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A chain graph (CG) is a graph admitting both directed and undirected
edges with (partially) directed cycles forbidden. It generalizes both the
concept of undirected graph (UG) and the concept of directed acyclic graph
(DAG). A chain graph can be used to describe efficiently the conditional
independence structure of a multidimensional discrete probability distri-
bution in the form of a graphoid, that is, in the form of a list of statements
“X is independent of Y given Z” obeying a set of five properties (axioms).
An input list of independency statements for every CG is defined and it
is shown that the classic moralization criterion for CGs embraces exactly
the graphoid closure of the input list. A new direct separation criterion for
reading independency statements from a CG is introduced and shown to
be equivalent to the moralization criterion. Using this new criterion, it is
proved that for every CG, there exists a strictly positive discrete probability
distribution that embodies exactly the independency statements displayed
by the graph. Thus, both criteria are shown to be complete and the use
of CGs as tools for description of conditional independence structures is
justified.

1. Introduction. Using graphs to describe conditional independence
structures among random variables has a long and rich tradition. One can
distinguish two classic approaches (for details, see [22]): using undirected
graphs (UGs), also called Markov networks, or using directed acyclic graphs
(DAGs), also named Bayesian networks or (probabilistic) influence diagrams.
The aim was to describe efficiently independency models in the form of lists
of statements “X is independent of Y given Z,” where X�Y�Z are disjoint
sets of variables. Such structures can arise in several calculi for dealing with
uncertainty in artificial intelligence: in probabilistic reasoning, in the theory
of natural conditional functions known also as kappa-calculus, in possibility
theory or the Dempster–Shafer theory of evidence (for an overview, see [25])
but also in the theory of relational databases. Of course, different calculi
produce different independency models, but in case of nonextreme knowl-
edge representation, they share five basic properties which define the class of
graphoids [22]. Note that the importance of those formal (graphoid) properties
in statistics was emphasized by Dawid [8].
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Graphoids can sometimes be described graphically. Thus, every UG defines
by means of a separation criterion an independency model which is a graphoid.
The use of UGs in probabilistic reasoning was justified by the result from [11],
where every such UG model was shown to be a probabilistic independency
model. Nevertheless, many graphoids (even probabilistic models) have no UG
representation (i.e., are not UG models). Therefore, Pearl [22] proposed to
approximate graphoids by their contained UG models (I-maps) and showed
that, for every graphoid M, there exists a unique maximal UG model contained
in M, called the minimal I-map of M.

The evolution of DAG models was more complicated. Originally, DAGs were
used to describe recursive factorizations of probability distributions. But such
a factorization is equivalent to the requirement that the considered distri-
bution satisfies a set of independency statements known as the causal input
list. Nevertheless, the distribution usually satisfies many other independency
statements outside the causal input list. Much effort was exerted to find a
graphical criterion that makes it possible to read from a DAG all independency
statements necessarily valid in the factorizable distribution. In fact, two equiv-
alent criteria were found. Lauritzen, Dawid, Larsen and Leimer [17] general-
ized an incomplete criterion from [13] and formulated a moralization criterion
where testing consists of three steps: restricting the DAG to a certain set of
nodes, transforming it properly to an UG (called the moral graph) and using
the separation criterion for UGs with respect to the moral graph. The group
around Pearl developed a direct separation criterion [12], based on the concept
of d-separation (directional separation) for paths in DAGs. It was shown that
the criteria are equivalent [17] and that they give exactly the graphoid closure
of the causal input list [28]. Finally, the criteria were shown to be complete
for probabilistic reasoning by showing that every independency model defined
by the separation criterion is a probabilistic independency model [10]. Thus,
DAG models were established and their use in probabilistic reasoning was
justified. As in the case of UGs, Pearl [22] considered the problem of inner
approximation of graphoids by DAG models. In contrast to the case of UGs,
several maximal DAG models contained in a graphoid may exist. In fact, any
ordering of variables can generate a minimal I-map of a graphoid; the corre-
sponding construction is given in [28].

This paper deals with chain graphs (CGs), which allow both directed and
undirected edges. This class of graphs, introduced by Lauritzen and Wermuth
[18], generalizes both UGs and DAGs. To establish the semantics of CGs, one
should associate an independency model to every CG. Some steps were already
made. Lauritzen and Wermuth [19] intended to use CGs to describe indepen-
dency models for strictly positive probability distributions and introduced the
concept of the chain Markov property, which is analogous to the concept of
causal input list for DAGs. Lauritzen [15] and Frydenberg [9] generalized the
concept of moral graph and introduced a moralization criterion for reading
independency statements from a CG. Frydenberg [9] characterized CGs with
the same Markov property (that is, producing the same CG model) and Ander-
sson, Madigan and Perlman [3] used special CGs to represent uniquely classes
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of Markov equivalent DAGs. Whittaker [31] gave several examples of the use
of CGs, and other recent works also deal with them [6, 20, 23, 30]; the most
comprehensive account is provided by [16]. Several results proved here were
already presented (without proof ) in our previous conference contribution [5].

An alternative approach to the generalization of UGs and DAGs was started
by Cox and Wermuth [7], who introduced a wider class of joint-response chain
graphs which allow also “dashed” directed and undirected edges in addition
to the classic “solid” directed and undirected edges treated in this paper. An-
dersson, Madigan and Perlman [1] introduced an alternative Markov property
to give an interpretation to those joint-response CGs which combine dashed
directed edges with solid undirected edges (of course, another independency
model is associated with those CGs). The different interpretations were com-
pared by Richardson [23].

In this paper, some of the above mentioned results concerning UGs and
DAGs are extended to the case of CGs. In the next section, we introduce ter-
minology and recall some known basic properties. In Section 3, we define the
concept of input list of independency statements for CGs and show that the
independency statements which can be read from the graph by means of the
moralization criterion are exactly those derivable from the input list by means
of the graphoid properties. In Section 4, we introduce a new direct graphical
criterion for reading independency statements from a CG, based on the concept
of c-separation (chain separation) for routes in a CG, and show its equivalence
to the moralization criterion. In Section 5, we prove the completeness of the
separation criterion; that is, whenever a statement (that is, a potential inde-
pendency statement) cannot be read from the graph according to that criterion,
then there exists a strictly positive Markovian distribution (that is, satisfying
the input list) which does not satisfy the considered statement. In Section 6,
we summarize the results, and derive the strong completeness result, which
says that for every CG, there exists a strictly positive discrete probability dis-
tribution satisfying exactly those independency statements that can be read
from the graph. We discuss the potential usefulness of CG models and for-
mulate open questions in that section, too. The Appendix contains technical
proofs of auxiliary results, important for the completeness proof.

2. Preliminaries. In this section, we review basic concepts and some
of their properties. First, we separately give definitions of probabilistic and
graphical concepts. Then we recall the definitions concerning the graphical
representation of independency models.

Convention. Throughout the paper, we sometimes use a shortened no-
tation: juxtaposition XY instead of X ∪ Y and u instead of �u�. Thus, for
example, X \Yu denotes X \ �Y ∪ �u��.

2.1. Independency models. Let N be a nonempty finite set of variables.
Then T�N� denotes the collection of all triplets �X�Y �Z	 of disjoint subsets
of N whose first two components X and Y are nonempty. An independency
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model over N is a subset of T�N�. (Note that Pearl [22] used the term “de-
pendency model” just for brevity. However, as we interpret triplets in T�N� as
independency statements, we decided to use the term “independency model”.)
The class of elementary triplets E�N� consists of �a� b �Z	 ∈ T�N�� where
a� b ∈ N are distinct and Z ⊂ N \ ab.

A potential over a set Y ⊂ N is specified by a collection of nonempty finite
sets �Xi� i ∈ Y� and by a nonnegative real function R on the cartesian product∏
i∈Y Xi. We accept a natural convention that the empty cartesian product∏
i∈� Xi is regarded as a singleton. Thus, a potential over � is nothing but a

nonnegative number. If R�y� > 0 for all y ∈ ∏
i∈Y Xi, then R is called strictly

positive. The marginal of R for a set X ⊂ Y is a potential over X, denoted by
RX and defined by the formula RX�x� = ∑�R�x�w�� w ∈ ∏

i∈Y\X Xi�, where
x ∈ ∏

i∈X Xi.
A potential P over N with P� = 1, that is,

∑�P�x��x ∈ ∏
i∈N Xi� = 1, is

called a probability distribution over N. (Note that throughout the paper we
limit ourselves to discrete probability distributions.) Evidently, the marginal
of a probability distribution P over N for X ⊂ N is a probability distribution
over X, called the marginal distribution of P for X.

Let P be a probability distribution over N and �X�Y �Z	 ∈ T�N�. Then,
we say that X is conditionally independent of Y given Z with respect to P or
that P satisfies �X�Y �Z	 if

∀ x ∈ ∏
i∈X

Xi� y ∈ ∏
i∈Y

Xi� z ∈ ∏
i∈Z

Xi�

PXYZ�x�y� z�PZ�z� = PXZ�x� z�PYZ�y� z��

and write X � Y �Z �P�. (Here we follow Dawid’s original notation [8].) The
statement X � Y �Z �P� is called an independency statement.

Each probability distribution P over N defines an independency model over
N, namely, the model ��X�Y �Z	 ∈ T�N�� X � Y �Z �P� �� called the inde-
pendency model induced by P. An independency model over N is then called
probabilistic if it is induced by some probability distribution over N.

Let � be a class of probability distributions over N, for example, the class
of strictly positive probability distributions over N. Then, having L ⊂ T�N�
and u ∈ T�N�, we will say that L probabilistically implies u w.r.t. � if every
independency model induced by a P ∈ � containing L also contains u. Having
a set L ⊂ T�N�, its probabilistic closure w.r.t. � is the set of all triplets in
T�N� which are probabilistically implied by L w.r.t. � .

An independency model M over N is called a semigraphoid if it satisfies
the following properties (one should understand the properties as follows: if
M contains the triplets before the long arrow, then M contains also the triplet
after the long arrow):

�X�Y �Z	 −→ �Y�X �Z	 symmetry�

�X�YW �Z	 −→ �X�W �Z	 decomposition�
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�X�YW �Z	 −→ �X�Y �WZ	 weak union�

��X�Y �WZ	 & �X�W �Z	� −→ �X�YW �Z	 contraction�

where W, X, Y, Z ⊂ N are pairwise disjoint. A semigraphoid M is called a
graphoid if it moreover satisfies

��X�Y �WZ	 & �X�W �YZ	� −→ �X�YW �Z	 intersection�

Having a set L ⊂ T�N�� its graphoid closure, denoted by gr�L�, consists of
all triplets in T�N� derivable from L by means of consecutive application of
graphoid properties. The semigraphoid closure is defined analogously. It is
well known that every probabilistic independency model is a semigraphoid
and every independency model induced by a strictly positive distribution is a
graphoid; see [8]. Specifically, for L ⊂ T�N�� every triplet from gr�L� belongs
to the probabilistic closure of L w.r.t. the class of strictly positive probability
distributions.

2.2. Graphical concepts. In this paper, we consider graphs with (possibly)
three different kinds of edges, namely, undirected, directed and virtual edges.
Supposing N is a finite nonempty set of nodes, a (virtual) graph over N is
specified as follows. For every ordered pair �u� v� of distinct nodes, u� v ∈ N�
exclusively one of the following five possibilities is determined:

1. there is a line (an undirected edge) between u and v in the graph, denoted
by u—v;

2. there is an arrow (a directed edge) from u to v in the graph, denoted by
u → v;

3. there is an arrow from v to u in the graph, denoted by u ← v;
4. there is a virt (a virtual edge) between u and v in the graph, denoted by

u ----v;
5. there is no edge between u and v in the graph.

Moreover, it is understood that whenever one of those possibilities is deter-
mined for a pair �u� v�, then it is also determined for the dual pair �v�u�
according to the following rules: v—u iff u—v, v → u iff u ← v, v ← u iff
u → v, v ----u iff u ----v, and there is no edge between v and u iff there is no
edge between u and v. The reader may notice that our terminology reflects
the convention exactly: we say “between” in the case of a symmetric rela-
tionship and “from–to” in the case of an asymmetric relationship. The chosen
mathematical notation also reflects the way that the edges are represented
in pictures. We say that a two-element subset �u� v� of N (i.e., an unordered
pair) is an edge in the graph if either u—v or u → v or u ← v or u ----v. It is
evident from the definition that at most one edge can occur between two dis-
tinct nodes in our graphs (e.g., it is impossible to have simultaneously u → v
and u—v). Similarly, no edge returning to the same node exists in our graphs
(e.g., it is impossible to have u ----u). That is a principal difference from the
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case of more general reciprocal graphs [14] or from the case of general directed
graphs [24]. Moreover, the reader should be aware of the fact that our virts
do not correspond to the “dashed lines” used by Cox and Wermuth [7]. We
use virts as an auxiliary tool, to make some proofs more elegant and easy to
understand.

