[Yu(v) AN, (v), ift<u

and «a(s, ¢, u) similarly by replacing N, by EN, and Y, by p. Then (5.30) is,
for fixed s, ¢t by Theorem 7 of Gill and Johansen (1990) (which is an applica-
tion of Duhamel’s equation), bounded by

(531) dexp(|a,(s, 2, ) [ ) alss 2, ) [N pllof @n(s, £,7) = ao(s, 2, ) .

where we use these authors’ notation and define w(u) =TI, (1 —
al(s,t,dv)) = F((s V u) A t)/F(s). It follows that || ull, < 1. Notice also by the
monotonicity of Y, that lla,(s,t, . < (lnfue]s,t]Y (u)~! <J,. Further-
more, ||la,(s,t, ), =lla,(s, ¢, ). <J, holds since a,(s,t,u) is monotoni-
cally increasing in u. For fixed s < ¢ we can hence bound (5.30) by

a,(s,t,7) = a(s,t,) .
wdN,(v) dEN,(v)

4J e7r

< 8dJ,e’" sup

ucls, t] Yn(v) p(U)
8 () udN,(v) — dEN,(v)
< 8J, exp(J,) sup
ucls, t]|”S Yn(v)

) dEN,(v)

‘fs (p<v) Y, (v)
wdN,(v) — dEN,(v)
s Yn(v)

< 84, exp( Jn)( sup

¢ 1 1
o fam o) AP p T )
<84, exp(Jn)( wp fS”dN”(U)Y_(f;EN”(v) + CKn(t—s))

for C = sup, ., ., Muw)p(u) < ». Since Y,(¢) is eventually uniformly bounded
away from 0 a.s., it follows by a Glivenco—Cantelli theorem and a central
limit theorem for n'/2(Y, — p) that K, = Op(n"'/?) and K, — 0 a.s. Fur-
thermore, the functions

() = Y() L ()L
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0<s<u<l1,n=12,..., will eventually belong to the class .Z(K) defined
in (5.29) for some suitable K > 0. Hence, by a functional Glivenko—Cantelli
theorem for the class .Z(K), it holds for n large enough that

udN,(v) — dEN,(v)
sup < sup |P,(f)—-P(f)|—>0 as. O
ucls, t]|"S Yn(v) fe#(K)

LEMMA 5.2. It holds for any 0 < s <t < 1 that
|m,(Bu(s,t),s,t) — m,(0,8,¢)| = (¢t —s)| Bu(s,¢)|L,,

where {L,} is a sequence of random variables which is uniformly bounded
away from 0 a.s.

ProOOF. Duhamel’s equation shows that
|7Tn( Bn(s’ t)’ S, t) - 7Tn(o’ S, t)|

/:’iTn(O, s,u —)7Tn( ‘Bn(s’t)’ u, t)

x( 1 - ! )dN
Y.(a)  Yu(w) + B(s,0) ) )

dN, ()

(5.32) w)(Y,(u) + B,(s,t))

v

m (0,5, 0m(B,(5:0),5.0) [ 50 |B.(5,0)]

F(ty 1 .  dN,(w

o) 200 L Yy = (o)

F(t) [«  dN,(u)

F(s) (/s Y, (1) + Bo(s. 1) )' Pu(s: )]
_ . dN,(u)

Wn(O,S,t)F(l)(j; Yn(u) i Bn(s7t) )l Bn(s, t)l

Here we have used the monotonicity of Y,(x) and m,, that Y,(x) < and that
m,(B,(s,t),s,t) = F(t)/F(s). Since m,(0,s,t) > m,(0,0,1) - F(1) >0 as,
the lemma will follow if it can be shown that

t dNn(u) t

(5.33) fs Y (1) + B.(5,0) > constj; Mu)du as.

for some positive constant, for all s < ¢, n > 0. For this we use the inequality
1 —x > exp(—(c(px)) for all 0 <x <1 — n, where c(n) = —(logn)/(1 — 1)
[Gill and Johansen (1990), page 1533], that is, x > —c(n) ! log(1l — x), 0 <
x <1 — n. It follows that for an 1 < 1 such that

1/n 1 h
<1- <u<t,
Y, () + B.(s, 1) Towhen s = u

%

7,(0,5,t) | Bi(s,)]

\%

(0, s,t)

%

(5.34)
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it holds by the definition of B,(s, ¢) that

t dAQ(u) 1 dA@(u)
[T+ 6602 . L,° (1 T Y(w) + Bn(s,ﬂ)
N _ aN,(w)
T T ﬂ](l Y, (u) +Bn<s,t>)
1 ¢
= C(n)fs/\(u) du.

We can assume that at least one death occurs in ]s, ¢] [if not, the value of
B,(s, t) is immaterial for the maximum likelihood estimate and may, e.g., be
defined as 0]. Letting 7* denote the last time of death in s, ¢], it must hold
by the definition of B,(s, t) that

1/n dN,(u) _ F(t)
! Y,(7%) + B.(s,t) En(l Y, (u) + Bn(s,t)) F(s)

and hence n = F(1) > 0 will satisfy (5.34).
It follows that (5.33) is satisfied, and hence the lemma follows. O

> F(1) >0,

By combining Lemmas 5.1 and 5.2, we get the following corollaries.

