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LOCAL LIKELIHOOD DENSITY ESTIMATION

BY CLIVE R. LOADER

Bell Laboratories

Local likelihood was introduced by Tibshirani and Hastie as a method
of smoothing by local polynomials in non-Gaussian regression models. In
this paper an extension of these methods to density estimation is dis-
cussed, and comparison with other methods of density estimation pre-
sented. The local likelihood method has particularly strong advantages
over kernel methods when estimating tails of densities and in multivari-
ate settings. Suppose constraints are incorporated in a simple manner.
Asymptotic properties of the estimate are discussed. A method for comput-
ing the estimate is outlined.

C code to implement the estimation procedure described in this paper,
together with S interfaces for graphical display of results, are available at:

http:// cm.bell-labs.com/ stat/ project/ locfit / index.html

1. Introduction. Local regression is a popular form of nonparametric
regression, combining excellent theoretical properties with conceptual sim-
plicity and flexibility to find structure in many datasets. References include

Ž . Ž . Ž .Stone 1977 and Cleveland 1979 . Cleveland and Devlin 1988 discuss a
Ž .multivariate setting. Recently, Fan 1992, 1993 has studied minimax proper-

ties of local linear regression. A detailed summary of the advantages of local
regression compared to kernel fitting may be found in Hastie and Loader
Ž .1993 .

Local regression may be viewed as a special case of the local likelihood
Ž .procedure introduced by Tibshirani and Hastie 1987 . This procedure is

designed for nonparametric regression modeling in situations where a non-
Gaussian likelihood is appropriate, such as logistic regression and propor-

Ž .tional hazards models. A related paper is Staniswalis 1989 .
The purpose of this paper is to extend local likelihood methods to the

nonparametric density estimation setting. The estimate is introduced in
Section 2. The remainder of the paper is devoted to a study of theoretical and
practical issues concerning the estimate. Computational methods are studied
in Section 3. Asymptotic theory for the estimate is developed in Section 4.
Section 5 contains some discussion of order choice and examples.

A previous application of local polynomial methods to density estimation is
Ž .Lejeune and Sarda 1992 . In this method the distribution function is esti-

mated using a weighted quadratic penalty for the distribution formulation.
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Under the formulation we use, it turns out to be more natural to model the
logarithm of the density, which is also more intuitively appealing in the tails.

Ž .In independent work Hjort and Jones 1996 have also studied local likelihood
procedures for density estimation. They concentrate mainly on the one-di-
mensional case, but do not restrict their local models to a log-polynomial
form. In particular, they find the important properties of the estimate are
determined mainly by the number of parameters of the local model, rather
than the precise form of the model. Hjort and Jones also provide more
discussion of the relation of local likelihood to other methods that achieve

Ž .some of the aims of local likelihood. Another interesting paper is Hjort 1997
where local likelihood is carried out in the closely related hazard rate setting.

Log-spline and penalized likelihood type methods have also been proposed
Ž .in the density estimation literature; see, for example, Silverman 1982 ,

Ž .Stone 1990 and the references therein. These methods also have the advan-
Ž .tages inherent in modeling log f x , and performance should be competitive

with the local likelihood method, although conceptually the methods are very
different. Penalized likelihood methods are defined as solutions of global
optimization problems, trading fidelity to data against roughness of the
estimated curve. By contrast, the local likelihood method solves local opti-
mization problems motivated by bias]variance considerations. Thus the
methods seem difficult to compare directly; neither is likely to be uniformly
better in practice.

2. The local likelihood estimate. Suppose we have observations
d Ž .X , . . . , X lying in a subset XX of RR , having unknown density f x . The1 n

log-likelihood function is

n

1 LL f s log f X y n f u du y 1 .Ž . Ž . Ž . Ž .Ž .Ý Hi ž /XXis1

Ž .If f is a density, 1 coincides with the usual log-likelihood. The attractive-
ness of maximum likelihood estimation stems from the following property:

2 E LL f F E LL fŽ . Ž . Ž .f 1 f

for all densities f , with equality only when f s f almost everywhere. Using1 1
the inequality

1
log f x F log f x q f x y f xŽ . Ž . Ž . Ž .Ž .1 1f xŽ .