An alternative (but potentially ambiguous) way to introduce a virtual graph
is to say that it is a couple G = �N�� �� where N is a nonempty finite set of
nodes and � a set of two-element subsets of N called edges and where every
edge has specified its type (by this is meant that one of those corresponding
four possibilities is chosen). A hybrid graph is a virtual graph without virts
(containing lines and arrows only). An undirected graph (UG) is a hybrid graph
without arrows (containing lines only), a directed graph is a hybrid graph
without lines (containing arrows only). Note that the empty graph (without
edges) is simultaneously an undirected and directed graph!

A subgraph of a graph G = �N�� � is a graph H = �V�� �� where V ⊂ N,
� ⊂ � (because H is a graph, �u� v� ∈ � implies u� v ∈ V) and the type
of edges in H coincides with their type in G. The induced subgraph of G for
a nonempty set T ⊂ N is a special subgraph of G, denoted by GT, having
the form GT = �T��T�, where �T = ��u� v� ∈ � � u� v ∈ T�. The underlying
graph of a graph G is the graph with the same set of nodes and edges as
G, but every edge in the underlying graph is a line (only types of edges may
differ).

A route in a virtual graph G is a sequence of its nodes ρ� v1� � � � � vk� k ≥ 1�
such that, for every i = 1� � � � � k−1, �vi� vi+1� ∈ � . We will also use the symbol
for route ρ to denote the set of its nodes �vi� i = 1� � � � � k�. Note that nodes
can repeat in a route; therefore, the set can have less than k (distinct) nodes.
By the set of edges of ρ, we will understand ��vi� vi+1�; i = 1� � � � � k− 1�. We
will say that ρ is a route from a node u to a node w if v1 = u and vk = w.
A route between u and w is a route from u to w or from w to u. The same
phrases will be applied for sets of nodes instead of single nodes. A subroute
of ρ is a sequence of nodes vj� � � � � vt, 1 ≤ j ≤ t ≤ k. We will sometimes write
explicitly ρ� a → b— c ----d ← e when the type of edges is known. A path in a
graph G is a route in which no node appears more than once.

Supposing ρ and σ are two routes in a virtual graph over N, we will say
that ρ meets σ (or they meet each other) if they share a node. Having a route
ρ and a set of nodes Z ⊂ N, we will also say that Z meets ρ, or more of-
ten that ρ is hit by Z, if a node of ρ belongs to Z. If ρ is not hit by Z,
it will be called free w.r.t. Z. Note that we will very often say simply that
a route or subroute is hit (resp. free) as the set Z will be clear from the
context.

A route or subroute is undirected if its every edge is a line. A set of nodes
S of a virtual graph G is connected if, for every couple u� v ∈ S� there is an
undirected route between u and v in G (or equivalently an undirected path).
Maximal connected sets in G are called connectivity components of G (the
maximality means that no superset of S is connected). Clearly, the connectivity
component containing a node u consists of all nodes v such that there exists
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an undirected route (resp. path) from u to v. A connected graph is a graph
having one connectivity component, only.

An undirected cycle in a graph G is a sequence of its distinct nodes
v1� � � � � vk� k ≥ 3, such that under convention vk+1 = v1� one has vi —vi+1
for i = 1� � � � � k. A connected UG is called a tree if it contains no undirected
cycles. Later we will utilize the following equivalent characterization of trees,
whose verification is left to the reader.

Lemma 2.1. Let G be an UG over N. Then the following conditions are
equivalent:

(i) G is a tree;
(ii) there exists just one undirected path connecting each couple of nodes

of G;
(iii) every undirected path s1� � � � � sl, l ≥ 1� in G can be prolonged into a

sequence of distinct nodes s1� � � � � sk, k ≥ l� involving all nodes in N such that,
for all 1 < i ≤ k� there exists exactly one 1 ≤ j < i with si — sj in G.

A directed pseudocycle in a graph G is a sequence of its nodes v1� � � � � vk�
k ≥ 3, such that under convention vk+1 = v1� one has vi → vi+1 or vi —vi+1
for i = 1� � � � � k and surely vj → vj+1 for at least one j ∈ �1� � � � � k�. If it
consists of distinct nodes, it is called a directed cycle.

A directed acyclic graph (DAG) is a directed graph without directed cycles.
(In fact, from a grammatical point of view, the correct phrase is “acyclic di-
rected graph.” However, we prefer the widely accepted abbreviation “DAG.”)
A chain graph (CG) is a hybrid graph without directed cycles. A chain for a
hybrid graph G over N is a partition of N into ordered disjoint (nonempty)
subsets B1� � � � �Bn� n ≥ 1� called blocks such that the types of edges in G are
determined as follows:

1. if �u� v� is an edge in G with u� v ∈ Bi, then u—v;
2. if �u� v� is an edge in G with u ∈ Bi, v ∈ Bj, i < j� then u → v.

We leave it to the reader to verify the following lemma, which justifies the
terminology “chain graph.” One can refer to [9] for some implications or to
Lemma 2.1 in [26].

Lemma 2.2. Let G be a hybrid graph. Then the following conditions are
equivalent:

(i) G is a chain graph;
(ii) G has no directed pseudocycles;

(iii) there exists a chain for G;
(iv) the set of connectivity components of G can be ordered in such a way

that it forms a chain.
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Let G = �N�� � be a virtual graph and B a set of nodes of G. Then

paG�B� = �u ∈ N \B� u → v for some v ∈ B� is the set of parents of B�

chG�B� = �u ∈ N \B� u ← v for some v ∈ B� is the set of children of B�

neG�B� = �u ∈ N \B� u—v for some v ∈ B� is the set of neighbors of B�

adG�B� = �u ∈ N \B� �u� v� ∈ � for some v ∈ B� is the set of adjacents

of B�

bdG�B� = paG�B� ∪ neG�B� is the boundary of B�

A route π� v1� � � � � vk� k ≥ 1, is descending if, for all i = 1� � � � � k − 1� either
vi → vi+1 or vi —vi+1. If there exists a descending path from a node u to a
node v, then v is a descendant of u, or dually u is an ancestor of v. The symbol
dsG�B� denotes the set of descendants of nodes in a set B; anG�B� denotes
the set of ancestors of nodes in B. We will omit the symbol of the graph G if
it will be clear from the context.

Note that for every connected set B in a CG (especially one node), the sets
B, pa�B�, ne�B� and ch�B� are pairwise disjoint. If nodes u and v belong to
the same connectivity component of a virtual graph, then ds�u� = ds�v� and
an�u� = an�v�. Conversely, for every node u in a CG G� the set dsG�u� ∩
anG�u� is the connectivity component of G containing u.

A set of nodes X is ancestral (in G) if it contains ancestors of its nodes,
that is, anG�X� ⊂ X. (Note that Frydenberg [9] used the adjective “anterior”
instead of “ancestral” and gave another equivalent definition, which is im-
material in the context of this paper.) Let us mention that an ancestral set
contains with every node the connectivity component containing the node.

Example 2.1. Figure 1 shows a chain graph G taken from [9] to illustrate
some graphical concepts. In G, we have pa�e� = �c�, ch�e� = �j�, ne�e� = �f�,
bd�e� = �c� f� and ad�e� = �c� f� j�. The partition �a� b� c� d�, �e� f�g�h�,
�i� j� k� is an example of a chain for G. The sequence of connectivity compo-
nents �a� b� c� d�, �e� f�, �g�h�, �i� j�, �k� is also a chain for G. Further, in G,

Fig. 1. Example of a chain graph from �9�.



1442 M. STUDENÝ AND R. R. BOUCKAERT

an�e� = �a� b� c� d� e� f� and ds�e� = �e� f� i� j� k�. The set an�e� is ancestral,
but the set ds�e� is not.

2.3. Graphical representation of independency models. A subway between
nodes u and w in a virtual graph G is a path π� v1� � � � � vk� k ≥ 3� in G,
where u = v1 → v2, ∀ i = 2� � � � � k − 2, vi —vi+1, and vk−1 ← vk = w. If no
additional edge between the nodes of T = �v1� � � � � vk� exists in G, it is called
a complex in G. (Note that Frydenberg [9] used the term “minimal complex”
for what we call a complex and used the word “complex” for another concept
which we consider to be superfluous. We hope that our change simplifies the
terminology.) Thus, a complex is nothing but an induced subgraph GT of the
type depicted by Figure 2. The nodes v1 and vk are called the parents of the
complex, the set �v2� � � � � vk−1� the region of the complex and the number k−2
is the degree of the complex.

The moral graph of a CG G = �N�� �� denoted by Gmor� is the virtual graph
�N�� ∪ � � where

� = {
u ----v� u� v ∈ N such that �u� v� �∈ � and there exists a

subway between u and v in G
}
�

That is, the type of old edges is saved and the new edges are virts. Equivalently,
the moral graph of G can be obtained from G as follows: for each connectivity
component C of G� all nodes in paG�C� which are not already joined by an
edge in G are joined by a virt. (Note that Lauritzen [15] introduced the moral
graph as an UG, namely, as the underlying graph of our moral graph. This
is immaterial from the point of view of the moralization criterion. However,
for our proof of equivalence of the separation and moralization criteria, we
found it very convenient to distinguish the types of edges, and therefore we
have introduced the concept of virtual graph and defined the moral graph as
a virtual graph.) The term “moral graph” has a good explanation for the case
of DAGs—namely, that unmarried parents of every child are married (that is,
joined by an edge) in the moral graph. Perhaps it can be applied also in the
case of CGs if one interprets connectivity components of a CG as groups of
siblings.

Supposing �X�Y �Z	 ∈ T�N� and G is a virtual graph over N, we will write
�X�Y �Z	G if each route in G from X to Y is hit by Z (equivalently each path).
Note that the independency model ��X�Y �Z	 ∈ T�N�� �X�Y �Z	G� induced
by a virtual graph G through this classic separation is a graphoid—it suffices

Fig. 2. A complex of degree 4.
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to use the result for UGs [22], since for the underlying graph H of the virtual
graph G, one has �X�Y �Z	H iff �X�Y �Z	G.

Let G be a CG, and �X�Y �Z	 ∈ T�N�. Then we say that �X�Y �Z	 is
represented in G according to the moralization criterion if every path in the
moral graph of Gan�XYZ� from a node of X to a node of Y is hit by Z, and write
�X�Y �Z	mor

G . For every UG G, one has �X�Y �Z	mor
G iff �X�Y �Z	G, that is,

the moralization criterion coincides with the classic criterion for UGs. In case
of DAGs, it generalizes the moralization criterion from [17].

Thus, every CG G defines the model ��X�Y �Z	 ∈ T�N�� �X�Y �Z	mor
G �,

called the independency model induced by G. An independency model over N
is then called a CG model if it is induced by some CG over N. UG models and
DAG models are defined similarly.

Example 2.2. Let us consider the CG G from Figure 1 and ask whether
�c� h �a	mor

G . The ancestral set of �a� c� h� is �a� b� c� d�g�h�. The correspond-
ing induced subgraph is shown in Figure 3a. It is equal to its moral graph.
The only path in that graph from c to h is hit by a and one can conclude
that �c� h �a	 is represented in G according to the moralization criterion. To
decide whether �c� h �ae	mor

G � we construct Gmor
an�aceh�, which is shown in Figure

3b. Since the path c ----d → g—h in the moral graph with a virt is not hit by
�a� e�� we conclude that ¬�c� h �ae	mor

G .

Given a CG G over N, a probability distribution P over N is called
Markovian with respect to G, simply G-Markovian, if �X�Y �Z	mor

G implies
X � Y �Z �P�. (Note that some authors [22] in case of UGs and DAGs prefer
the terminology “G is an I-map of P.”) We leave it to the reader to verify the
following.

Lemma 2.3. Let G be a CG over N and H a subgraph of G (over a set
V ⊂ N). Then H is a CG over V and �X�Y �Z	mor

G implies �X�Y �Z	mor
H for

every �X�Y �Z	 ∈ T�V�. Especially, in the case V = N� every H-Markovian
probability distribution is also G-Markovian.

Two CGs G and H over N are Markov equivalent if the classes of H-
Markovian and G-Markovian probability distributions over N coincide. The

Fig. 3. Moral graphs Gmor
an�ach� and Gmor

an�aceh� of the graph from Figure 1.
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importance of the concept of complex is justified by the result from [9], where
it is shown that two CGs over N are Markov equivalent iff they have the
same underlying graph and the same complexes. In fact, Frydenberg [9] used
a weaker definition of Markov equivalence, but as shown in [2], Theorem 3.1,
one can also derive the above mentioned characterization from Frydenberg’s
result.

3. Input list. The purport of the notion of local Markov property [17]
is that a graphical independency model can be equivalently described by a
relatively small list of independency statements, one statement for each node
of the graph. As concerns UGs, it was shown in [4] that the graphoid closure of
the corresponding list of triplets, called the independency base (namely, the list
of triplets �u�N\ne�u�u �ne�u�	, where u ∈ N and N is the set of nodes of the
graph), coincides with the class of triplets represented in the UG. In the case
of DAGs, the list of triplets corresponding to the local well-numbering Markov
property [17] is known as the causal input list and it was proved in [28] that
a triplet is represented in a DAG iff it belongs to the semigraphoid closure of
that list. Note that the semigraphoid closure of the causal input list coincides
with its graphoid closure.