COROLLARY 5.1.

sup | B,(s,t)| >0 a.s,all 5> 0.

t—s>6
ProoF. This follows immediately by Lemmas 5.1 and 5.2. O

COROLLARY 5.2.

limsup sup (t—s)Vn|B,(s,t)|>p0 asd— 0.

n—ox 0<t—s<3§

Proor. By Lemmas 5.1 and 5.2 it holds for any s < ¢ that
Vn (t = s)| B.(s,t)]
udN,(x) —dEN,(x)

< 8L;'J, exp(dJ,)| sup Vn +CVn (t-s)K,|,
p( )(s<u2t L yrn(x) ( ) )
and hence

sup (¢ —s)Vn|B,(s,t)|

0<t—s<d
(5.35)

udN,(x) — dEN,(x)
fs V(%)

0<s<u<s+348

< Op(l)( sup Vn

+C\/58Kn).
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Recall the definition of .Z(K) and let .Z;(K) denote the subclass of functions
m(x)1y (01, . 4 €4(K) for which u — s < §. Then the right-hand side of
(5.35) 18, for n large enough, bounded by
0p(1) sup (|X,(m*)|+ CVnK,s),
m* edly(K)
and the corollary will, in view of K, = Op(n~'/?), follow if it can shown that
(5.36) lim sup sup{| X, (m*)|: m* e#,(K)} - ,0 as 56— 0.

n— o

Let (X, C) be an observation from the joint probability F X G = P and define
o 2(f) = Var f(X, C) for any function f(x, ¢). Then (5.36) will follow from, for
example, Giné and Zinn (1986), Theorem 1.3, if it can be shown that

(5.37) ;i_l)r(l)sup{oz(m*): m* e#;(K)} = 0.

[The property we are using here is a.s. uniform continuity of the Gaussian
limit of X, with respect to the natural variance pseudometric on .Z(K).]
(5.37) finally follows because, for m* e.Z;(K),

oc?(m*) <Em*(X,C)* <K% -0 as&—0,
in turn proving (5.36) and the corollary. O

What the previous corollaries do not state is that sup,.,.|B,(0,£)] — 0
a.s., and, in fact, this cannot be expected to hold. We need, however, to know
something about the size of B,(0, ¢) for ¢ close to 0. This is the content of the
following lemma and its corollary. They are both of the “Chibisov—O’Reilly”

type.

LEMMA 5.3. Let h(t) be a nonincreasing, nonnegative function on ]0,1]
such that h(t) = o((¢ log,(1/¢)"1/?)) as t — 0. Then

udN (x) —dEN, (x

O<u<t<l 0 Yn(x)

= 0,(1).

ProorF. By Dudley [(1985), Corollary 7.1 and Theorem 6.3], the class of
functions

I = {h(u)l[oyu](x): 0<u<1}

is a functional Donsker class for the Lebesgue measure on [0, 1], and hence
also for the continuous distribution F. Since 4 is nonincreasing and nonnega-
tive, the collection

Gy = {h(v)l[o’u](x): 0<u<v<1}
is contained in the convex hull of % and is F-Donsker by Dudley [(1985),

Theorem 5.3]. The difference of two F-Donsker classes is again F-Donsker;
hence, in particular, the collection

Fy = {h(v)llu,v](x):O <u<v< 1}
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is F-Donsker. The convex hull of .7, in turn, contains the class
{h(u)m(x)l]o,u](x): me#,0<u< 1},

where .# denotes the set of all nonnegative, nondecreasing functions on [0, 1]
which are bounded above by 1. Finally, by multiplying this collection by the
fixed function 1,, _,, the class

(538) 7= {g(x;m,u) = h(w)m()ly ,($)1,.y 0 <u<l,mer|

is a functional F' X G Donsker class.
Let X = n'/?2(P, — P) denote the empirical process based on life and
censoring times (and P = F X G). Then we may write

udNn(x) _dENn(x) -1
Vnh(u) [ (o) =X, (g(x:Y,() 1 u)).

It eventually holds a.s. that Y,(¢#)"! is uniformly bounded on [0, 1], and, by a
functional central limit theorem for £, we hence have that

vwdN (x) — dEN (x
sup x/ﬁh(u)/o 2 )Yn(x) () szgglxn(g)l=0p(1)- O

O<u<t<l1

COROLLARY 5.3. Let h be a function as in Lemma 5.3. Then it holds that

sup |[Vnth(t)B,(0,¢)| = 0p(1).

0<t<1
Proor. By Lemma 5.1 and 5.2 it holds that
sup [Vnth(t)B,(0,t)]
0<t<1

< 0p(1)Vn sup h(2)|m,(0,0,2) = m( B,(0,1),0,1)|

0<t<1

vudN (x) — dEN (x
udN,(x) — dEN,(x)
h(u)\/gfo Y (%)

<0p(1) sup (

O<u<it<l1

+ \/ﬁKnh(t)t)

< Op(l)( sup

O<u<t<l1

+ sup \/EKnh(t)t),

0<t<1

where we have used that A(#) is nonincreasing. The last expression is
recognized as being of magnitude O,(1) by Lemma 5.3, noting also that ¢h(¢)
is bounded on ]0,1]. O
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We are now prepared to specify the asymptotic distribution of g8,(s, ).
THEOREM 5.1. Let (Zy, Zy) be defined by

(5.39) Vn (N, — EN,,Y, — EY,) = (Zy, Zy).