Ž .shows 1 maintains this property for any nonnegative integrable function f1
defined on XX ; we do not require f to be a density. One consequence of this1
extension is that maximum likelihood estimation can be performed with

Ž .multiplicative parameters. For example, fitting the family f x; C, m s
2 ˆ y1r2Ž Ž . . Ž .C exp y x y m r2 by maximum likelihood gives C s 2p .
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Frequently, we do not have sufficient information to specify a global family
for f , but local smoothness assumptions may be reasonable. In this case, it is
useful to consider a localized version of the log-likelihood:

n X y x u y xj
3 LL f , x s K log f X y n K f u du,Ž . Ž . Ž .Ž .Ž .Ý Hj ž /ž /h hXXjs1

where K is a suitable nonnegative weight function and h a bandwidth. For
the present we treat h as a constant, although, in practice, it is likely to be
chosen by data-based methods. As with any local fitting procedure, perfor-

wmance can be enhanced by allowing h to vary as a function of x or X Jonesj
Ž .x Ž .1990 . We note that property 2 extends to the local log-likelihood:

E LL f , x F E LL f , x ,Ž . Ž .f 1 f

Ž . Ž . ŽŽ . .with equality when f u s f u on the support of K u y x rh . This sug-1
Ž . Ž .gests estimating f x by maximizing 3 over a suitable class of functions.

Ž .The local polynomial approximation supposes that log f u can be well
approximated by a low-degree polynomial in a neighborhood of the fitting
point x. That is,

4 log f u f P u y x ,Ž . Ž . Ž .
Ž .with in one dimension

p
5 P u y x s a q a u y x q ??? qa u y x .Ž . Ž . Ž . Ž .0 1 p

With this approximation, the local likelihood becomes
n X y xj

LL f , x s K P X y xŽ . Ž .Ýp jž /hjs16Ž .
u y x

y n K exp P u y x du.Ž .Ž .H ž /hXX

Let CC be the parameter space,

u y x
CC s a , . . . , a : K exp P u y x du - ` .Ž . Ž .Ž .H0 p½ 5ž /hXX

To avoid some technical problems, we assume that CC is an open set. This
holds if either XX is bounded or K is continuous with bounded support, and

d Ž .CC s RR . It also holds for the Gaussian kernel if p F 2. It fails if K u s
Ž < <. Ž < <3.exp y u r 1 q u and local linear fitting is used.

Ž .DEFINITION 1 Local likeihood density estimate . For fixed x g XX , let
Ž . Ž .a , . . . , a be the maximizer of 6 . The local likelihood density estimate isˆ ˆ0 p

ˆ7 f x s exp a .Ž . Ž . Ž .ˆ0

ˆŽ . Ž .If no maximizer of 6 exists, or x f XX , then f x s 0.
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Ž . Ž .EXAMPLE. For local constant fitting p s 0 , 7 gives

Ýn K X y x rhŽ .Ž .js1 jˆ8 f x s exp a s .Ž . Ž . Ž .ˆ0 n H K u y x rh duŽ .Ž .XX

When XX is unbounded, this is the kernel estimate introduced by Rosenblatt
Ž . Ž .1956 and Parzen 1962 . This estimate has substantial bias problems in the
tails of densities and can also have bias near peaks. For bounded XX , the
renormalization will usually reduce boundary bias, although problems re-
main if the density has substantial slope near the boundaries. Modifications

Ž .exist to address many of these bias problems; see Scott 1992 for many
recent references. In this paper we show the use of higher-order fits also
addresses these bias problems, but in a much more unified fashion.

Ž .If a maximizer of 6 exists, it must fall in the interior of the open set CC,
and hence satisfies the system of local likelihood equations

n1 X y x X y xj j
A KÝ ž / ž /n h hjs19Ž .

u y x u y x
s A K exp P u y x du,Ž .Ž .H ž / ž /h hXX

Ž . Ž p.Twhere A v s 1 v ??? v . These equations have a very simple and
Ž .intuitive interpretation. The left-hand side of 9 is simply a vector of local-

ized sample moments up to order p, while the right-hand side is localized
population moments using the log-polynomial density approximation. The
local likelihood estimate simply matches localized sample moments with
localized population moments.