In this section, we introduce the concept of input list for a CG. This con-
cept corresponds to the (local) chain Markov property [19] (see also [9]) and
generalizes the above mentioned analogous concepts for UGs and DAGs. Then
we show that a triplet is represented in a CG according to the moralization
criterion iff it belongs to the graphoid closure of the introduced input list.

Let G be a CG over N and �� B1� � � � �Bn a chain for G. The domain of
a node u, written dom��u�, is the union of blocks B1� � � � �Bk, where Bk is
the block containing u. The input list associated with G and � is the set of
triplets

L�
G = ��u�dom��u� \ bdG�u�u �bdG�u�	�u ∈ N��

Note that in the case dom��u� \ bdG�u�u = �� the corresponding triplet
is omitted in L�

G . The independency statement described by the triplet
�u�dom��u� \ bdG�u�u �bdG�u�	 can be interpreted as follows. The variable u
is conditionally independent of all its time predecessors and contemporaries
dom��u� given its direct causes paG�u� and its symmetric associative in-
fluences neG�u�. Note that the input list for a CG generalizes the concept of
the independency base for an UG [4] (if the chain consists of one block) and
the concept of the causal input list for a DAG [28] (if the chain consists of
singletons).

Example 3.1. Consider once more the graph G from Figure 1 and the chain
�: �a� b� c� d�, �e� f�, �g�h�, �i� j�, �k�. Then, the domain of a is dom��a� =
�a� b� c� d� and so are the domains of b, c and d. Further, bdG�a� = �b� c�, so
for node a, we have the triplet �a�d �bc	 in the input list L�

G . For node g, we
have dom��g� = �a� b� c� d� e� f�g�h� and bdG�g� = �d�h�� so for g� we have
the triplet �g�abcef �dh	 in L�

G .
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Lemma 3.1. Supposing G is a CG, the independency model induced by G
is a graphoid. Moreover, for every chain � for G, �X�Y �Z	 ∈ gr�L�

G� implies
�X�Y �Z	mor

G .

Proof. First, we verify that the CG model satisfies all graphoid proper-
ties. For symmetry ��X�Y �Z	 −→ �Y�X �Z	�, it suffices to realize that the
moral graph H = Gmor

an�XYZ� for �X�Y �Z	 coincides with the moral graph for
�Y�X �Z	 as the triplets involve the same variables. Thus, �X�Y �Z	H implies
�Y�X �Z	H (graphoid properties for the classic separation—see Section 2.3)
and therefore, �X�Y �Z	mor

G implies �Y�X �Z	mor
G . The same arguments hold

for weak union and intersection.
For decomposition (�X�YW �Z	 −→ �X�W �Z	), first realize that the moral

graph K = Gmor
an�WXZ� for �X�W �Z	 is a subgraph of the moral graph H =

Gmor
an�WXYZ� for �X�YW �Z	. Thus, �X�YW �Z	H implies �X�W �Z	H (see Sec-

tion 2.3) and hence �X�W �Z	K.
For contraction ���X�Y �WZ	 & �X�W �Z	� −→ �X�YW �Z	�, we will sup-

pose that �X�Y �WZ	mor
G and �X�W �Z	mor

G . To show �X�YW �Z	mor
G � it suf-

fices, owing to symmetry and intersection (see above) for every x ∈ X and
w ∈ YW� to verify the statement �x�w �WXYZ \ xw	mor

G . In case w ∈ Y�
it follows from �X�Y �WZ	mor

G by symmetry and weak union. Thus, consider
w ∈ W and assume, by contradiction, that there exists a path π from x ∈ X to
w in H = Gmor

an�WXYZ� that is not hit by WXYZ \xw. If all edges of π belong to
K = Gmor

an�WXZ�, then by �X�W �Z	mor
G � it is hit by Z and thus by WXYZ\xw as

well, which contradicts the assumption. Thus, necessarily, an edge of π that is
not in K must exist. Let us take such an edge �u� v�, which is closest to x in
π, and where u is on the side to x (it may happen that u = x). If �u� v� is an
edge in G, then v ∈ an�Y�\an�WXZ�. If �u� v� is a virt in H, then there exists
a subway u → z1 — · · ·— zl ← v, l ≥ 1� in G� where zi ∈ an�Y� \ an�WXZ�
[necessarily for all i = 1� � � � � l]. However, in both cases, there exists a path in
H from x to a node of z ∈ an�Y� \ an�WXZ� outside WXZ \ x. On the other
hand, there exists a descending path in G from z to a node y ∈ Y [necessarily
outside an�WXZ�]. As this descending path exists in H, one can join the paths
and obtain a path in H from x to a node in Y outside WZ, which contradicts
�X�Y �WZ	mor

G .
Thus, to verify the second claim of the lemma, it suffices to show that each

triplet from the input list L�
G is represented in G according to the moralization

criterion. The triplet for u ∈ N has the corresponding ancestral set dom��u�,
and moreover, adH�u� = bdG�u� for the corresponding moral graph H. Hence,
bdG�u� separates u from the rest of dom��u� in H and the triplet is repre-
sented in G according to the moralization criterion. ✷

Now, we are to prove the converse of Lemma 3.1.

Lemma 3.2. Let G be a CG and � a chain for G. Then �X�Y �Z	mor
G implies

�X�Y �Z	 ∈ gr�L�
G�.
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Proof. One can suppose that the considered chain � has connected blocks.
Indeed, each block Bi of the given chain � can be replaced by a sequence of
connectivity components of G, whose union is Bi, and thus a new chain �
with connected blocks is created. As dom� �u� ⊂ dom��u� for every u ∈ N,
every triplet �u�dom� �u� \ bdG�u�u �bdG�u�	 ∈ L�

G can be derived by decom-
position from its counterpart �u�dom��u� \ bdG�u�u �bdG�u�	 ∈ L�

G . Thus,
L�
G ⊂ gr�L�

G� and hence, gr�L�
G� ⊂ gr�L�

G�. Therefore, we can replace �
by � .

It suffices to show that for every ancestral set T ⊂ N in the graph G
and for u ∈ T, the triplet �u�T \ adH�u�u �adH�u�	 belongs to gr�L�

G�, where
H = Gmor

T . Indeed, if �X�Y �Z	mor
G , then by definition, �X�Y �Z	H, where H =

Gmor
T for T = an�XYZ�. That is, �X�Y �Z	 is represented in the underlying

graph H̃ of H, and by the already mentioned result for UGs from [4], belongs
to the graphoid closure of the independency base of H̃. Thus, to get the desired
conclusion �X�Y �Z	 ∈ gr�L�

G�� it remains to verify that each triplet from the
independency base of H̃, of the form �u�T\adH�u�u �adH�u�	 for some u ∈ T,
belongs to gr�L�

G�.
We prove the claim by induction on the number of blocks of � which cover

T. Thus, supposing � � B1� � � � �Bn is a chain for G with connected blocks, we
have the following induction hypothesis for every 1 ≤ m ≤ n.

Induction hypothesis (I.H.). Let T be an ancestral set, T ⊂ B1∪· · ·∪Bm,
H = Gmor

T , u ∈ T. Then �u�T \ adH�u�u �adH�u�	 belongs to gr�L�
G�.

Basic step. For m = 1� observe that T = B1 and adH�u� = bdG�u� for each
u ∈ T. Thus the considered triplet directly belongs to L�

G.
Induction step. Consider m > 1 and assume that the I.H. holds for m − 1.

Then one can distinguish three cases:

(a) u ∈ Bm;
(b) u ∈ B1 ∪ · · · ∪Bm−1 and u �∈ paG�Bm�;
(c) u ∈ B1 ∪ · · · ∪Bm−1 and u ∈ paG�Bm�.
In case (a), observe that adH�u� = bdG�u� and therefore by definition

�u�B1 ∪ · · · ∪Bm \ adH�u�u �adH�u�	 ∈ L�
G, which implies, by decomposition,

�u�T \ adH�u�u �adH�u�	 ∈ gr�L�
G�.

In case (b), one can suppose T ∩ Bm = Bm, take the ancestral set S =
T ∩ �B1 ∪ · · · ∪ Bm−1� and consider the graph K = Gmor

S . Observe that K is
a subgraph of H and adH�u� = adK�u� owing to the assumption (b). Hence,
according to the I.H. applied to S, �u�S \ adH�u�u �adH�u�	 ∈ gr�L�

G�. Now,
for all w ∈ Bm� the case (a) occurs and hence �w�T \ adH�w�w �adH�w�	 ∈
gr�L�

G� implies, by weak union and symmetry, �u�w �T \ uw	 ∈ gr�L�
G�. Ap-

plying intersection repeatedly gives �u�Bm �S \ u	 ∈ gr�L�
G�. This together

with the claim derived from the I.H. implies, by contraction, the conclusion
�u�T \ adH�u�u �adH�u�	 ∈ gr�L�

G�.
Also in case (c), one can suppose T∩Bm = Bm. Then, for w ∈ Bm \adH�u��

the case (a) occurs and therefore �w�T\adH�w�w �adH�w�	 ∈ gr�L�
G�. Hence,

by weak union and symmetry, �u�w �T \ uw	 ∈ gr�L�
G�. Moreover, for w ∈
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B1 ∪ · · · ∪Bm−1 \ adH�u�u� the case (b) holds (otherwise the edge �u�w� in H
occurs!) and by analogous procedure, derive �u�w �T \ uw	 ∈ gr�L�

G�. Finally,
the repeated use of intersection gives the desired conclusion.

Thus, the induction step was verified, which concludes the proof. ✷

Thus, one can conclude from Lemmas 3.1 and 3.2 the following.

Consequence 3.1. Let G be a CG and � a chain for G. Then �X�Y �Z	mor
G

iff �X�Y �Z	 ∈ gr�L�
G�.

It follows from the preceding consequence that the graphoid closure of the
input list does not depend on a particular choice of the input list (i.e., on
the choice of the chain). Moreover, as every independency model induced by a
strictly positive distribution is a graphoid (see Section 2.1), one can also derive
another consequence, which already appeared as Theorem 3.5 in [9].

Consequence 3.2. Let G be a CG over N, � a chain for G and P a strictly
positive probability distribution over N. Then P is G-Markovian iff P satisfies
all the triplets from the input list associated with G and �.

Consequence 3.1 generalizes an analogous result for UGs [4] but also the
mentioned result for DAGs [28], if it is understood as a statement about
graphoid closure. It can be understood in this way since, in the case of DAGs,
the graphoid and semigraphoid closures of causal input lists coincide. How-
ever, this is not true in general, even for UGs, as the following example shows.

Example 3.2. In case of UGs, the semigraphoid closure of the input list
may depend on the choice of the chain and may differ from its graphoid clo-
sure (i.e., from the corresponding UG model). Consider the UG from Figure 4.
The chain �1� �c� d�, �a� b� generates the input list ��a� cd �b	� �b� cd �a	�,
whose semigraphoid closure does not contain the triplet �c� ab �d	. On the
other hand, the chain �2� �a� b�, �c� d� produces the input list ��c� ab �d	�
�d�ab �c	�. However, the graphoid closure of both these input lists contains
the triplet �ab� cd ��	.

Remark. The reader can object that perhaps we have introduced a wrong
concept of input list and perhaps one can associate to every node of a CG
another independency statement and perhaps then the semigraphoid closure
of the alternative input list can coincide with the CG model and perhaps

Fig. 4. Semigraphoid closures depend on the choice of the input list.
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Fig. 5. An UG model having a more complex semigraphoid-generating base.

the alternative input list can also generalize the causal input list for DAGs.
However, this is not possible already in the case of UGs. Consider, for example,
the UG from Figure 5. Then one can show that every list of independency
statements whose semigraphoid closure is the corresponding UG model has at
least nine items (we omit an intricate proof of this fact). Thus, there is no hope
that one can find a semigraphoid-generating base whose items correspond to
the nodes of the UG.

4. Separation criterion. We have already mentioned in the Introduc-
tion that two equivalent criteria for reading independency statements from a
DAG were developed, namely, the moralization criterion [17] and the separa-
tion criterion [12], where one tests whether paths in a DAG are d-separated,
that is, blocked in their nodes (a special definition of blocking is used). The
moralization criterion was generalized for CGs [15], but no direct separation
criterion for CGs (i.e., without the auxiliary construction of the moral graph)
has been developed so far.

In this section, we introduce the concept of blocking for routes in CGs, called
c-separation (chain separation), which generalizes the concept of d-separation
for routes in DAGs. The corresponding separation criterion for CGs exhibits
two main differences from the case of DAGs. First, for CGs, one has to consider
a wider class of routes (not only paths) for which the blocking is tested (we
call them trails). Second, the blocking of the route is not defined for nodes of
the route, but for its maximal undirected subroutes (we call them sections). To
formulate the criterion, we have to introduce some special graphical concepts.
We show that the blocking of routes is equivalent to the blocking of trails.
Then we prove that the introduced separation criterion for CGs is equivalent
to the classic moralization criterion.