Then it holds that

(5:40) B,(s,t) = (¢(t) — ¢(s))Vn B,(s,t) = W((t)) — W((s))

weakly in 17[0,1]2. Here W(t) is a Brownian motion given in terms of
(Zy,Zy) as

W(t) =

1y ndZy(u) — Zy(u)Mu) du
[t ) “ DN dn
0

p(u)

[This identity is explained in Gill and Johansen (1990), page 1538, to whom
the notation is also due. Formally, we must define B, (s, ¢) as B, (¢, s) in case
s> t]

PrOOF OF THEOREM 5.1. The space [0, 1]? is totally bounded under the
usual Euclidean norm. Hence, by Pollard [(1990), Theorem 10.2, for example],
it suffices to show finite-dimensional convergence of B,(s,#) to W((¢)) —
W(4(s)) and asymptotic equicontiuity. The latter means showing that

}sir% lim sup P(sup{|B,(s,t) — B,(s,t)|:
l

n— o

(5.41) s —s'llt—¢|<8}>n)=0

for all n > 0.

By the assumptions of Theorem 2.1, it holds that ¢(¢) — ¢(s) =
JIMw) /p(w) du < const(¢ — s) for an appropriate constant, and by Corollary

5.2 we see that (5.41) holds if the supremum is taken over (s, ¢) and (s, ¢')
such that |t — s|,|¢’ — s'| < . It hence suffices for (5.41) to show that

%ir% lim sup P(sup{|B,(s,t) — B,(s',t)|:
! n—oow

(5-42) s — sl 1t — 1< 8,1t — sl 1t/ — 1> p}>n) =0

for all n, p > 0.
In particular, (5.42) will follow if we can show that B,(s,#) converges in
distribution to W(¢(¢)) — W(¢p(s)) when we restrict |t — s| to be bounded
away from 0, that is,

B,(s,t) = B(s,t)

(5.43) n l‘”({(s,t) e [o, 1]2: It —s| > p}) for all p > 0.
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Note now that 7,(8, s, t) is differentiable w.r.t. 8 wherever it is defined
and that

Jd Jd
. b | aN,(w)
=m(B,s,t) aﬁ[ u}];', tllog(l —Yn(u) T s ]
(5.44) . .
= (8.5, 1) E]Z t](Yn(T) “B-nt Y(r)+B
dN (u
= m(B,s.1) [ ()

15, 1 (Yo(u) + B)(Y,(u) + B—n"")"

where 7 denotes an observed time of death. By the mean value theorem we
get that

\/E(ﬂ'n(O, s,t) — m( Bu(s,t),s,t))

5.45 d
o i (.50 1) s [ B2 (5,11,

where | B¥(s, )l <|B,(s,¢)| for all 0 < s < ¢ < 1. Since the first line in (5.45)
is just the scaled and centered Kaplan—Meier estimator, it holds as demon-
strated in Gill and Johansen (1990), page 1537, that

( dN,(u) ) F(t)
1-— - =
Y. (u) F(s)

(0, ,8) = 7 By 1)) = «z( 3

Is, ¢]

(5.46) F
. _F@) W(o(t)) — W(d(s)))
7o) |

[It should be noted that the result quoted from Gill and Johansen (1990) is
stated as weak convergence in D[0,T] in the sense of Pollard (1984); since
the limiting distribution has uniformly continuous and bounded sample
paths, convergence in distribution in [7[0, 1]?> also follows. For more on the
5-method in the setting of Hoffman-Jgrgensen weak convergence, see Wellner
(1989) or Van der Vaart and Wellner (1995).]

With (5.46) established, (5.43) will follow if it can be shown that

F(t) ft M)

— u
F(s p(u
(547) sup sup (s) () -1 —»,0, all7>0.

N J
t—s=p Be€]0,B,(s,t) ﬁ_ﬁ[wn(ﬁ’s’t)]
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By the monotonicity of 8 — (8, s, t) it holds for 8 €]0, 8,(s, t)[ that

F(t)|
(5.48) m,(B,s,t) — F(s) =|m(B,s,t) — m(Bu(s,t),5,¢)]

<|m(0,5,) = m(Bu(s,1), 5,1)]
and hence the right-hand side of (5.48) is, for fixed 7 > 0, bounded by

(5.49) sup |m,(0,5,¢) — m,(B,(s,1),s,t)| = 0p(1),

t—s>p

where the equality in (5.49) follows by (5.46). Since (0, s,?) and
m,(B,(s,¢),s,t) = F(t)/F(s) = F(1) are both uniformly bounded away from 0
with probability tending to 1, it holds by (5.49) that

F(t)/F(s

(5.50) sup sup M

t—s>p pe 10,65, 00 | T BsS, t)]
In view of (5.50) it remains for (5.47) to show that
ft Mu) du

sup sup s P -1
(551) t—s=p Be]l0, B,(s,t) /t dNn(u)

s (Yo(u) + B)(Y(w) + B—n"")

- p0 forall 7> 0.

- 1| —>,0, all p>0.