In the multidimensional case, the local polynomial expansion is extended
to include all monomials of degree F p. This leads to a total of k q 1 terms,

p q dwhere k s y 1. For convenience, we assume the constant term alwaysž /d
Ž .comes first. The vector function A v then includes the monomials in the

same order. For example, in two dimensions with local quadratic fitting,
Ž . Ž 2 2 .T Ž .A v s 1 v v v v v v . The local likelihood 6 continues to hold,1 2 1 1 2 2

with the outer sum now running through i s 0, . . . , k. Definition 1 and the
Ž .local likelihood equations 9 are unchanged.
Ž .In general, the system 9 has no closed-form solution, leading to questions

of existence and uniqueness. For fixed X , . . . , X , the local likelihood surface1 n
is easily shown to be a concave function of a , . . . , a ; this implies at most one0 p

ˆŽ . Ž .solution of 9 exists, and this solution will be a maximum. This ensures f x
is well defined.

Ž .The existence of a solution of 9 is more difficult. Indeed, no solution exists
if insufficient observations receive nonzero weights. A closely related problem
is the existence of maximum likelihood estimates in exponential response

Ž .models. Following the argument of Theorem 2 of Haberman 1977 , a solution
Ž .exists if the observed left-hand side of 9 falls in the interior of its range.
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Assuming the kernel is continuous, this requires at least one observation to
Žreceive a nonzero weight for local linear fitting, and d q 1 observations with

.a nonsingular sample covariance to receive nonzero weights for local
quadratic fitting.

3. Computation. Evaluation of the local likelihood density estimate can
be split into two parts. First, one evaluates the summation vector on the

Ž .left-hand side of 9 . The estimate is then found by solution of the equations.
Except in special cases, there is no closed form for the solution and hence
iterative methods must be used. The integrals must be evaluated numerically
at each step.

Ž .Evaluation of the sums is an O nh computation assuming a compactly
supported kernel. The solution of the equations is independent of sample size,
so for very large sample sizes the accumulation of sums is the most expensive
part of the computation. However, for practical sample sizes, the iterative
solution is the most expensive and difficult part of the solution.

The integral will usually be evaluated numerically. In multidimensional
cases, substantial savings can be achieved by using a product kernel,

du y x u y xi i
K s KŁ 0ž / ž /h his1

for a one-dimensional kernel K , and choosing a local model so that the0
integrals factorize. If XX is a rectangular subset of RRd and local linear fitting
is used, then

u y x
TK exp a q b u y x duŽ .Ž .H ž /hXX

d u y xi is exp a K exp b u y x du .Ž . Ž .Ž .ŁH 0 i i i iž /hXXis1 i

This enables all the integrals required in the iteration to be written as the
product of one-dimensional integrals.

This simplification does not work fitting a full local quadratic model. One
possibility is to remove cross-product terms from the model; with this modifi-
cation the local likelihood again factorizes. The cost for excluding cross-prod-
uct terms will be some reduction in the ability to model curvature, particu-
larly in the tail regions.

To plot the density estimate, evaluation at a large number of points is
frequently required. For this reason, the algorithm described by Cleveland

Ž .and Grosse 1991 for local regression is useful. In this method, a piecewise
polynomial estimate is constructed over a partition of the space XX , with the
polynomial pieces being represented in terms of function values and deriva-
tives at the vertices of the partition. These vertex values are estimated using
the local regression or likelihood algorithm, and the polynomial pieces are
rapidly evaluated at any point in the domain. The specific partition used by
Cleveland and Grosse is based on a k]d tree partition, and some other

Ž .alternatives are suggested in Loader 1994 .
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Another possibility for computational savings is to use the Gaussian
kernel, for which closed-form evaluation of the integrals is possible, and, at

Ž .least in some cases, Hjort and Jones 1996 have derived closed-form expres-
sions for the estimate. A disadvantage with the Gaussian kernel is that for
local quadratic fitting the parameters are constrained. This may limit the
ability of the estimate to reproduce troughs in the data.