4.1. Concept of c-separation. Let G be a CG over N. A slide in G from
a node u to a node w is a path v1� � � � � vk, k ≥ 2� such that u = v1 → v2,
∀i = 2� � � � � k− 1, vi —vi+1 and vk = w. The node u = v1 is then called the top
node of the slide.

By a section of a route ρ� v1� � � � � vk, k ≥ 1 in G� we mean a maximal
undirected subroute σ � vi — · · ·—vj, 1 ≤ i ≤ j ≤ k of ρ. Thus, any route
decomposes uniquely into sections. The nodes vi and vj are then called the
terminals of the section σ . The node vi (resp. vj) is called a head-terminal
if i > 1 and vi−1 → vi in G (resp. j < k and vj ← vj+1 in G), otherwise
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(i.e., for vi, either i = 1 or vi−1 ← vi, and for vj, either j = k or vj → vj+1)
it is called a tail-terminal. A section σ of a route ρ is called a head-to-head
section w.r.t. ρ if it has two head-terminals, a head-to-tail section w.r.t. ρ if
it has one head-terminal and one tail-terminal and a tail-to-tail section w.r.t.
ρ if it has two tail-terminals. Note that in the case that the section σ is
just one node (i.e., if i = j), the node is considered twice as a terminal of σ
since two corresponding arrows of ρ should enter the node (each one can be
directed either from the node or to the node). This also occurs in the case when
i �= j but vi = vj. Thus, our classification of sections generalizes an analogous
classification of nodes of a route in a DAG [12].

Let σ be a section of a route ρ in G and Z ⊂ N. Then, σ is blocked by Z if
one of the following cases occurs:

1. either σ is a head-to-head section w.r.t. ρ and dsG�σ� ∩Z = �;
2. or σ is not a head-to-head section w.r.t. ρ, σ is hit by Z, and for at least

one of its tail-terminals u, every slide in G to u is hit by Z.

A route in a CG is c-separated (chain separated) by Z if at least one of its
sections is blocked by Z. Note that a route in a DAG is c-separated iff it is
d-separated [22], while a route in an UG is c-separated iff it is hit by Z.

A route which is not c-separated by Z will be called active (w.r.t. Z). Let
us write the definition explicitly since we will use the concept of active route
quite often throughout the paper. Thus, a route ρ is active w.r.t. Z iff for every
section σ of ρ, one of the following cases occurs:

1. either σ is a head-to-head section w.r.t. ρ and dsG�σ� ∩Z �= �;
2. or σ is not a head-to-head section w.r.t. ρ and σ is free w.r.t. Z;
3. or σ is not a head-to-head section w.r.t. ρ and σ is hit by Z, but for each

tail-terminal u of G, there exists a slide in G to u which is free w.r.t. Z.

Having a CG G over N and �X�Y �Z	 ∈ T�N�, we will say that �X�Y �Z	 is
represented in G according to the separation criterion if every route in G from
a node of X to a node of Y is c-separated by Z and write �X�Y �Z	sepG . To
understand connection with UGs and DAGs, one should realize that although
the criteria of separation for UGs, and d-separation for DAGs, are usually
formulated for paths, they can be equivalently formulated for routes. Thus,
for an UG H, one has �X�Y �Z	sepH iff �X�Y �Z	H, that is, the separation
criterion generalizes the classic criterion for UGs. Similarly, in the case of
DAGs, it reduces to the separation criterion for DAGs [12].

However, unlike the case of the separation criteria for UGs and for DAGs,
the separation criterion for CGs cannot be restricted to paths! The require-
ment that all paths between two nodes are c-separated is indeed weaker than
the requirement that all routes between those nodes are c-separated, as the
following example shows.

Example 4.1. Let us consider the CG G from Figure 6 and ask whether
�a�f �ceg	 is represented in G according to the separation criterion. We ob-
serve that the only path in G from a to f is a → c—d → f. This path is
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Fig. 6. One cannot ignore self-intersecting routes in c-separation.

c-separated by ceg as its head-to-tail section c—d is blocked by ceg. However,
the route a → c—d— e ← b → g ← d → f is not c-separated by ceg since
both its head-to-head sections c—d— e and g have a descendant in ceg and
all the other sections are free w.r.t. ceg. Therefore, we conclude ¬�a�f �ceg	sepG .
The reader can check that the moralization criterion gives the same result.

The previous example leads to the question of decidability of the separa-
tion criterion for CGs. Since routes allow unlimited repetition of nodes and
edges, infinitely many routes may exist between two distinct nodes. Fortu-
nately, there exists a reasonable finite class of routes which it is always suffi-
cient to test for c-separation.

A trail in a CG G is a route τ in G such that no arrow appears twice in τ,
and every section of τ consists of distinct nodes. Note that it follows from the
definition that every three consecutive nodes of a trail are distinct. Clearly,
every path is a trail. It is evident that in each CG, only finitely many trails
may exist between two nodes (every CG has finitely many arrows). Moreover,
the following holds.

Lemma 4.1. Let G be a CG over N, �X�Y �Z	 ∈ T�N�. Then, �X�Y �Z	sepG
iff every trail in G from a node of X to a node of Y is c-separated by Z.

Proof. It suffices to show that every active route ρ� v1� � � � � vk, k ≥ 1� in
G can be shortened to an active trail by a series of changes (we mean ac-
tive w.r.t. Z). First, we remove multiple occurrences of arrows. Thus, suppose
that �vi� vi+1�, respectively �vj� vj+1�, is the first, respectively the last, occur-
rence of the same arrow in ρ (in the order determined by the succession in ρ).
Therefore, 1 ≤ i < j < k.

In the case of “same orientation,” that is, [vi = vj and vi+1 = vj+1], one
simply removes the subroute vi� � � � � vj−1 from ρ. As all remaining sections
are unchanged by this removal, they are not blocked in the shortened route.

In the case of “contrary orientation,” that is, [vi = vj+1 and vi+1 = vj],
one removes the subroute vi� � � � � vj from ρ. Thus, by pooling of the sections
σ1� vm� � � � � vi, 1 ≤ m ≤ i� and σ2� vj+1� � � � � vn, j + 1 ≤ n ≤ k� of the original
route, the section σ3� vm� � � � � vi = vj+1� � � � � vn of the shortened route is cre-
ated. As the other sections were untouched, it suffices to verify that σ3 is not
blocked.
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If σ3 is a head-to-head section and vi ← vi+1, then σ1 is a head-to-head sec-
tion (w.r.t. the original route) and dsG�σ1� = dsG�σ3�. As σ1 was not blocked
in the original route, dsG�σ1� ∩Z �= �� and therefore σ3 is not blocked in the
shortened route.

If σ3 is a head-to-head section and vi → vi+1, then one can find within
the removed subroute vi� � � � � vj a descending route from vi to a head-to-head
section σ4 (of the original route). As dsG�σ4� ⊂ dsG�σ3� and σ4 is not blocked,
the section σ3 will not be blocked.

In case σ3 is not a head-to-head section, it suffices to show for every tail-
terminal u of σ3 that either there exists a free slide to u, or σ3 is free. Without
loss of generality, we suppose u = vm (otherwise, in case u = vn� use the same
consideration where we replace vm by vn and σ1 by σ2). Thus, we distinguish
the following subcases:

(i) If σ1 is hit, then there exists a free slide to u = vm� since vm is a
tail-terminal of σ1.

(ii) If σ1 is free and vi ← vi+1, then vi+1 �∈ Z (otherwise, the section of
the original route which follows after σ1 is blocked) and the route vi+1 →
vi — · · ·—vm can be shortened to a free slide to u = vm.

(iii) If σ1 is free, vi → vi+1 (i.e., vj+1 → vj) and σ2 is hit, then vi = vj+1
is a tail-terminal of σ2, and therefore there exists a free slide from a node w
to vi. This slide can be lengthened by σ1 to a free route from w to vm. The
obtained route can be shortened to a free slide.

(iv) If both σ1 and σ2 are free, then σ3 is free.

Thus, an active route without multiple occurrences of arrows was obtained.
Clearly, each of its sections now can be shortened to consist of distinct nodes.
As this modification does not change the types of sections and their terminals,
the shortened route, more precisely trail, is active. ✷

Example 4.2. Consider once more the CG G from Figure 1. To find out
whether �c� h �a	sepG � consider a trail from c to h. If the trail from c starts by
the line c—a, then its starting tail-to-tail section c—a— b—d meets a and
therefore is blocked by a (there is no slide to tail-terminals of the section).
If the trail starts by c → e, then it contains a head-to-head section with no
descendant in a (either c → e—f ← d or f → k ← g), and is blocked, too. So,
we conclude that �c� h �a	sepG . To see that ¬�c� h �ae	sepG � realize that the path
c → e—f ← d → g—h is active w.r.t. ae. The section e—f is a head-to-head
section that has a descendant in ae, namely, e. The other sections are not
head-to-head sections and are not hit by ae. So, no section is blocked by ae.
Note that the mentioned path is the only active trail from c to h (w.r.t. ae).

4.2. Equivalence of separation and moralization criteria.

Lemma 4.2. Let G be a CG over N, �X�Y �Z	 ∈ T�N�. Then �X�Y �Z	sepG
implies �X�Y �Z	mor

G .
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Proof. We show ¬�X�Y �Z	mor
G ⇒ ¬�X�Y �Z	sepG , that is, if there exists

a path π in Gmor
an�XYZ� from X to Y which is outside Z, then there exists an

active route (w.r.t. Z) in G between X and Y. The original path π will be
gradually transformed into the desired route in G.

Whenever �u� v� is a virt of π, then by the definition of the moral graph,
there exists a subway between u and v in Gan�XYZ� and the virt can be replaced
by that subway. Thus, the original path π is transformed into a route ρ in
Gan�XYZ� such that all sections of ρ, with the possible exception of head-to-
head sections, are free (w.r.t. Z).

The second step is to transform ρ into an active route in Gan�XYZ� between
X and Y. More exactly, one can transform ρ into a route with no blocked
head-to-head sections, whose other sections are free. Indeed, if σ is a blocked
head-to-head section of ρ, then σ ⊂ anG�XYZ� says dsG�σ� ∩ XYZ �= �
and, owing to dsG�σ� ∩Z = �� there exists a free descending path from σ to
w ∈ XY. If w ∈ X (resp. w ∈ Y), then one can attach this descending path
from σ to w to a subroute of ρ from Y (resp. from X) to σ and obtain a route
between X and Y which has fewer blocked head-to-head sections than ρ and
whose other sections are free w.r.t. Z. ✷

Lemma 4.3. Let G be a CG over N, �X�Y �Z	 ∈ T�N�. Then �X�Y �Z	mor
G

implies �X�Y �Z	sepG .

Proof. We show ¬�X�Y �Z	sepG ⇒ ¬�X�Y �Z	mor
G , that is, if there exists

an active route τ in G from X to Y, then there exists a free path (w.r.t. Z)
in Gmor

an�XYZ� from X to Y. The route τ will be gradually transformed into the
desired path.

First, we realize that τ belongs to Gan�XYZ�. Indeed, if τ \ an�XYZ� �= ��
then one can find a head-to-head section σ of τ such that ds�σ�∩an�XYZ� =
�� [If a section of τ outside an�XYZ� is not a head-to-head section, then the
outgoing arrow of τ leads to another section outside an�XYZ�]. But such a
section is blocked, which contradicts the assumption.

We transform τ into a free route (w.r.t. Z) in Gmor
an�XYZ�, namely, for ev-

ery section σ of τ� we replace a certain subroute σ̄ of τ, containing σ , by
a free detour (path) in Gmor

an�XYZ�. The modification depends on the type
of σ :

(i) If σ is a head-to-head section, then the corresponding subroute has the
form σ̄ � ū → u— · · ·—v ← v̄. Clearly, ū� v̄ �∈ Z, as otherwise a neighboring
section of G is blocked. If ū = v̄, then no detour is necessary; otherwise, �ū� v̄�
is an edge in Gmor

an�XYZ� and σ̄ is replaced by that edge.
(ii) If σ is a head-to-tail section, the corresponding subroute is σ̄ � ū →

u— · · ·—v, where v is the tail-terminal of σ . Evidently ū� v �∈ Z. Moreover,
there exists a free slide w1 → w2 — · · ·—wl = v, l ≥ 2� in Gan�XYZ�. In case ū =
w1� the detour is made of that slide; otherwise, the edge �ū�w1� in Gmor

an�XYZ�
is added to that slide.



ON CHAIN GRAPH MODELS 1453

(iii) If σ is a tail-to-tail section, then the corresponding subroute is just σ .
Evidently, for each of both tail-terminals of σ� there exists a free slide to the
tail-terminal. The detour will consist of these two slides and of the edge in
Gmor
an�XYZ� between their top nodes (unless the top nodes coincide).