By Corollary 5.1 it holds that

1
liminf inf inf (Y, (t) + B)|Y,(t) +B——]>0 as.,all p>0.
n-ow t—s>p e 10, B,(s,t) n
Hence all functions of the form
1

Q(xay;n,Sat,B)E 1]S,t[(x)1{x<y)’

(Y, (x) + B)(Yu(x) + B—n"")

where ¢t —s > p, B €10,8,(s,t), will, for n sufficiently large, satisfy g(-,-;
n,s,t, B) €#(K) for an appropriate K where the class .Z(K) is defined in
(5.29). We then see that

¢ dN,(u)
fs (Y. (w) + B)(Y(w) + B—n"Y)

= an(, ;n,s,t, B)

and

. u u) du
i Au) p(u) =Pq(-, 3n,5,8,B).

s (Yo(u) + B)(Yu(u) + B—n"")
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Hence a Glivenco—Cantelli theorem for .#(K) and uniform convergence of
Y. (¢) to p(¢) a.s. shows that
t dN,(u) ¢ M(u)
e I 7 ey ATy E el e ATy
-0 a.s.,all p>0.

Since [[Mw)/p(w) du = ¢(t) — ¢(s) is bounded away from 0 when ¢ — s > p,
the theorem follows. O

du

For the purpose of applying the min—-max functional to the 8,(s, ¢) process,
we state explicitly the following corollary in which we make a time transfor-
mation by the monotonically increasing function ¢ 1(¢). Let 7 = ¢(1).

COROLLARY 5.4.
Vn (£ = s)(Bu(d7(5), ¢ (1))
= W(t) — W(s) weaklyinl*([O0, 7]2),

where W is Brownian motion.

(5.52)

The following lemma is used with Corollary 5.4 to find the limit of the
adjustments to the risk set. It is closely related to the “min—max” formulas
used in isotonic regression; see Barlow, Bartholomew, Bremner and Brunk
[(1972), page 19], or Robertson, Wright and Dykstra [(1988), Theorem 1.4.4].
Theorem 1 in Gill (1995) is similar in flavor; we have, however, not been able
to find a result which could be quoted immediately.

LEMMA 5.4 (A min—max continuous mapping theorem). Suppose that b,,
n=1,2..., are bounded functions in 0 <s <t <t and that w(t) is a
bounded and continuous function in 0 <t < 7 for some 7> 0. Suppose that
they all satisfy

sup [V (¢ = )b,(s, 1) = (w(s) —w(1))] > 0.
0<s<t<rT
Let « denote the smallest concave majorant of w:
k(t) = inf{k(t): k concave, k(u) > w(u), all u}.
Let T = {t: k(¢t) = w(¢)}. Then it holds for any t & T that
(553)  Vny(¢) V0= (\/Erii? maxb, (s, u)) V0 - &(t) v 0,

where k(t) denotes the derivative of k at t.
ProoF. Let ¢ & T. Define (s, u,) by

: w(u) —w(s)
(5.54) (8¢, uy) = arg min max ———.
s<t ux=t u—=s
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[Since t & T, (s,, uy) is well defined; should more than one arg min-max
exist, then we choose the version closest to ¢.] It then follows that (w(u,) —
w(sy))/(uy, — s,) is the slope of the smallest concave majorant of w over the
set sy, uol, that is, (w(uy) — w(sy)/(u, — sy) = k(¢*) for all t* €]s,, u,l.
Furthermore, s, <t — & for some 6 > 0, since ¢ € T. We now consider for
this é:

(5.55) v,(¢,8) = min maxb,(s,u)

s<t—06 ux>t
and show that

(5.56) Vny,(t,8) > k(t), n -

Notice that by assumption there exists a sequence ¢, |0 so that, for all
s<u<m,

(w(u) —w(s)) + &,

(5.57) Vnb,(s,u) =

where the sequence &, does not depend on s, u. By the definition of (s, ©,),
noting that u — s > & in (5.55), this shows that

w(ug) — w(sg) g, w(uy) —w(sy) &n

\/;yn(t,S)E[ 0~ So I uy — S 5
Sn 877,
= [k(t) - F’k(t) + 5|
Since ¢, | 0, this proves (5.56).
Note now that, for any s € [t — §, [,

w(ug) —w(s) | wlun) —w(sy)

Uy — 8 Uy — 8o

Hence we have that

min maxvVnb,(s,u) = min Vnb,(s,u,)
t—8<s<t uxt t—8<s<t

w(ug) —w(s) + &,

= min
t—0<s<t Ug — S
w(uy) ~w(s,) e,
o uO_SO uO_t
- k().

Hence liminf, .. min, ;_,., ,cpmax,.,,cpzn?b,(s,u) > k(¢), and this,
together with (5.56), shows the desired result. O

The following lemma is a variant on Gill (1989), Lemma 3, suited for the
situation where the integrand is the slope of the least convex majorant of a
Brownian motion. We let | - || denote the sup norm on /[0, 1].
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LemmA 5.5. Let x,,x,y,,y €170,1]1 and set h, =t,(x, —x), k, =
t,(y, —y) for a real sequence t, — ». Suppose [;|dy| < e, limsup, _,.. [4dy,|
<o and ¢y, —y) — kIl = 0 for some k €170, 1]. Suppose that for all
& > 0 there exists a set A, C [0, 1] with Lebesgue measure |A,| > 1 — & so that

(5.58) sup |h,(t) — h(t)| > 0 forall e> 0,
teA,
where h is a real function which is bounded on A, and has for all ¢ > 0 only a

finite number of discontinuities on A, and which satisfies [;|h||dy| < o.
Suppose, however, that

(5.59) lim lim sup fAclhnl dy,| = 0,

>0 n—ow

and that (5.59) also holds for the combinations [|h,||dy| and [|h||dy,|. Then
it is true that

tn('/;xn dy, — /O‘xdy) - fo.hdy + fo’xdkH - 0.