4. Asymptotic theory. In this section we study some asymptotic prop-
erties for the local likelihood density estimates. In particular, we study rate of
convergence and obtain asymptotic distributions. Some of the ideas for the

Ž .results are borrowed from Ruppert and Wand 1994 .
Our asymptotic results will be stated for sequences of points x s x q hz,0

where x g XX , z g RRd is fixed and h, the bandwidth, converges to 0 as0
n ª `. For interior points we would usually consider z s 0 and x s x for all0
h; by considering sequences, the results are also useful for studying the
behavior of the estimate at points close to the boundary of XX .

We suppose throughout that the kernel has compact support, although this
could be weakened with some truncation arguments. Theorem 1 establishes
rates of convergence for the coefficients a , and shows these may be inter-ˆj
preted as estimates of the corresponding terms in the Taylor series expansion

Ž .of g x . Theorem 2 gives an asymptotic representation for the estimate as a
deterministic and random component. Theorem 3 provides an alternative
asymptotic characterization of the estimate, where the bandwidth is held
fixed as n increases.

LEMMA 1. Let
n1 X y x X y x u y x u y xj j

10 Z s A K y A K f u du.Ž . Ž .Ý H ž / ž /ž / ž /n h h h hXXjs1

Let n ª ` and h ª 0 with nhd ª ` and suppose x s x q hz with x g XX0 0
d Ž .and z a fixed vector in RR . Suppose also that f restricted to XX is continuous

Ž . Ž . �in an open neighborhood of x and f x ) 0. Suppose XX h s v: v g0 0
Ž . 4supp K , x q hv g XX has a limit XX * as h ª 0. Then

n T 211 Z ª N 0, f x A v A v K v dv .Ž . Ž . Ž . Ž . Ž .H( LL 0d ž /h XX *

Ž .PROOF. It is easily shown E Z s 0 and
T 21 u y x u y x u y x

TE ZZ s A A K f u duŽ . Ž .H ž / ž / ž /n h h hXX

1 u y x u y x
y A K f u duŽ .H ž / ž /n h hXX

Tu y x u y x
= A K f u du.Ž .H ž / ž /h hXX
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A multivariate central limit argument completes the result; this can be easily
established using moment generating functions. Note the first term of the

Ž d . Ž 2 d .covariance is O h rn ; the second is O h rn and therefore is asymptoti-
Ž .cally negligible. Parzen 1962 gave this result for p s 0. I

Before stating the asymptotic results, we introduce some more notation.
Ž . Ž .Let g u s log f u . Suppose all derivatives of g of order p q 1 exist and are

continuous. Expand g in a Taylor series of order p around a point x and let
p q dthe coefficients, dependent on x, be g , . . . , g , k s y 1. These should0 k ž /d

Ž .be arranged in an order corresponding to the components of A ? . For
Ž . Ž p.Texample, in one dimension, A v s 1 v ??? v and

1 d jg xŽ .
g s .j jj! dx

Ž .For each j, let m j denote the order of derivative represented by g ; in thej
Ž .one-dimensional example, m j s j.

THEOREM 1. Assume the conditions of Lemma 1 hold and XX * has nonzero
Lebesgue measure. Then

y1r2mŽ j. pq1 dh a y g s O h q O nh .Ž . Ž .ˆŽ . ž /j j p

Ž .REMARKS. i The condition that XX * have positive Lebesgue measure
Ž .excludes some badly behaved boundaries. Ruppert and Wand 1994 give the

�Ž . 24two-dimensional example XX s x , x : 0 F x F 1, 0 F x F x ; Theorem 11 2 1 2 1
Ž .does not apply when x s 0, 0 .0

Ž . y1rŽ2 pq2qd .ii Setting h s n gives

12 a y g s O nyŽ pq1ymŽ j..rŽ2 pq2qd . .Ž . Ž .ˆj j p

Ž .Stone 1980 showed this rate to be optimal in a certain minimax sense. If
Ž .two derivatives are assumed and local linear fitting p s 1 is used, we have

Ž . Ž y2rŽ4qd ..the familiar rate a y g x s O n .ˆ0 p
Ž .iii Theorem 1 suggests a is a natural estimate of g . However, whenˆj j

Ž . dq2 mŽ j.m j G 1 the condition nh ª ` is required for consistency; this is
stronger than the conditions previously stated.