The obtained free route ρ in Gmor
an�XYZ� can be shortened to a path by re-

moving all subroutes between two possible different occurrences of the same
node. ✷

So, we can summarize Lemmas 4.2 and 4.3 as follows.

Consequence 4.1. Let G be a CG over N, and �X�Y �Z	 ∈ T�N�. Then
�X�Y �Z	mor

G iff �X�Y �Z	sepG .

Remark. In fact, there exists another surprisingly simple formulation of
the c-separation criterion which is much more similar to the d-separation
criterion, namely, that �X�Y �Z	sepG iff, for every route ρ in G� there exists a
section σ of ρ such that:

1. either σ is a head-to-head section w.r.t. ρ, and σ is outside Z;
2. or σ is not a head-to-head section w.r.t. ρ, and σ is hit by Z.

To see that this is an equivalent formulation of c-separation, realize that
whenever one has an active route ρ from X to Y, then it can be modified into
a superactive route that is such a route 4 that, for every section σ of 4, the
section σ is hit by Z iff σ is a head-to-head section w.r.t. 4. Indeed, if there
exists a head-to-head section σ in ρ which is not hit by Z� then there exists
a descending path π in G from a node u ∈ σ to a node v ∈ Z which is outside
Z with exception of v. Thus, one can insert a new “artificial” subroute into ρ
in place of occurrence of u within σ : the first part of the subroute copies π
in direction from u to v, the second part copies π in the opposite direction. A
similar trick can be done with hit non-head-to-head sections of ρ with help of
free slides to their tail-terminals. Therefore, any active route ρ can be patched
to become a superactive route 4.

There is a hitch in the above mentioned formulation of the c-separation:
a potentially infinite number of routes. Nevertheless, perhaps it is a good
argument against a common objection that c-separation is too complicated in
comparison with d-separation. What is, however, probably more important is
that this peculiar formulation could become a basis of an efficient computer
implementation of c-separation.

5. Completeness of the separation criterion. In this section, we prove
the completeness of the separation criterion for CGs, namely, that a triplet
�X�Y �Z	 is represented in a CG whenever it is a valid independency state-
ment in every Markovian distribution. As CGs were developed to describe con-
ditional independence structures for strictly positive probability distributions,
we prove the completeness with respect to the class of these distributions.
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5.1. Outline of the method. General features of the construction can be
outlined as follows. We prove for a given CG G and a triplet �X�Y �Z	 which
is not represented in the graph (according to the separation criterion) that
there exists a G-Markovian distribution that does not satisfy the triplet. Spe-
cial properties of CG models will allow us to consider an elementary triplet
�a� b �Z	, where a ∈ X, b ∈ Y, instead of �X�Y �Z	.

To show that there exists a Markovian distribution which does not satisfy
�a� b �Z	, we perform two basic steps:

1. Instead of G, we consider a subgraph H of G (over the same set of nodes)
such that �a� b �Z	 is not represented in H

2. We construct a Markovian distribution with respect to H (and therefore
Markovian with respect to G) which does not satisfy �a� b �Z	.
The aim of the first step is clear: the simpler the graph is, the simpler

the corresponding construction of the distribution may be. The choice of the
subgraph in our method generalizes an analogous method used in the com-
pleteness proof for UGs and DAGs [11, 10], where the subgraph simply is an
active path w.r.t. Z possibly supplemented by some additional edges to ensure
the path is also active in the subgraph. This is also the basic idea of the choice
of the subgraph in our method: we take an active trail (w.r.t. Z) that has min-
imal complexity in a certain sense and add several suitable additional edges.
(Now the reader may understand why the c-separation criterion is necessary
for this type of consideration.) However, in the case of CGs, the situation is
much more complicated as, in general, one cannot avoid, “self-intersection” of
the trail, and also the additional edges can unavoidably cause “cycles” (in the
underlying graph).

As concerns the second basic step (i.e., the proper construction), we con-
struct a binary Markovian distribution as a “product” of special “two-variable”
potentials which correspond to the edges of the (moral) graph (of ) H. Our
potentials are strictly positive and are parameterized by numbers from the
interval �−1�1�. The main problem is to choose the parameters to ensure that
�a� b �Z	 does not hold in the obtained distribution. As a tool for verification,
we will introduce a certain numerical characteristic (a function) for every bi-
nary probability distribution, denoted by κ, with an important property: an
independency statement occurs if and only if the function κ has certain val-
ues zero. Then we decompose the considered trail between a and b into simple
segments and show that κ is nonzero for the whole trail iff it is nonzero for
each segment. The question of whether κ is nonzero for a segment will appear
to be a local problem, that is, vanishing of κ for a segment will depend only on
the parameters of potentials for edges related to the segment. Thus, for each
type of a segment, one can derive by simple calculation that κ is nonzero iff
all the parameters for related edges are nonzero. Therefore, every choice of
nonzero parameters will solve our problem.

5.2. The choice of a subgraph. In this section, we formulate all prop-
erties of the chosen subgraph which will be used in subsequent sections
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to justify our arguments. For this purpose, we need some additional
concepts.

5.2.1. Additional graphical concepts. Throughout this subsection, G is a
CG over N, Z ⊂ N a set of its nodes and ρ� v1� � � � � vm, m ≥ 1, a (fixed) route
in G which is active w.r.t. Z.

Suppose that α� vi —vi+1 — · · ·—vj �1 ≤ i ≤ j ≤ m, is a hit section of ρ. By
a free zone of α we mean a maximal free subroute of α, that is, ζ� vk� � � � � vl,
i ≤ k ≤ l ≤ j, such that [vs �∈ Z for k ≤ s ≤ l], [vk−1 ∈ Z or k = i] and
[vl+1 ∈ Z or l = j]. A free zone is a terminal free zone if it contains vi or vj;
otherwise, it is a middle free zone.

The remaining special definitions are actually applied only under the con-
dition that every section of ρ consists of distinct nodes (e.g., in the case that
ρ is a trail).

Suppose that ε� u1 → u2 — · · ·—ur, r ≥ 2� is a slide in G. In case ur is a
terminal of a section α (of ρ), we say that α is a host section for ε. [Later, under
a special situation (a special route ρ), host sections for slides will be uniquely
determined. Then, we will write the host section for ε instead of a host section
for ε.] We say that a slide ε is regular with respect to its host section α if
there exists a node uk, 2 ≤ k ≤ r� of ε such that �u1� � � � � uk−1� does not
meet α and uk� � � � � ur copies the section α. [More concretely, if α� vi� � � � � vj,
1 ≤ i ≤ j ≤ m, and ur = vi (resp. ur = vj), then r− k ≤ j− i and ur−s = vi+s
(resp. ur−s = vj−s) for s = 0� � � � � r − k.] The node uk is then called the heel
of ε.

A section α� vi — · · ·—vj, 1 ≤ i ≤ j ≤ m� of ρ meets regularly another sec-
tion β of ρ if there exist i ≤ k ≤ l ≤ j such that �vi� � � � � vk−1� ∪ �vl+1� � � � � vj�
does not meet β and vk� � � � � vl copies the section β. [More concretely, in case
β� vt� � � � � vn, 1 ≤ t ≤ n ≤ m, there exists t ≤ r ≤ n − l + k such that ei-
ther vr+s = vk+s for s = 0� � � � � l − k, or vr+s = vl−s for s = 0� � � � � l − k. Note
that symmetrically, �vt� � � � � vr−1�∪ �vr+l−k+1� � � � � vn� does not meet α since β
consists of distinct nodes.]

Let α be a section of ρ. By a downroute for α we mean a descending path
δ� u1� � � � � ur, r ≥ 2, from a node of α to a node in Z such that [us �∈ Z for
1 ≤ s ≤ r− 1] and [us �∈ α for 2 ≤ s ≤ r]. The node u1 is then the top node of
δ and α is called a host section for δ. [Again, under a special later situation,
host sections for downroutes will be uniquely determined and we will write
the host section for δ instead of a host section for δ.]

Example 5.1. To illustrate the concepts above, let us consider the CG from
Figure 7, the trail ρ� v1� � � � � v21 and the set Z = �v3� v6� v8� v10� v18� s�. Clearly,
ρ is active w.r.t. Z. Its hit head-to-head section v18 has no free zone. On the
other hand, the hit tail-to-tail section α� v2� � � � � v12 has two terminal free
zones, namely, v2 and v11, v12, and three middle free zones, namely, v4, v5 and
v7 and v9. The slide u → v4 —w—v2 is an example of a nonregular slide to the
tail-terminal v2 of α. The slide ε� t → v11 —v12 is a regular slide to the other
tail-terminal v12 of α. The top node of ε is t; the heel of ε is v11. The sections
v2� � � � � v12 and v15, v16, v17 do not meet regularly, while v2� � � � � v12 and v19,
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Fig. 7. An example illustrating additional graphical concepts.

v20 meet regularly. The free head-to-head section v13, v14 has a downroute
v14 → r— s whose top node is v14.

5.2.2. Properties of the chosen subgraph. All properties of the subgraph
that we need are collected in the following summary. Since the proof is too
long and technical, it is shifted to the Appendix (Sections A–E).

Summary 5.1. Let G be a CG over N and �a� b �Z	 ∈ E�N� such that
¬�a� b �Z	sepG . Then one can find:

(i) an active trail τ between a and b;
(ii) a free slide to every tail-terminal of every hit section of τ;

(iii) a downroute for every free head-to-head section of τ,

such that the following conditions hold:

(a) Every downroute does not meet another downroute, any slide or any
section of τ except its host section in its top node.

(b) Every above mentioned free slide ε to a tail-terminal of a hit section σ
of τ is regular with respect to σ . Moreover, ε does not meet another slide or
a downroute. It can meet at most one other section except its host section σ ,
but only in its top node. The other section is then a hit section and the shared
top node belongs to a middle free zone of the other section.

(c) Every pair of sections which share a node meet regularly. Moreover, if
this occurs, then one of the sections is a free tail-to-tail section, the other one
is a hit section and the shared part belongs to a middle free zone of the hit
section. (Evidently, a free section cannot meet two or more free zones since
the sections meet regularly.) Every free tail-to-tail section can meet at most
one other section.

(d) Every hit section can meet several top nodes of free slides and several
free tail-to-tail sections, but every one of its middle free zones can meet at
most one top node or at most one free tail-to-tail section, and cannot meet
both.
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Fig. 8. An example of the chosen subgraph.

Moreover, the subgraph H over N consisting of the edges of the trail, the
slides and the downroutes mentioned above has the following properties [to
help the reader to have a good insight, let us mention that it follows from the
previous facts that every node can belong to at most two of the mentioned
objects, that is, the sections (of the trail), the slides and the downroutes]:

(e) ¬�a� b �Z	sepH .
(f ) H has no undirected cycles (equivalently, for every connectivity compo-

nent C of H� the induced subgraph HC is a tree).
(g) Every connectivity component of H has at most two arrows heading

to it in H (i.e., directed into a node of the connectivity component) and if it
happens, then the arrows originate from different nodes which are not joined
by an edge in H.

(h) For every pair of distinct nodes u� v ∈ N� at most one complex in H
having u and v as its parents can exist.

Example 5.2. To illustrate the procedure described in Summary 5.1, let
us consider the graph G from Figure 1 and the elementary triplet �c� h �ae	 ∈
E�N�, which is not represented in G according to the separation criterion
(see Example 4.2). The only active trail from c to h (w.r.t. ae) is the path c →
e—f ← d → g—h; therefore, it has to be chosen as the trail in Summary 5.1.
As the only hit section e—f of that path does not have a tail-terminal and no
free head-to-head section occurs in the path, therefore no free slides and no
downroutes are chosen in the procedure described in Summary 5.1. Thus, the
obtained subgraph is exactly the mentioned path—see Figure 8.

5.2.3. Decomposition of a trail into segments. Suppose that we have al-
ready chosen the subgraph H for a triplet �a� b �Z	 ∈ E�N�, consisting of the
trail, downroutes and slides as described above. The trail is naturally parti-
tioned by the tail-terminals of its sections (here we take all sections, both hit
and free). Note, for clarity, that the end nodes of the trail a and b are also
tail-terminals. Nevertheless, we will consider an even finer partition of the
trail.
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Under the situation described by Summary 5.1, let τ� v1� � � � � vm, m ≥ 2, be
the chosen active trail and S the set of tail-terminals of τ and heels of regular
slides, described there. A segment of τ is its subroute vi� � � � � vj such that
1 ≤ i < j ≤ n, vi� vj ∈ S and [vs �∈ S for i < s < j]. Thus, the set S decomposes
the trail uniquely into segments �ui� ui+1�, where a = u1� � � � � un = b, n ≥ 2, is
the corresponding sequence of nodes of S. It is no problem to check that every
segment belongs exclusively to one of the following seven types:

1. the segment contains a free head-to-tail section;
2. the segment contains a free (nonsingleton) tail-to-tail section;
3. the segment contains a hit head-to-head section;
4. the segment contains a free head-to-head section;
5. the segment is the shared part of a slide and its host (hit) section;
6. the segment contains a hit part of a head-to-tail section;
7. the segment contains a hit part of a tail-to-tail section.