REMARK. Unlike the situation in Gill’s proof, h & 1[0, 1] may occur.

Proor. We modify Gill’s proof as follows. First of all

j'hn dy + /'xdkn - (/'hdy + f'xdk)H
0 0 0 0

/O'(hn —h) dy” +H[O'x(dk — dk)

Since x, k, and k are as in Gill’s proof, it holds that || [;x(dk, — dk)I| = 0,
and furthermore, for any ¢ > 0,

[ = my ay] < sup 1, 00) = m0) [ [l + [ (ol + I

teA,
which by (5.58) and (5.59), since £ > 0 can be chosen arbitrarily small, shows

that
‘['(hn —h) dyH - 0.
0

We next need to prove that || [;4, d(y, — )|l = 0. We use the bound

| (=103, =) = sup o) = (o) | [ a1+ ais)
+f ol + 1) d(1, ]+ 1),

which, again by (5.58) and (5.59), shows that || [;(h, — k) d(y, — )|l — 0. It
now suffices to show that ||/, A(dy, — dy)ll > 0 for all &> 0. But since the
restriction of A to A, is bounded and has only a finite number of discon-
tiuities, 2 can be arbitrarily closely approximated in supremum norm by a

<
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step function with a finite number of steps. The remaining part of Gill’s proof
now carries through. O

5.3. Proof for the censored case.

ProoF oF THEOREM 2.1. Let K(¢) denote the smallest nondecreasing
concave majorant over [0, ¢(1)] = [0, 7] of a standard Brownian motion W.
The we shall first show that

dN(u) t
(5.60) (f Y.(u) + %(w) LA(u)du)

= W(¢(t)) - K(4(¢)) inl[0,1].
Let W, denote the random element of [0, 1]* X 1[0, 7]2, given by
W,(u,0,5,0) = Vit (N,(u) - BN (), Y,(v) - EY,(v),

(t=s)Bu(¢71(s), d71(2)));

then it is by Corollary 5.4 the case that
W.(u,v,s,t) =
(5.61) W(u,v,s,t) = (Zy(u), Zy(v), W(t) — W(s))
weakly in 17[0, 1] x I*[0, 7]".

Here W(¢) is related to (Zy, Zy) by W(¢p(2)) = [((dZy(w) — Zy(w)Mw) du)/
p(u). We need to be able to assume that (5.61) holds along almost every
sample path; that is, we need an almost sure representation theorem. The
almost sure representation theorem in the Hoffmann-Jgrgensen theory of
weak convergence is due to Dudley (1985); see also Kim and Pollard (1990),
Theorem 2.2, and Van der Vaart and Wellner (1995). Assume now that the
data and hence also W, are defined on some underlying probability space
(Q, @,P). Dudley’s representation theorem guarantees the existence of a new
probability space (Q,7,P), a sequence of perfect, measurable maps ,:
Q — Q and a Borel measurable random element W defined on () so that the
following conditions all hold:

(i) P=¢,(P) forall n,
(i) W=,W,
(iii) || W, o, (®) — W“’” -0 as.,

where || - || denotes the (product) supremum norm on [0, 1]2 x 1[0, 7]%. The
notion of a perfect mapping is explained in the references above. It is a
concept which is necessary because the mappings W, are not necessarily
measurable, and hence one needs to be careful when discussing almost sure
representations.
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Write W® for the composition W, ¢(®) and N® and so on for its
components. By (iii) we can assume that for all @ in a set of P probability 1 it
holds that

sup [Vn (t =) B2(¢71(5), &7 1(1))
(5.62) O<s<t<rTt
—(W(t) = Wo(s))| > 0.
Next, we apply Lemma 54 for fixed & with 7= ¢(1), b,(s,¢) =
B2(p~1(s), o~ 1(¢)) and

o 2 dZ3(u) — Z2(u)Mu) du
(5.63) w(t)zww(t)=[0"’ () p(u() JMu) du |

Let K ®(u) denote the smallest nondecreasing concave majorant of W“_’(_t) on
[0, 7]. Then it holds by Lemma 5.4 for any ¢ so that the derivative DK “(u)
exists at u = ¢(¢) that

Vn 3,2(t) = \/ﬁ(min max B2 (s,t) V 0)

sS<t ux=t

(5.64) = \/ﬁ( min max B2(¢ (s),d 1(¢t)) V 0)

s<p(t) u=p(t)
— DK®($(t)) V 0= 7°(¢).

We can hence describe y ©(t) as the derivative of the least concave nonde-
creasing majorant of W®(u) over [0,7] at the point u = ¢(¢). Now, since
W®(w) is a Brownian motion sample path on [0, 7], it is known from Groene-
boom [(1985), page 1019, last three lines], that there are in every interval
[, 7[ not containing O only finitely many points «* in which, We(u*) =
K®(u*). Furthermore, K “(u) is piecewise linear between these points; that
is, ¥°(t) is constant. It follows that there exists for each ¢ > 0 and & a set
A? c]0,1] with |[A?| > 1 — & so that

(5.65) sup [Vn 3,2(t) — 7°(¢)| - 0.

teA?