Ž .PROOF OF THEOREM 1. The system 9 can be represented as

u y x u y x
P̂ Žuyx . g Žu.Z s A K e y e duŽ .H ž / ž /h hXX

13Ž .
ˆd P Žhv . g Ž xqhv .s h A v K v e y e dv,Ž . Ž . Ž .H

Ž .XX h

ˆ Ž .where P denotes P with coefficients a , . . . , a and Z is defined by 10 .ˆ ˆ0 p
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˜Let P denote the Taylor series expansion of g of degree p. Then

˜ ˜P Žhv . g Ž xqhv . g Ž xqhv . P Žhv .yg Ž xqhv .e y e s e e y 1Ž .
14Ž .

˜ 2 pq2s f x q hv P hv y g x q hv q O h ,Ž . Ž . Ž . Ž .Ž .
˜ pq1Ž . Ž . Ž . Ž .since, by definition, P hv y g x q hv s O h . Using the p q 1 st-order

Ž . Ž .terms in the Taylor expansion of g around x and noting f x q hv s f x q
Ž .O h ,

pq1 pq1d dh f xŽ .
P̃ Žhv . g Ž xqhv . i , . . . , i1 pq115 e y e s y ??? v g xŽ . Ž .Ý Ý Ł i jp q 1 !Ž . js1i s1 i s11 pq1

qo h pq1 ,Ž .
i1, . . . , i pq 1Ž . Ž .where g x is the p q 1 st-order partial derivative of g with respect

to x , . . . , x . Since the kernel has compact support, the error term holdsi i1 pq1
� Ž . 4uniformly on v: K v ) 0 , and

P̃ Žhv . g Ž xqhv .A v K v e y e dvŽ . Ž . Ž .H
Ž .XX h

pq1 pq1dh f xŽ .
i , . . . , i1 pq1s y g x v A v K v dvŽ . Ž . Ž .Ý ŁH i jp q 1 !Ž . XX * js1i , . . . , i s11 pq1

16Ž .

q o h pq1 .Ž .

Ž . Ž . Ž . Ž .Substituting 16 and 11 into 13 and using XX h ª XX *,

ˆ ˜P Žhv . P Žhv .A v K v e y e dvŽ . Ž . Ž .H
XX *

˜yd P Žhv . g Ž xqhv .s h Z y A v K v e y e dvŽ . Ž . Ž .H
XX *

y1r2d pq1s O nh q O h .Ž . Ž .ž /p

Equivalently,

P̂ Žhv .A v K v e dvŽ . Ž .H
XX *

y1r2P̃ Žhv . pq1 ds A v K v e dv q O h q O nh .Ž . Ž . Ž . Ž .H ž /p
XX *

Treating

P̃ Žhv .17 A v K v e dvŽ . Ž . Ž .H
XX *
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Ž mŽk . .as a function of a , . . . , h a , the proof is completed by an application of0 k
Ž Ž . .the inverse function theorem in a neighborhood of the point g x , 0, . . . , 0

w Ž . x Ž .Burkill and Burkill 1970 , page 223 . Note the Jacobian matrix of 17

T P Žhv .A v A v K v e dvŽ . Ž . Ž .H
XX *

is strictly positive definite. I

Ž . Ž .THEOREM 2. Suppose g x s log f x has p q 1 derivatives. Let

TM s A v A v K v dv.Ž . Ž . Ž .H1
XX *

Under the conditions of Lemma 1,

hmŽ0. a y gŽ .ˆ0 0
...� 0mŽk .h a y gŽ .ˆk k

pq11 h
y1s M Z q1 d p q 1 !f x h Ž .Ž .18Ž .