Example 5.3. To illustrate the procedure of decomposition of the cho-
sen trail into segments, let us consider the graph from Figure 9, the trail
v1� � � � � v12 and the set Z = �v4� v9� v11� u�. The trail has tail-terminals v1,
v2, v3, v5, v7, v10, v12 and heels v8, v10, v12. As in the last section, v10, v11,
v12 the tail-terminals coincide with the heels, the corresponding sequence
of tail-terminals and heels is u1 = v1, u2 = v2, u3 = v3, u4 = v5, u5 = v7,
u6 = v8, u7 = v10, u8 = v12. Every node of this sequence is indicated by
an asterisk in the figure. It gives a decomposition into seven segments: the
segment �u1� u2� = �v1� v2� contains a free head-to-tail section v1 and repre-
sents type 1, the segment �u2� u3� = �v2� v3� contains a free tail-to-tail section
v2, v3 and represents type 2, the segment �u3� u4� = �v3� v5� contains a hit
head-to-head section v4 and represents type 3, the segment �u4� u5� = �v5� v7�
contains a free head-to-head section v6 and represents type 4, the segment
�u5� u6� = �v7� v8� is the common part of the hit head-to-tail section v7, v8,
v9 and the free slide w, v8, v7 to its tail-terminal and represents type 5, the

Fig. 9. Segments of a trail.
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segment �u6� u7� = �v8� v10� contains the hit part of the head-to-tail section
v7, v8, v9 and represents type 6, and the segment �u7� u8� = �v10� v12� contains
the hit part of the tail-to-tail section v10, v11, v12 and represents type 7.

The following lemma describes an important property of the decomposition
into segments. Its proof is too technical (one has to distinguish many cases) to
be presented here. Section F of the Appendix contains instructions as to how
a precise proof can be carried out.

Lemma 5.1. Suppose that H is the chosen subgraph for �a� b �Z	 ∈ E�N�
from Summary 5.1 and a = u1� � � � � un = b is the corresponding sequence
of tail-terminals and heels of chosen free slides. Then, under the assumption
n ≥ 3, for each i = 1� � � � � n−2� every path in Hmor from u1 � � � ui to ui+2 � � � un
is hit by ui+1Z. In particular, for all i = 1� � � � � n− 2, �ui� un �ui+1Z	mor

H .

Supposing that �u� v �Z	 ∈ E�N� and K is a virtual graph over N, by an
essential path for �u� v� in K (w.r.t. Z) we mean a path in K between u and
v that is outside Z. By an associated path for �u� v� in K (w.r.t. Z) we mean
a path in K from a node w ∈ N to an inner node t of an essential path
for �u� v� (i.e., u �= t �= v) that is outside Z with the possible exception of w.
The following series of observations analyzes essential and associated paths in
Hmor for every type of segment. They will be utilized later and their proofs are
left to the reader: they are a mechanical application of facts from Summary 5.1
already used in the proof of Lemma 5.1 described in the Appendix.

Observation 5.1. If �u� v� is a segment of type 1, the only essential path
for �u� v� is the considered segment and no associated path for �u� v� exists (see
Figure 10a).

Observation 5.2. If �u� v� is a segment of type 2, that is, a nonsingleton free
tail-to-tail section, the only essential path for �u� v� is the considered segment.
An associated path for �u� v� can occur only when a middle free zone of a hit
section meets the free tail-to-tail section and consists of nodes of the (unique)
free zone (see Figure 10b).

Observation 5.3. If �u� v� is a segment of type 3, the only essential path
for �u� v� is the virt between u and v and no associated path for �u� v� exists
(see Figure 10c).

Fig. 10. Illustrative pictures for Observations 5.1, 5.2 and 5.3.
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Fig. 11. Illustrative pictures for Observations 5.4 and 5.5.

Observation 5.4. If �u� v� is a segment of type 4, then two essential paths
for �u� v� exist. The first one is the virt between u and v; the second one is
the segment. Every associated path for �u� v� is a part of the corresponding
downroute (see Figure 11a).

Observation 5.5. If �u� v� is a segment of type 5, the only essential path
for �u� v� is the considered segment and no associated path for �u� v� exists (see
Figure 11b).

Observation 5.6. If �u� v� is a segment of type 6 (e.g., u is a heel of a slide,
and v is the contiguous tail-terminal of a neighboring section), then the only
essential path for �u� v� consists of the part of the slide between u and its top
node w, and of the virt between w and v. An associated path for �u� v� can be
made of nodes of a possible middle free zone of another hit section which meets
w (see Figure 12a).

Observation 5.7. If �u� v� is a segment of type 7 (i.e., u and v are heels
of slides), then the only essential path for �u� v� is made of the parts of slides
between their heels and top nodes, and of the virt between those top nodes.
Associated paths for �u� v� can occur and consist of nodes of possible middle
free zone(s) of other hit section(s) which meet the top node(s) (see Figure 12b).

5.3. Construction of a Markovian distribution. In this section, we describe
how to construct a Markovian distribution with respect to the chosen sub-

Fig. 12. Illustrative pictures for Observations 5.6 and 5.7.
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graph H. First, we introduce a numerical characteristic of independence, de-
noted by κ, and derive its basic properties (Section 5.3.1). Then, we define spe-
cial elementary potentials and formulate their basic properties (Section 5.3.2).
They form the basis of the proper construction of the distribution which fol-
lows (Section 5.3.3). Decomposition of the trail into segments described in
Section 5.2.3 enables us to convert the crucial problem of verification that the
constructed distribution does not satisfy the considered elementary triplet into
a series of local questions, that is, questions depending only on small sets of
nodes, closely related to the segments (Section 5.3.4). An analysis of each of
the seven possible types of segment then makes it possible to prove the main
lemma saying that a nonzero choice of parameters solves our central problem
(Section 5.3.5).

5.3.1. Numerical characteristic of independence. We will extensively use a
numerical characteristic of independence represented by the function κ. Sup-
pose that �a� b �Z	 ∈ E�N�, xZ ∈ �0�1�Z and f is a potential on �0�1�W, where
abZ ⊂ W ⊂ N. Then, κ� N×N×�0�1�Z×��0�1�W → R� → R is the function
defined by

κ�a� b �xZ f� = fabZ�00xZ�fabZ�11xZ� − fabZ�01xZ�fabZ�10xZ��
Note that the definition applies also in case Z = � when it is a number
denoted by κ�a� b � −  f�. The value of κ depends only on the marginal of f
for abZ� and therefore f can always be replaced by its marginal involving
variables abZ:

κ�a� b �xZ f� = κ�a� b �xZ fX� for abZ ⊂ X ⊂ W�

The values of κ allow us to characterize conditional independence relationships
in the case of binary probability distributions.

Lemma 5.2. Let P be a probability distribution on �0�1�N and �a� b �Z	 ∈
E�N�. Then a � b �Z �P� iff �∀xZ ∈ �0�1�Z� κ�a� b �xZ P� = 0�.

Proof. To show necessity, first realize that PZ�xZ� = 0 implies
PabZ�xaxbxZ� = 0 for all xa, xb ∈ �0�1� and hence κ�a� b �xZ P� = 0. How-
ever, in case PZ�xZ�> 0� owing to a � b �Z �P�� one can write PabZ�xaxbxZ�=
PaZ�xaxZ�PbZ�xbxZ�/PZ�xZ� for xa� xb ∈ �0�1�, xZ ∈ �0�1�Z. It remains to
substitute the formula into the definition of κ�a� b � xZ P�. For sufficiency, we
realize that the vanishing of κ�a� b � xZ P� implies, for xa, xb, ya, yb ∈ �0�1�,
xZ ∈ �0�1�Z:

PabZ�xaxbxZ�PabZ�yaybxZ� = PabZ�xaybxZ�PabZ�yaxbxZ��
The summation in this formula through ya� yb ∈ �0�1� yields a � b �Z �P�. ✷

It may be difficult to verify directly that κ�a� b �xZ P� is nonzero. The fol-
lowing lemma enables us to transform this into a couple of “simpler” analogous
questions.



1462 M. STUDENÝ AND R. R. BOUCKAERT

Lemma 5.3. Let P be a probability distribution on �0�1�N; Z ⊂ N; a� b� c ∈
N \Z distinct. If a � b �cZ �P�, then one has, for every xZ ∈ �0�1�Z,

κ�a� b �xZ P� �= 0 iff �κ�a� c �xZ P� �= 0 and κ�c� b �xZ P� �= 0��

Proof. First, we verify, for every xZ ∈ �0�1�Z� the formula

κ�a� b �xZ P�PcZ�0xZ�PcZ�1xZ� = κ�a� c �xZ P�κ�c� b �xZ P��

For this purpose, we substitute the equalities

PabZ�xaxbxZ� = PabcZ�xaxb0xZ� +PabcZ�xaxb1xZ�

into the definition of κ�a� b �xZ� (we omit the symbol of P within κ�·� · � · ·� in
the rest of the proof ) and obtain, by easy calculation,

κ�a� b �xZ� =
∑{

κ�a� b �xcxZ��xc = 0�1
}

+PabcZ�000xZ�PabcZ�111xZ� +PabcZ�001xZ�PabcZ�110xZ�
−PabcZ�010xZ�PabcZ�101xZ� −PabcZ�011xZ�PabcZ�100xZ��

Owing to a� b �cZ �P� and Lemma 5.2, the terms κ�a� b �xcxZ� vanish and
we can write

κ�a� b �xZ�PcZ�0xZ�PcZ�1xZ�
= {

PabcZ�000xZ�PcZ�0xZ�
}{
PabcZ�111xZ�PcZ�1xZ�

}
+ {

PabcZ�001xZ�PcZ�1xZ�
}{
PabcZ�110xZ�PcZ�0xZ�

}
− {

PabcZ�010xZ�PcZ�0xZ�
}{
PabcZ�101xZ�PcZ�1xZ�

}
− {

PabcZ�011xZ�PcZ�1xZ�
}{
PabcZ�100xZ�PcZ�0xZ�

}
�

Owing to a � b �cZ �P�� the identity PabcZ�xaxbxcxZ�PcZ�xcxZ� =
PacZ�xaxcxZ�PbcZ�xbxcxZ� can be substituted in every expression in curly
brackets. We leave it to the reader to verify that the obtained result is nothing
but the expanded expression κ�a� c �xZ�κ�c� b �xZ�� which concludes the proof
of the formula. The formula implies the claim of the lemma except the case
PcZ�0xZ�PcZ�1xZ� = 0. However, in the case PcZ�0xZ� = 0� one can suppose
that PZ�xZ� > 0 (otherwise the claim of the lemma is trivial) and write

PabZ�xaxbxZ� = PabcZ�xaxb1xZ� = PacZ�xa1xZ�PbcZ�xb1xZ�
/
PcZ�1xZ�

by a � b �cZ �P�. This gives κ�a� b �xZ� = 0 and the claim of the lemma is also
verified in this case. Analogous justification holds in case PcZ�1xZ� = 0. ✷
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5.3.2. Elementary potentials. The distribution that we are going to define
is based on special potentials associated with pairs of adjacent nodes in a
graph. For every u� v ∈ N� u �= v� and every parameter γ ∈ �−1�1�� we define
a potential on the set �0�1��u�v�, called an elementary potential and denoted
by Ruv

γ , as follows:

Ruv
γ � �0�0� → �1 + γ�/2

�0�1� → �1 − γ�/2
�1�0� → �1 − γ�/2
�1�1� → �1 + γ�/2�

We leave it to the reader to verify its properties mentioned in the following
lemma.

Lemma 5.4. The elementary potential Ruv
γ is a strictly positive function on

�0�1��u�v� which is constant only in the case γ = 0. The following formulas
relate marginalization, multiplication and inverse:

(a) �Ruv
γ ��u� ≡ 1 ≡ �Ruv

γ ��v� for u� v ∈ N distinct, γ ∈ �−1�1�;
(b) �Ruw

γ Rwv
δ ��u�v� = Ruv

γδ for u� v�w ∈ N distinct, γ� δ ∈ �−1�1�;
(c) �Ruv

γ �−1 = �4/�1 + γ��1 − γ��Ruv
−γ for u� v ∈ N distinct, γ ∈ �−1�1�.

We will later utilize substantially the fact that if a function f is a special
product of elementary potentials, a simple formula for κ�·� · � · f� holds. These
properties are illustrated by Figure 13, where a Greek letter accompanying
an edge represents the parameter of the elementary potential for the pair of
variables at the end of the edge.

Lemma 5.5. (a) If f = Ruv
α � where α ∈ �−1�1� and Z = � (see Figure 13e),

then κ�u� v � −  f� = α.