Next, linearize to get

( 1 1
"\Yry i) P
) (_ Vi (Y2(8) = p(t) + ?:"(t)))
p(t)(Y2(t) + %2(2))
which by (5.65) and (5.39) converges uniformly on A% to
250 + 70
p(t)’

(5.66)

= H7(1),

(5.67) Ho(t).
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We now apply Lemma 5.5 with x,(¢) = (Y,2(t) + %2() L, x(t) = p(£)~?,
y,(8) = N2(t), y(t) = EN,(t) = fop(u)/\(u)du t, =n'? and, by (5.67),
h,(t) = H (), h(t) = Ho(t), k,(t) =*(N(t) — EN,(¢)) and k(¢) = Z§ to
show that

: dN2(v)
'ﬁ Y2 (0) + 3 (v)

(fH“’ v))\(v)p(v)dv+f N(U))‘—)O

Vn

sup
0<t<1

fot/\( v) dv
(5.68)

By (5.67),

(M) (Z3(v) + 7°(v))
p(v)

fH (v)AM(v)p(v)dv = —f dv,

and, since ¢(v) = Mv)/p(v), (5.68) shows that
¢ dN?(v)
£>Yf(v)*'%f(v)

(5.69) _)Itdzﬁ(v)'—A(v)iiégv)+-?@(v))du
0 v

 dZR(v) — M) Z8(v)
_VL p(v) ¢

- fot)\(v) dv

—[Ot&@(v)é(wdv-

Recall by (5.63) and (5.64) that ¥ “(¢) is the derivative of K ®(x) evaluated at
u = ¢(t), and hence

d
[ d(0) dv = [ [ RA ()], _ 0, b(0) dv = K((1)).

By reverting to the original sequence and noting that (5.69) is distributed as
W(o(t)) — K(¢p(2)), this proves (5.62).

For applying Lemma 5.5, notice that our choices of y,, y, £, and %k are as
required in the lemma; indeed, they are the same as assumed by Gill and
Johansen (1990) in their application of Gill’s (1989) Lemma 5.2. The problem
we face is that ¥(¢) is unbounded and has right limit % at 0. By the remark
preceding (5.67) it is true that (5.58) is satisfied with A, = A%, Furthermore,
|H®| is integrable since Z ‘*’(u) is uniformly continuous and y“’(t) is a deriva-
tive. In view of the fact that Z¢ and n'/%(Y, — p) are as in Gill and Johansen
(1990) and that p(u) is bounded uniformly away from 0 and A(x)p(u) from oo,
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it suffices for (5.59) to show that for every £ > 0 the following conditions hold
for each @:

(5.70) hm hmsupf 5(u) dN?(u) = 0,
(5.71) lim hmsupf Vn %,2(u) du = 0
>0 n—ow
and
(5.72) lim lim sup[g\/;?n‘;’(u) dN?(u) = 0.
e-0 ;L0 0

By one of the laws of the iterated logarithm for Brownian motion [see
Breiman (1968), Theorem 12.29, there exists for each @ a 0 < 7% < 7 so that

We(u) < (4ulogy(1/u))'/? when 0 < u < 7°. Let ¢(t) = u. Since by concav-
ity 7(t) = (DK“X$(t)) < K2($(1))/p(t) < W‘"(d)(t))/d)(t) we get that

- 4log,(1/¢(2))
o = o FEGHD.

The right-hand side is an integrable function in ¢, and it holds by a strong
law of large numbers for N that

0<t<¢ }(r?).

ll_I)I(l) 111;1_)Solclp j;) \/ #(2) dN;?(u)
e [ 2logy(1/¢(u))
=‘11_r)r(1)[0\/ (1) Mu)p(u) du =0,

thus proving (5.70). For establishing (5.72), let A be a function as in Lemma
5.3. Then it holds that

hm lim supf Vn %,2(u) AN2 (u)

n—o
. . Sﬁ?nw(u)
lim limsup | ————

e50 o0 o uh(u)

uh(u) AN (u)
(5.73)

IA

lim limsup( sup \/_uh(u)yn‘”(u))/ uh(u )dN“’(u)

L U O<u<e

IA

(¢h(£) (0, 1)) lim 1 fng ()
sup im lim sup
0<t<t uh(u)

Since 1/(uh(w)) is integrable, it follows by Corollary 5.3 that (5.73) equals 0
a.s. This proves (5.72), and (5.71) now follows in the same way without our
having to invoke the law of large numbers.
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We have now proved (5.60). Theorem 2.1 entails an application of the
5-method to show that

m( n](l—M [T (1 - A(w) du)

10, ¢ Yn(u) + yn(u) 10, ¢1]

- ](1)_[”(1 — Mu) du)(W($(t)) — K($(2)))
— —F(t)(W($(t)) — K((1))). -

Proor oF THEOREM 2.3. We now describe how the proof of Theorem 2.1
may be modified to prove Theorem 2.3. There is a slight complication in that
the natural scaling for the counting process and risk set in group i = 1,2 is
n; and not n = ny; + n, as used in the nonparametric maximum likelihood
estimators (5.25) and (5.26). By defining, however, N(¢) = (n/n,)N{(¢)
and Y(¢) = (n/n,;)Y,()(¢) (and suppressing the dependence on n for conve-
nience), we may write (5.24) as

dN®(u)
A s = -
(B t) ]15_,[::](1 Y®(u) + (n/nl)B)
(5.74) dAN®(u)
]E[u( CYP(w) - (n/nz)B)