=
pq1d

i , . . . , i1 pq1g x v A v K v dvŽ . Ž . Ž .Ý ŁH i j
XX * js1i , . . . , i s11 pq1

y1r2pq1 dq o h q o nh .Ž . Ž .ž /p

Ž .Suppose x is an interior point of XX , p is even and g x has p q 20
derivatives. Also assume K is symmetric:

a y g xŽ .ˆ0

1
T y1s e M Z0 1 df x hŽ .

i , . . . , i i , . . . , i id 1 pq2 1 pq1 pq2g x g x g xŽ . Ž . Ž .
pq2qh qÝ p q 2 ! c pŽ . Ž .i , . . . , i s11 pq2

19Ž .

pq2

= v A v K v dvŽ . Ž .ŁH i j
XX * js1

y1r2pq2 dq o h q o nh ,Ž . Ž .ž /p

Ž . Ž . Ž .where c 0 s 2 and c p s p q 1 ! for p G 2.

Ž .REMARKS. i Lemma 1 and Theorem 2 together imply asymptotic normal-
ity of the estimates. When h is larger than optimal, the deterministic error
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Ž pq1. yd ŽŽ d .y1r2 .o h may dominate the random component h Z s O nh , andp
hence the proof is not constructive in this case. A better bias approximation

Ž .can be achieved by retaining more terms in the Taylor series expansion 14
or by avoiding the use of the Taylor series entirely, as we do in Theorem 3
below.

Ž . Ž . Ž Ž ..ii Derivatives of f : Differentiating the relation f x s exp g x yields

20 f 9 x s f x g 9 x .Ž . Ž . Ž . Ž .
â0Ž̂ . Ž .Substituting estimates of f x s e and g 9 x s a gives an estimate ofˆ 1̂

Ž . Ž .f 9 x . Repeated differentiation of 20 gives natural estimates of derivatives of
f up to order p.

Ž . Ž . Ž .iii Simplification: The summands in 18 and 19 are invariant under
permutation of i , . . . , i , which leads to substantial simplification. Also,1 pq1
especially in the interior case, many of the integrals are 0 when K is
symmetric. This yields simplifications similar to those obtained by Ruppert

Ž .and Wand 1994 for local regression.
Ž .iv Theorem 1 suggests

y1r2pq1 dˆ21 f x dx s 1 q O h q O nh ,Ž . Ž . Ž . Ž .H ž /p
XX

and hence renormalization of the estimate will not affect rates of conver-
Ž .gence, but will affect constants. This argument is only heuristic and 21 fails

in some specific cases.

PROOF OF THEOREM 2. From Theorem 1 we obtain
y1r2ˆ ˜P Žhv . P Žhv . pq1 dˆ ˜e y e s f x P hv y P hv q o h q o nh ,Ž . Ž . Ž . Ž . Ž .Ž . ž /p

and hence

ˆ ˜P Žhv . P Žhv .A v K v e y e dvŽ . Ž . Ž .H
Ž .XX h

hmŽ0. a y gŽ .ˆ0 0
.T .s f x A v A v K v dvŽ . Ž . Ž . Ž .H .

Ž .XX h � 0mŽk .h a y gŽ .ˆk k

22Ž .

y1r2pq1 dq o h q o nh .Ž . Ž .ž /p

Ž . Ž . Ž . Ž .Substituting 16 and 22 into 13 yields 18 .
The result for even p follows by noting the bias component of a is 0 whenˆ0

Ž .p is even and by using the next term in the series expansion 15 . The special
Ž 2 pq2 . Ž .case for p s 0 arises because the O h term in 14 must be retained in

this expansion. I

Ž .An alternative asymptotic characterization proposed by Stoker 1993 is to
keep the bandwidth fixed as n ª `. In a theoretical sense this scaling may be
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unsatisfactory; for example, the estimate is in general not even consistent.
However, the motivation is that the result may be of more practical rele-

Ž .vance. The ‘‘optimal’’ bandwidth giving the rate 12 converges to 0 very
slowly; the fixed bandwidth characterization may be much more closely
related to the problems solved in practice.

Ž . Ž .THEOREM 3. Let a* s a* x be the coefficients of P ? satisfying

u y x u y x u y x u y x
P Žuyx .A K e du s A K f u du.Ž .H Hž / ž / ž / ž /h h h hXX XX

If n ª ` with x and h fixed,

hmŽ0. a y aUŽ .ˆ0 0
...