(b) If f = Ruw
α Rvw

β Rwz
γ � where α, β, γ ∈ �−1�1� and Z = �z� (see Fig-

ure 13a), then κ�u� v �xZ f� = αβ�1 − γ2�/4 for every xZ ∈ �0�1�Z.
(c) If f = Ruw

α Rvw
β R

wz1
γ R

wz2
δ , where α, β, γ, δ ∈ �−1�1� and Z = �z1� z2�

(see Figure 13b), then κ�u� v �xZ f� = αβ�1 − γ2��1 − δ2�/16 for every xZ ∈
�0�1�Z.

(d) If f = Rut
α R

tw
β Rvw

γ R
tz1
δ R

wz2
ε � where α, β, γ, δ, ε ∈ �−1�1� and Z =

�z1� z2� (see Figure 13c), then κ�u� v �xZ f� = αβγ�1− δ2��1− ε2�/16 for every
xZ ∈ �0�1�Z.

(e) If f = Ruv
α R

uw
β Rvw

γ Rwz
δ � where β, γ, δ ∈ �−1�1�, α = −βγ and Z = �z�

(see Figure 13d), then κ�u� v �xZ f� = −β�1 − β2�γ�1 − γ2�δ2/16 for every
xZ ∈ �0�1�Z.

(f ) If f = Rut
α R

tw
β Rvw

γ R
tz1
δ R

tz2
ε R

wz3
ζ R

wz4
η � where α, β, γ, δ, ε, ζ, η ∈ �−1�1�

and Z = �z1� z2� z3� z4� (see Figure 13f), then κ�u� v �xZ f� = αβγ�1 − δ2��1 −
ε2��1 − ζ2��1 − η2�/256 for every xZ ∈ �0�1�Z.
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Fig. 13. Pictures illustrating Lemma 5.5.

(g) The same result as in the preceding case holds with modification z2 = z3
(see Figure 13g).

Proof. We leave it to the reader to verify the formulas. However, we give
two important hints. First, to avoid difficulties, the reader is advised to write
and expand the expression for κ�u� v � xZ f� as a polynomial whose primitive
terms are �1 + α�, �1 − α�, �1 + β�� etc. Then some terms will be cancelled.
After that cancellation, one can expand the remaining expression in α, β� etc.

The second hint is that one need not verify the formula for all possible
values of xZ but just for one possible configuration, say, for configuration 0Z.
The reason is the form of elementary potentials. For example, in the case (b),
the expression for κ�u� v � 1  f� written in α, β, γ can be conceived as the
expression for κ�u� v � 0  f� in which γ is replaced by �−γ�. But in the resulting
formula for κ�u� v � 0  f�� the parameter γ is squared, and therefore we have
κ�u� v � 1  f� = κ�u� v � 0  f�! A similar trick can be used in the other cases:
parameters of the edges which enter Z can have alternative signs but the
result is always the same. ✷

5.3.3. Core construction of the distribution. Let us suppose that the sub-
graph H satisfying the conditions of Summary 5.1 for a triplet �a� b �Z	 ∈
E�N� was already fixed, and choose, for every edge �u� v� in H� a parame-
ter γ�u� v� from the interval �−1�1�. For a connectivity component C of H,
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Fig. 14. Construction of a Markovian distribution.

� �C� denotes the class of lines in C and arrows heading to C. Under these
circumstances, we define a probability distribution P on �0�1�N as follows:

1. Define a strictly positive potential QC on �0�1�C∪pa�C� as the product of
elementary potentials for edges in � �C�:

QC

(
xC∪pa�C�

) = ∏
�u� v�∈� �C�

Ruv
γ�u� v��xuv� for xC∪pa�C� ∈ �0�1�C∪pa�C��

Of course, in case � �C� = �� the product over the empty set is 1� and
therefore QC ≡ 1.

2. For every connectivity component C of H� we compute from QC the condi-
tional probability QC �pa�C� on C given pa�C�:

QC �pa�C��xC �xpa�C�� = QC�xC∪pa�C��
/
Q

pa�C�
C �xpa�C��

for xC∪pa�C� ∈ �0�1�C∪pa�C��

3. Define the distribution P as the product of these conditional probabilities:

P�xN� = ∏
C∈�

QC �pa�C��xC �xpa�C�� for xN ∈ �0�1�N�

where � denotes the class of all connectivity components of H.

As QC is strictly positive, its marginal Qpa�C�
C is also strictly positive and we

are allowed to divide by it. Evidently, P is a strictly positive binary probability
distribution over N.

Example 5.4. To illustrate the construction, let us continue with Exam-
ple 5.2. Each edge of the chosen subgraph H can be endowed with a parame-
ter from the interval �−1�1�, namely, α for c → e, β for e—f, γ for d → f, δ
for d → g and ε for g—h (see Figure 14a, where the remaining nodes from
Figure 8 are omitted). Now, we can express the potentials for connectivity com-
ponents of H (see the first step of the construction): Qef = Rce

α R
ef
β R

df
γ , Qgh =

R
dg
δ R

gh
ε and Qu ≡ 1 for any remaining node of H. Using Lemma 5.4(a)(b),

one can compute their marginals on parent sets: Qcd
ef = Rcd

α·β·γ, Qd
gh ≡ 1 and



1466 M. STUDENÝ AND R. R. BOUCKAERT

Q�
u ≡ 2 for remaining u ∈ N. Therefore, the conditional probabilities from the

second step are: Qef � cd = Rce
α R

ef
β R

df
γ /Rcd

αβγ, Qgh �d = R
dg
δ R

gh
ε , and Qu �� = 1/2

for any other u ∈ N. Hence, the corresponding probability distribution has
the following form (H has seven singleton connectivity components):

P = 2−7Rce
α R

ef
β R

df
γ R

dg
δ Rgh

ε /Rcd
αβγ�

Lemma 5.6. The probability distribution P constructed as described above
is H-Markovian for any choice of parameters.

Proof. One can use Theorem 4.1 from [9]. The condition (ii) there says
that a (strictly positive) distribution is H-Markovian iff it is the product of
conditional probabilities

∏
C∈� QC �pa�C�, where QC �pa�C� is computed from an

Hmor
C∪pa�C�-Markovian distribution over C ∪ pa�C�. However, our potential QC

is nothing but a multiple of such a distribution (by a strictly positive constant)
since QC by definition factorizes according to the graph HC∪pa�C�� and there-
fore according to the graph Hmor

C∪pa�C� (this factorization is equivalent to the
Markov property for UGs by Proposition 1 from [17]). ✷

The following lemma gives a more suitable formula for the constructed
probability distribution.

Lemma 5.7. For every virt u ----v in Hmor� there exists a unique complex λ
in H having u� v as its parents. Supposing H and parameters for its edges are
fixed, we introduce parameters also for virts in Hmor by the formula

γ�u� v� = − ∏
�t�w�∈�

γ�t�w��

where � is the set of edges of the complex λ in H which has u and v as its
parents. Then the probability distribution P defined above has the form

P�xN� = c
∏

�u� v�∈� ∗
Ruv

γ�u�v��xuv� for xN ∈ �0�1�N�

where c > 0 is a strictly positive normalizing constant (depending on the graph
H and on the parameters) and � ∗ is the set of edges of Hmor.

Proof. Suppose that u� v are different parents of a connectivity compo-
nent C of H (e.g., nodes of a virt in Hmor). Summary 5.1(g) says that C can
have at most two parents. Moreover, it implies that there exist a unique s1 ∈ C
with u → s1 in H, and a unique sl ∈ C with v → sl in H, and by Sum-
mary 5.1(f ) with Lemma 2.1(ii) a unique undirected path s1� � � � � sl� l ≥ 1� in
C between them (of course, it may happen that s1 = sl and the path has only
one node). To verify that the subway λ� u → s1 — · · ·— sl ← v is a complex in
H, realize that:

(a) No other edges can appear among �s1� � � � � sl�� as otherwise they have to
be lines and an undirected cycle exists in C� which contradicts Summary 5.1(f ).
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(b) No additional edge between u (resp. v) and �s1� � � � � sl� exists, as then
three arrows heading to C exist, which contradicts Summary 5.1(g).

(c) No edge between u and v exists, which also follows from Sum-
mary 5.1(g).

The uniqueness of the complex follows from Summary 5.1(h). Moreover, u ----v
in Hmor and we have shown that there is a one-to-one correspondence between
virts in Hmor and two-parent connectivity components of H.

Now, Lemma 2.1(iii) implies that s1� � � � � sl can be prolonged into a sequence
s1� � � � � sk, k ≥ l� of all nodes of C, such that every si, i > 1� is joined by
a line with just one of its predecessors. This enables us to derive a sim-
ple form of the desired marginal for the potential QC = ∏

�u� v�∈� �C�R
uv
γ�u� v�

(which is over the set �u� v� s1� � � � � sk�). First, we sum through sk; as only one
edge in � �C� enters sk in case k > l, by Lemma 5.4(a), the result is also a
product of elementary potentials, but the term associated with edge entering
sk disappears. Hence, by induction, Qλ

C = ∏
�u� v�∈� Ruv

γ�u� v�, where � is the
set of edges of the complex λ. By repeated application of Lemma 5.4(b), we
get Q�u� v�

C = Ruv
δ , where δ = ∏

�u� v�∈� γ�u� v�� and hence, by Lemma 5.4(c),

�Q�u� v�
C �−1 = tRuv

−δ = tRuv
γ�u� v�� where t = 4/��1 − δ��1 + δ�� is strictly positive.

A similar procedure can be used to show that Qu
C ≡ 1 for every component

C of H with pa�C� = �u� and Q�
C = 2 and for any component C of H with

pa�C� = �.
To verify the formula, we realize that every edge of H belongs to � �C� for

uniquely determined component C. Similarly, an assignment of virts in Hmor

to two-parent connectivity components of H was established above. Thus, we
can write

P = ∏
C∈�

QC

(
Q

pa�C�
C

)−1 =
( ∏
C∈�

∏
�t�w�∈� �C�

Rtw
γ�t�w�

)( ∏
C∈�

(
Q

pa�C�
C

)−1
)

=
( ∏
�t�w�∈�

Rtw
γ�t�w�

)
c

( ∏
�u� v�∈� ∗\�

Ruv
γ�u� v�

)
�

where c > 0 is a constant. ✷

Example 5.5. To illustrate Lemma 5.7, let us consider the graph in Fig-
ure 14a. The only virt in Hmor is c ----d. The corresponding complex in H is
c → e—f ← d with parameters α�β� γ. Thus, −αβγ is the parameter for
c ----d. Figure 14b shows Hmor with corresponding parameters (the remain-
ing nodes of the original graph from Figure 8 are omitted). The formula from
Example 5.4 then implies, by Lemma 5.4(c),

P = 2−5 1
�1 + αβγ��1 − αβγ�

×Rce
α R

ef
β R

df
γ R

dg
δ Rgh

ε Rcd
−αβγ�
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5.3.4. Localization. In Section 5.2.3, we showed how to decompose the con-
sidered trail into segments. This allows us to break down the central problem
of showing that the constructed distribution does not satisfy the considered
elementary triplet �a� b �Z	 for an appropriate choice of parameters.

Consequence 5.1. Suppose that P is any of the binary probability dis-
tributions constructed for H in Section 5.3.3 and a = u1� � � � � un = b is
the sequence from Section 5.2.3. If n ≥ 3, then, for all i = 1� � � � � n − 2�
ui � un �ui+1Z �P�. Moreover, ¬�a � b �Z �P�� iff �∃xZ ∈ �0�1�Z such that
∀i = 1� � � � � n− 1� κ�ui� ui+1 �xZ P� �= 0�.

Proof. Lemma 5.6 says that P is H-Markovian and thus

ui � un �ui+1Z �P�
by Lemma 5.1. The second claim follows from Lemma 5.2 by a possibly re-
peated application of Lemma 5.3. ✷

Thus, it remains to ensure that κ�u� v �xZ P� �= 0 for each segment �u� v�.
To show this, we will utilize the idea of “localization” to a certain small set of
nodes D described in the following lemma.

Lemma 5.8. Let K = �N�� � be a virtual graph and P a probability distri-

bution on �0�1�N of the form P = c
∏

�t�w�∈� Rtw
γ�t�w�, where c > 0 is a normal-

izing constant and γ�t�w� ∈ �−1�1� a parameter for each �t�w� ∈ � . Suppose
that �u� v �Z	 ∈ E�N� is given such that there exists a path in K from u to v
outside Z. Let us denote by D the set of nodes which belongs to an essential
path for �u� v� (see Section 5.2.3 for definition) in K w.r.t. Z or to an associated
path for �u� v� in K w.r.t. Z, and 	 denotes the class of edges of all these paths.
Let us put

d�xD� =
∏

�t�w�∈	
Rtw

γ�t�w��xtw� for xD ∈ �0�1�D�

Then, for every xZ ∈ �0�1�Z, κ�u� v �xZ P� �= 0 iff κ�u� v �xZ∩D d� �= 0.