= 7P(=B,s,t).
By the mean value theorem [in the form f(x) — f(x,) — (g(—x) — g(—x,)) =
(fCE) + g(—&E)x — xy)), € €lx,, x[], we get as in (5.45) that

Vn (mM(0,5,t) — mM(B,(s,t),8,t))
—Vn (m®(0,5,t) — m®(—B,(s,t),s,t))

(5.75) = Vi (~Bu(5,1)) a—ﬁw;“( B (5.1),5.1)

+(9—(;7T,52)(—B,;“(s,t),s,t)),

where B(s,t) €10, B,(s, t)[. On the other hand, we have by (5.74) that the
terms involving fB,(s, t) cancel out, so that it equals

\/5(77,51)(0, S,t) — 77,52)(0, s, t))

dAND(u)
(5.76) ‘/—( Is, ] ( Y@ (u) ) 11:[:1

dAN®(u) dEN®(u)
\/TW(] ( T YO ) ﬂ](l_ EY ) (u) ))

Let (ZN(t) Zy(1)) denote the two-dimensional Gaussian process which is the
limit in distribution of n}/2(N(¢) — EO(¢), Y O(¢) — EY ¥)(¢)). We then ex-

dEN®D(u)
(1_ EY D(u) )



SURVIVAL CURVES UNDER ORDER RESTRICTIONS 1711

pect by the 6-method as in Theorem 5.1 that (5.76) converges in distribution
to

_ 12 F(t) dZy(u) B Zy(u)Mu) du)
(5.77) EERIORAWCY pa(w)
oo1/2 F(2) / dZy(u)  Zy(w)A(u) du)
® F(s) po(u) po(u) )

Returning to the derivative in (5.75), we get using (5.44) that
J J
2 L 2@
&BW (B,s,t) aB’iT (—8,s,t)
n dN®O(u
=_7Tr51)(ﬁ’s’t)ft @ <1(> ) -1
ny s (Y (u)+(n/n1),8)(Y (u) + (n/ny)B —ng )

n
+—7T,§2)(—B, S, t)
g

L AN (u)
| @)~ /) B) TP — (B i)

Hence we expect that if 8,(s, ¢) is, for large n, close to 0, then the right-hand
side of (5.75) is asymptotically equivalent to

1 F(t) /t dEND(u) . iF(t) ft dEN®(u)
c1 F(s) s (EY®O(w))® ¢ F(s) s (EY®(u))’

—Vn B,(s,t)| —

F( )(¢1( ) — di(s) + &s(t) — ‘{1’2(3)),

where we recall ¢,(t) = [Mu)/(c; p(u)). By combining (5.75), (5.77) and
(5.78), we find that the terms involving F(¢) cancel out, and we get that

[ = 00) = ) (Bu(s.)

i=1,2

tdZy(u) — Zy(u)AMu) du

(5.78) =>'/; .
_ft dZNz(u) - ZYZ(U)/\(u) du
s pa(u)

It is natural to write
dZy(u) —Zy (u)A;(u) du
e —— = ¢ VAW, (e (¢
A 0 (cidi(t))

for W,, W, iid Brownian motions on [0, 7]. Let ¢.(¢) = ¢(¢) + ¢4(¢). Then we
can argue similarly to Corollary 5.4 that (5.78) implies

(5.79) Vi (¢ = 8)(Bu(71(s), §7 (1)) = V(2),
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where V(¢) = c;V/2W (c, (b7 1) — c; /> Wy(cy do(d 1(2)). Next, we in-
voke the a.s. representation theorem and argue that

Vn oy, (t) = \/E(min max B3,(s, u)) Vo
s<t ux>t

(5.80) = ( min max p,(4:(s), 97 (w)) v 0

- K($.(1)),

where K(¢.(¢)) denotes the derivative (left or right) at u = ¢.(¢) of the least
nondecreasing concave majorant of V(u) on [0, 7] evaluated at u = ¢.(¢). The
convergence in (5.80) can, as in Lemma 5.3, be assumed pointwise in every
point where K(¢.(¢)) is defined.

Notice now that the NPMLEs of F)(¢) may be written as

dNO(u) )

F(i) = - i+1
() = T1 YO(u) + (n/n,)(—=1)" 1y, (u)

10, ¢]

Since, furthermore,

dENO(u)|
]<l:[t1( ~ EY9(w) )_ ]

I1

0, t]

 p(wAw) du)
pi(u)
= exp(—/ot/\(u) du) = F9(t),

an application of the 6-method together with (5.80), still along an a.s. subse-
quence [noting that n}/%(n/n)y,(t) = n'2(n/n)?*y,(t) - c; V2K($.(t))],
shows that

Vn (F(t) — FO(1))

n
=\ Ve | IT |1~
n; 10, ¢1

dAND(u) )
YO(u) + (n/n)(—1)" "y, ()

IO ( dEN“’(u)))

o\ EYDO(u)
— —C;I/zﬁ(i)(t)

¢ dZNi(u) B ZYi(u) 4 (—I)HIC;I/ZK((#(U))dEN(i)(u)
X/;) EY(i)(u) EY(i)(u)z

- _01/2F(l)(t)(f dZN(u) ZYi(u)A(u) du

pi(u)

)

~(=D)" O [ K9
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Remembering the definition of W,(c;¢;(¢)), the limit in (5.81) may now be
written as

PO [er AW lei(0) + (~ 1) [B(6.())bi(w) du.