U� 0mŽk .h a y aŽ .ˆk k

y1Tu y x u y x u y x
P*Žuyx .s A A K e du ZH ž / ž / ž /h h hXX

23Ž .

q o ny1r2 ,Ž .p

Ž . Ž .where P* u y x has coefficients a* x .

From Theorem 3 it is clear that a is really estimating aU. If the trueˆ0 0
Ž Ž ..density is well approximated by exp P* u y x over the smoothing window,

the estimate will perform well; existence or otherwise of density derivatives is
incidental.

This theorem is also useful to estimating standard errors for the estimate.
ˆ ˆSince P ª P*, the result continues to hold if P* is replaced by P. The

Ž .Cholesky decomposition of the matrix on the left-hand side of 23 is available
as a by-product of the optimization. One can estimate the covariance matrix

ŽŽ . . ŽŽ . .of Z from the sample covariance of the K X y x rh A X y x rh ; noi i
further numerical integration is needed. Variances are then estimated by
straightforward matrix multiplication.

5. Comparisons. In this section we discuss the important question of
order choice in the local polynomial model and also provide some brief
comparisons with kernel methods. It is important to remember that no
method will be universally best.

From the results in the last section, we have, for large n and local linear
fitting,

â0f̂ x y f x s e y f xŽ . Ž . Ž .
h2 1 y1r22 2s f x g 0 x v K v dv q Z q o h q o nh ,Ž . Ž . Ž . Ž . Ž .Ž .H 0 p2 h
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Ž .where Z is the first component of 10 . For a local constant estimate,0

h2 12 2f̂ x y f x s f x g 0 x q g 9 x v K v dv q ZŽ . Ž . Ž . Ž . Ž . Ž .Ž .H 02 h
y1r22q o h q o nh .Ž . Ž .Ž .p

< Ž . <The difference is in the bias; the local linear estimate is best when g 0 x -
< Ž . Ž .2 <g 0 x q g 9 x . In the central part of the distribution, neither estimate is

Ž .uniformly better. The two bias terms are equal whenever g 9 x s 0, suggest-
ing the estimates will have very similar ability to detect peaks and troughs in
the density.

The main difference between the local constant and linear estimates is at
the boundary regions and in the tails. The difference at the boundary regions

Ž 2 .can be seen from Theorem 2: the local linear fitting has O h bias at the
Ž .boundary; the local constant fit has O h bias and may have bias induced by

the slope of the density. The local linear fit is more variable so the advantage
is not always realized in practice.

The relative efficiency of the local constant and local linear methods can be
defined as the ratio of sample sizes to achieve the same MSE. In one
dimension and ignoring boundary effects, the asymptotic relative efficiency is

1r2
g 0 xŽ .

R x s .Ž . 2g 0 x q g 9 xŽ . Ž .

Values of R ) 1 indicate the local constant estimate is more efficient, while
R - 1 indicates the local linear fit is more efficient. One can construct
examples where either method wins; however, the local linear method is a
clear winner in the tails for fairly broad classes of densities.

Ž . yaSuppose d s 1; the tails of f x decay like x , a ) 1, and the derivatives
of f behave as expected. Examples include the Cauchy distribution, t distri-
butions and F distributions. Then we can show

1
lim R x s .Ž . 'xª` a q 1

That is, for a Cauchy distribution, the kernel method has a relative efficiency
of about 58% in the tails; for t distributions with high degrees of freedom, the
efficiency is even less.

Ž . Ž a Ž a ..Now consider families with tails f x s exp yx q o x as x ª `, with
a ) 0. This includes the normal distribution, gamma distributions and
Weibull distributions. In this case, the asymptotic relative efficiency is

< y1 <1r2 ya r2 ya r2R x s 1 y a x q o xŽ . Ž .

as x ª `. That is, the relative efficiency of the kernel method is arbitrarily
small in the tails.
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A common way to correct kernel estimates for curvature bias is through
Ž .the use of fourth-order kernels; see Scott 1992 , subsection 6.2.3. One con-

struction of fourth-order kernels is to multiply a symmetric second-order
kernel by a quadratic, with coefficients chosen to satisfy moment conditions.
This fourth-order kernel estimate has an asymptotic representation with
the same random component as local quadratic and local cubic fitting, but the
bias components of these three methods differ. We can again compute the
relative efficiencies of these methods, and we compare the results in Table 1.
The local quadratic fit dominates the fourth-order kernel method, and the
local cubic dominates both. It should be remembered that these compari-
sons are asymptotic; the difference at finite sample sizes may not be as
substantial.