By noting that W*(¢) = ¢; '/?W(c,, t) are themselves independent Brownian
motions and that V(¢) = W (¢, ¢ 1(2)) — W (¢, o ¢ 1(2)), the desired re-
sult (Theorem 2.3) follows. What is needed in order to make the above line of
reasoning rigorous is first of all that Corollaries 5.1, 5.2 and 5.3 all hold for
B,(s, t). That is, it must hold that

(5.81) sup | B,(s,t)| >0 forall §>0,
t—s>96
(5.82) limsup sup |B,(s,t)|—>»0, 8-0,
n—oo 0<t—-s<§
and
(5.83) sup Vnth(t)|B,(0,¢)| = Op(1).
0<t<1

For showing (5.81)-(5.83) we define p{’(s, ¢) as the solutions to the equations

( _ (n/m)dN©(u) | F(1)
(n/mY (@) +p| " F(s)’

Since now B,(s, t) satisfies by definition the equation

I (1_ (m/m) dN(w) | (1 (15/n) AN®(u)
1

(5.84) I'1

Is, t]

sl (u/mYOw) + B il (r/m)YP(w) - B
it follows by symmetry that

min( - p(s, 1), (5, 1)) < B(5,1) < max(—pP(s, 1), pi"(s, 1))

or
| B.(s, )| <] pD(s, )| +] pP (s, ).

By (5.84), (n/n,)p{"(s, t) are the adjustment used in one-sample problems of
the type considered in Theorem 2.1 which consist of estimating F(¢) subject
to the restrictions F(¢) > F(t). We can now argue that Corollaries 5.1, 5.2
and 5.3 are all satisfied for (n/n,;)p (s, ?). There now remains one point
where the proof of Theorem 2.3 differs from that of Theorem 2.1. This has to
do with verifying Lemma 5.5 for the quantity H, when treating the lower
survival curve estimator F®(¢). In verifying Lemma 5.5 for H,, defined in
(5.66), in the proof of Theorem 2.1, we used that the nonnegative y, was
added in the denominator, so that uniform integrability of n'/ %y, sufficed.
However, in case of F® the corresponding definition is

Vn (Y®(t) = py(t) = %(2))
p()(YP(t) — v (t))

H,(1) = -
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that is, v,(¢) is subtracted in the denominator which may subsequently blow
up the fraction.

It would suffice for carrying through the proof of Theorem 2.1 that v,(¢) — 0
a.s. uniformly in ¢. By choosing A(t) = ¢~'/3, it follows from (5.83) that
Y,(t) < 1/2t72/30,(1). Let a, denote the last time the curves F™(¢) and
F®(t) touch before n~1/27¢ for some 0 < ¢ < 1. Then it holds that v,(¢) = 0
a.s. uniformly on [a,, 1]. Hence we can show, along the a.s. representation,
that

. dAN®(w) .
L ¥ = ey~ d“)

converges uniformly in ¢ > a, to the given limit [which is ¢; '/ *Wy(c, ¢,(¢)) +
[EK(p(u)py(uw) dul. As to 0 < t < a,, the proof will be complete if it can be
shown that

(5.85) Vn

¢ dN®(t) ¢
5.86) limsup sup Vn — [ Mu)du
( ) n—o» 0<t<a, '[0 Y(2)(t) - Yn(t) '/;) ( )

Notice to this end that (5.86) is bounded by
a, dN(Q)(t) n-1l/2-¢
\/;j;) m + \/Ej;) /\(u) du

and that the right-hand term goes to 0 by the boundedness of A(u). Since
FY(a,) = F®(a,), we now get by the inequality x < —log(1 — x) that

=0 a.s.

a, dN(t dN® (¢
A - vi(t) < ~nlg I (1 T Y®(1) - v)n(t))
(5.87) = —Vn log F?(a,)
= —Vnlog F"(a,)
< —log S®(a,).

Here SY(t) denotes the Kaplan—Meier estimator from the first sample, and
the last inequality follows because F‘V has received a positive adjustment to
the risk set so that F(a,) > S%(a,). One can now invoke an almost sure
“nearly linear” bound for the Kaplan—Meier estimator to show that for any
& > 0 there exists a constant C > 0 so that
liminf inf (S®(¢) —(1-Ct'"?))=0 as.
n—>x 0<t<1

For an explanation of a.s. linear bounds (for the empirical process, but easily
gotten also for the Kaplan—Meier estimator), see for example Shorack and
Wellner (1986), page 405. It now follows that (5.87) can eventually be
bounded by — Vn log(1 — Cal™?) < — Vnlog(l — Cn~1/2+9X1=9) Now choose
8 small enough and positive that (3 + £)(1 — 8) > 3; then it follows by the
inequality —log(l — x) < 2x if 0 < x < 0.797 that

lim sup Vn log(1 — Cn®/2+X0=9)) < lim sup Vn 2Cn'/2n~1/2+2X1-0 =

n— o n— o
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This proves (5.86), and together with (5.85) this completes the proof of
Theorem 2.3. O
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