As a comparison of local constant and local quadratic fitting, we consider
the beta mixture

2 1 19! 99f x s 2 1 y x q x 1 y x ,Ž . Ž . Ž .23 3 9!

w xwith support XX s 0, 1 ; the local constant and local quadratic estimates were
applied samples of size 200. In Figure 1 we show the pointwise 10 and 90

Ž̂ .percentiles of the distribution of f x , estimated using 100 replications. The
local constant fit used a bandwidth h s 0.15, and the local quadratic fit used

Ž . Ž < <3.3 Ž .a bandwidth h s 0.30. The weight function is K u s 1 y u I u .wy 1, 1x
Except at the left endpoint, these result in estimates with similar variability.
However, the local constant method has increased bias in the peak region.

The slope of the density at the left boundary is fairly small, so the
boundary bias of the local constant fit is only marginally evident here. The
big feature is the larger variability of the local quadratic fit. This can be
alleviated through the use of larger bandwidths in the boundary regions. As a
simple fix of similar variability problems in the case of local regression,

Ž .Cleveland 1979 recommends the use of nearest-neighbor-based bandwidths,
so the width of smoothing windows varies with the fitting point h and always
contains a fixed number of observations.

TABLE 1
Ž . Ž . Ž .Tail behavior of R x : 1 for kernel vs. local linear fitting; 2 for a fourth-order kernel

Ž .vs. local quadratic fitting; and 3 for local quadratic vs. local cubic fitting

I a a a( ) ( ( )) ( ) ( ( ))f x s x 1 H o 1 f x s exp Ix H o x

y1 r2 1r2y1 ya r2Ž . < <1 1 q a 1 y a xŽ .
1r41r4

6 q 8a 4 a y 1 a y 2Ž .Ž . ya r2Ž .2 x2ž /a q 1 a q 2 a q 3Ž .Ž .Ž . a
1r4

1r43 a y 3
ya r4Ž .3 x , a / 1, 2ž /3 q 4a 4a
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2 1Ž . Ž . Ž .FIG. 1. Estimating a beta 1, 2 q beta 10, 10 density, using local constant fitting top and3 3
ˆŽ . Ž .local quadratic fitting bottom . The 10 and 90 percentiles of the distribution of f x , for samples

of size 200, are estimated from 100 Monte Carlo replications.

Both methods have problems at the right boundary, since the 0 of the
density becomes a singularity of the log density; this cannot be modeled by a
local polynomial. One possible solution to this would be to consider boundary
models including suitable nonpolynomial terms. We do not pursue this here.

The difference between fits of various orders becomes much more substan-
tial in more than one dimension. As a bivariate example, consider a trimodal

Ž .distribution used by Friedman, Stuetzle and Schroeder 1984 . This consists
of an equal mixture of three bivariate standard normal densities. A sample of
size 225 is drawn.
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FIG. 2. Two-dimensional density: 225 observations from a trimodal distribution. A local con-
stant fit with a variable bandwidth covering 25% of the data.

FIG. 3. Two-dimensional density: local marginal quadratic fit with bandwidth covering 40% of
the data.
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Figure 2 shows the results of fitting a kernel estimate in two dimensions;
the product tricube kernel is used, with a variable bandwidth covering 25% of
the data. The small bandwidth results in a noisy estimate: one peak is quite
sharp; another has a flat region near the peak. Moreover, the observed peak
heights are 0.037, 0.032 and 0.044, substantially less than the true peak
height of about 0.053. To reduce this bias would require an even smaller
bandwidth.

Ž .Figure 3 applies a local quadratic fit without the cross-product term to
the same dataset. A larger bandwidth is used, here covering 40% of the data.
The observed peak heights here are 0.047, 0.043 and 0.052, and the observed
shape of the humps is much closer to that expected for the trimodal normal
mixture.
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