Proof. Evidently, u� v ∈ D. Moreover,

�1� if t ∈ D \Zuv and �t�w� ∈ � for some w ∈ N� then �t�w� ∈ 	 �

Let us introduce the set E of nodes t ∈ N, such that there exists a path from
u to t, made of edges of � \ 	 � which is outside Z with possible exception
of t. � denotes the class of edges of � \ 	 in E. Then v �∈ E, as otherwise
there exists a path between u and v outside Z made of edges of � \	 � which
contradicts the definition of 	 . Using (1), we can conclude D∩E ⊂ Zu. Hence,
one can derive, using the definition of E,

�2� if t ∈ E \Zu and �t�w� ∈ � for some w ∈ N� then �t�w� ∈ � �
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Finally, we put F = �N \ DE� ∪ �DE ∩ Zv� and � = � \ �	 ∪ � �. Then
clearly, N = DEF, D ∩ F ⊂ Zv, u �∈ F, E ∩ F ⊂ Z and � decomposes
into 	 , � , � . Further, using (1), (2) and the definition of E� one derives that⋃

�t�w�∈� �t�w� ⊂ F and moreover, by DE ∩F ⊂ Zv,

�3� if t ∈ F \Zv and �t�w� ∈ � for some w ∈ N, then �t�w� ∈ � .

Thus, one can write P = c
∏

�t�w�∈� Rtw
γ�t�w� = cdef, where e�xE� =∏

�t�w�∈� R
tw
γ�t�w��xtw� is a strictly positive potential over E and f�xF� =∏

�t�w�∈� Rtw
γ�t�w��xtw� can be considered as a strictly positive potential over F.

We put here e ≡ 1 in case � = � and f ≡ 1 in case � = �. The process of
marginalization of P to uvZ can be done separately: owing to (2), summing
through variables in E \Zu concerns only e; owing to (3), summing through
variables in F \ Zv concerns only f and owing to (1), summing through
variables in D \Zuv concerns only d. Hence,

PuvZ = cduvZ∩DeuZ∩EfvZ∩F�

and one can write

κ�u� v �xZ P� = c2euZ∩E�0uxZ∩E�euZ∩E�1uxZ∩E�
× fvZ∩F�0vxZ∩F�fvZ∩F�1vxZ∩F�κ�u� v �xZ∩D duvZ∩D��

Since all terms in κ�u� v �xZ  P� except κ�u� v �xZ∩D  duvZ∩D�, which equals
to κ�u� v �xZ∩D  d�, are strictly positive, the claim of the lemma is evident. ✷

5.3.5. Main lemma. Now, we are able to prove directly the main lemma of
the section.

Lemma 5.9. Suppose that H = �N�� � is the chosen subgraph for a triplet
�a� b �Z	 ∈ E�N� from Summary 5.1 and P any of the constructed probability
distributions for H from Section 5.3.3. Then ¬�a � b �Z �P�� iff �∀�t�w� ∈ � ,
γ�t�w� �= 0�.

Proof. Let us consider the decomposition a = u1� � � � � un = b of the con-
sidered trail into segments described in Section 5.2.3. By Consequence 5.1, it
suffices to show, for some xZ ∈ �0�1�Z (in fact, we show it for arbitrary such
xZ), that [κ�u� v �xZ P� �= 0 for every segment �u� v�] iff �γ�t�w� �= 0 for every
�t�w� ∈ � �. This can be shown with help of Lemma 5.8 where K = Hmor:
owing to Lemma 5.7, its assumptions are fulfilled for the constructed distribu-
tion P� and the question as to when κ�u� v �xZ∩D  d� �= 0 for the corresponding
function d remains to be answered.

This can be done separately for each of seven possible types of sectors men-
tioned in Section 5.2.3. In each case, the corresponding class of edges 	 has
a special form and application of Lemma 5.4 leads to one of the formulas
mentioned in Lemma 5.5, which will imply that κ�u� v �xZ∩D d� �= 0 iff pa-
rameters of certain class of edges ��u� v� ⊂ � are nonzero. We leave to the
reader to check that every edge in � belongs to some ��u� v�.
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(i) If �u� v� contains a free head-to-tail section, then by Observation 5.1,
D consists of the nodes of the segment only. By consecutive application of
Lemma 5.4(b), d�u� v� = Ruv

δ � where δ is the product of parameters of edges of
the segment. Lemma 5.5(a) says that κ�u� v � −  d� �= 0 iff δ �= 0. Thus, ��u� v�
consists of the edges of the segment.

(ii) If �u� v� contains a free tail-to-tail section, then by Observation 5.2, the
set D is either the mere segment �u� v� or the segment with one branch orig-
inating from an inner node of the segment or the segment with two branches
which possibly may originate from the same inner node. The application of
Lemma 5.4(b) leads to one of the formulas from Lemma 5.5(a)–(d). The for-
mulas imply that κ�u� v �xZ∩D d� �= 0 iff all the parameters associated with
edges of the segments are nonzero. Thus, ��u� v� again consists of the edges of
the segment.

(iii) If �u� v� contains a hit head-to-head section, then one applies Obser-
vation 5.3. Then D = �u� v�� and by Lemma 5.5(a), κ�u� v �xZ∩D d� �= 0 iff
γ�u� v� �= 0. That means (see Lemma 5.7) that ��u� v� is the class of the edges
of the segment.

(iv) If �u� v� contains a free head-to-head section, then one uses Observa-
tion 5.4: 	 consists of the virt, edges of the segment and edges of the down-
route. Lemma 5.4(b) then leads to the situation from Lemma 5.5(e) (owing to
Lemma 5.7). Thus, ��u� v� consists of both the edges of the segment and the
edges of the downroute.

(v) If �u� v� is the shared part of a slide and its host hit section, then apply
Observation 5.5, Lemma 5.4(b) and Lemma 5.5(a) to get the conclusion that
��u� v� consists of the edges of �u� v�.

(vi) If �u� v� contains a hit part of a head-to-tail section (e.g., u is the heel of
a slide and v is a tail-terminal of a neighboring section), then Observation 5.6,
Lemma 5.4(b), and Lemma 5.5(a),(c) imply that ��u� v� consists of the nodes of
the segment and of the nodes of the slide between its top node and its heel.

(vii) If �u� v� contains a hit part of a tail-to-tail section, then use Observation
5.7, and Lemma 5.4(b) leads to application of one of the formulas from Lemma
5.5(a), (c), (f ), (g). In any of these cases, one concludes that ��u� v� consists of
both the edges of the segment and the edges of slides between their heels and
top nodes. ✷

5.4. Completeness result. Using the results of the previous sections, we
are able to show the completeness property.

Consequence 5.2. Let G be a CG over N and �X�Y �Z	 ∈ T�N� such
that ¬�X�Y �Z	sepG . Then there exists a binary strictly positive G-Markovian
distribution P over N such that ¬�X � Y �Z �P� �.

Proof. Whenever ¬�X�Y �Z	sepG � then one can find a ∈ X and b ∈ Y
such that ¬�a� b �Z	sepG . Then one can choose a subgraph H described by Sum-
mary 5.1 and construct a binary probability distribution over N as described
in Section 5.3.3. It is H-Markovian according to Lemma 5.6 for every choice
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of parameters. In case we choose nonzero parameters, by Lemma 5.9 one has
¬�a � b �Z �P��� and hence ¬�X � Y �Z�P�� by the symmetry and decompo-
sition properties of the independency model induced by P—see Section 2.1.
Finally, the Markov property for H implies the Markov property for G accord-
ing to Lemma 2.3. ✷

6. Conclusions.

6.1. Main results. We can summarize the obtained results as follows.

Theorem 6.1 (equivalence of criteria). Let G be a CG over N, � be a chain
for G, and t ∈ T�N�. Then, the following conditions are equivalent:

(i) t is represented in G according to the moralization criterion;
(ii) t is represented in G according to the separation criterion;

(iii) t belongs to the graphoid closure of the input list associated with G
and �;

(iv) t belongs to the probabilistic closure of the input list associated with
G and � w.r.t. the class of strictly positive (discrete) probability distributions
over N.

Proof. Consequence 4.1 says �i� ⇔ �ii�, Consequence 3.1 says �i� ⇔ �iii�
and the implication �iii� ⇒ �iv� follows from basic properties of the graphoid
closure mentioned in Section 2.1. The implication �iv� ⇒ �ii� can be proved
by contradiction: if ¬�X�Y �Z	sepG , then by Consequence 5.2, there exists a
strictly positive G-Markovian distribution P with ¬�X � Y �Z �P��. By Con-
sequence 3.2, P satisfies the triplets from the input list. Thus, �X�Y �Z	 does
not belong to the probabilistic closure of the input list w.r.t. the considered
class of distributions, which contradicts (iv). ✷

The previous theorem solves the open question of completeness of the mor-
alization criterion, formulated in [15] and [9], with a positive answer. The
equivalence �iii� ⇔ �iv� of the previous theorem can be interpreted also as fol-
lows: graphoid properties have been shown to be complete for input lists w.r.t.
the class of strictly positive probability distributions. Moreover, �i� ⇔ �iii� and
�i� ⇔ �iv� imply that both the graphoid closure and the mentioned probabilis-
tic closure of the input list do not depend on the particular choice of a chain.

However, to justify the use of CGs as models of conditional independence
structures for strictly positive discrete probability distributions, one needs to
prove the following stronger claim, which generalizes analogous results for
DAGs and UGs from [10, 11].

Theorem 6.2 (Strong completeness). If G is a CG over N, then there exists
a strictly positive probability distribution over N which satisfies exactly those
triplets in T�N� which are represented in G according to one of the above men-
tioned criteria. In particular, every CG model is a probabilistic independency
model.
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Proof. The key property of probabilistic independency models is the fol-
lowing one. Whenever P1 and P2 are two strictly positive probability distri-
butions over N (say P1 defined on

∏
i∈N Xi and P2 defined on

∏
i∈N Yi), then

there exists a strictly positive probability distribution P1�2 over N such that
X � Y �Z �P1�2� iff �X � Y �Z �P1� and X � Y �Z �P2��. For example, one
can define P1�2 on

∏
i∈N Xi × Yi by the formula

P1�2
(�xi� yi�) = P1

(�xi��P2��yi�
)

for
[
xi� yi

] ∈ ∏
i∈N

Xi × Yi�

Thus, if one considers the list of all triplets t1� � � � � tn ∈ T�N� which are not
represented in G, by Theorem 6.1 for each ti there exists a strictly positive
probability distribution Pi over N satisfying all triplets represented in the
graph, but not ti! By repeated application of the construction above, one can
obtain the distribution P1�����n which has the desired property. ✷

Remark. Note that both the concept of strong completeness and the con-
struction used in the preceding proof are taken from [11]. The reader should
be aware of the fact that the obtained distribution may have a pretty large
domain

∏
i∈N Xi. The construction presented does not help in the case where

one needs to construct such a distribution on a domain
∏
i∈N Xi prescribed

a priori. Let us note in this context that, in the framework of DAGs, a (non-
constructive) proof of the existence of a distribution given a prescribed DAG
model and a domain was given in [21].

6.2. Discussion. Let us start the discussion with a (slightly modified) ques-
tion raised by a reviewer: Do CGs help us to build better models?

Well, we do not feel entitled to answer the question on such a level of
generality. We hope that future development in statistics and AI will confirm
the usefulness of CG models. Perhaps we can give here a few arguments in
favor of CG models.

The first argument is that CGs make it possible to describe a wider class
of probabilistic independency models involving UG models, DAG models and
recursive causal models from [13]. And not only these models. There are CG
models which cannot be described by means of the above mentioned graphs.
Thus, CGs enlarge the applicability of graphical models for description of con-
ditional independence structures of discrete probability distributions. In par-
ticular, they allow a more precise inner approximation of general probabilistic
models (graphoids) than the classic graphs (UGs and DAGs).

The second argument is that, in the area of probabilistic expert systems,
CGs may perhaps help to represent more precisely structural information
obtained from experts. In fact, this is one of the possible ways of interpretation
of CG models based on the above mentioned factorization property. We omit the
details of that interpretation [27] and explain the main issue. Suppose that we
have a group of experts, and each of them has his/her own area of competence
(consisting of a set of variables). The areas of competence are disjoint and
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cover all the area of (our) interest. The experts are asked to describe structural
relationships among variables which they think are relevant to the variables
within their areas of competence. Thus, each of them is supposed to provide
an UG having as the set of nodes both the area of competence but possibly an
area of influence (consisting of those variables outside the area of competence
which the expert indicates as relevant to some variables within his/her area of
competence). To prevent discrepancy between different experts, we order their
areas of competence and accept the rule that experts’ areas of influence will
be restricted to the variables taken from the preceding areas of competence
(because the relationships to the variables taken from the “subsequent” areas
of competence will be described by “subsequent” experts). Our task is to put
together pieces of structural information from the experts and represent it
properly. Then a certain CG, constructed on the basis of UGs provided by
the experts, provides an exact natural description of the overall amount of
structural information.

The third argument is that CGs not only provide a unification of classic
graphical models but also (perhaps surprisingly) exhibit more elegant mathe-
matical properties (we have in mind the original interpretation of CGs given in
[19]). Frydenberg [9] showed that every class of Markov equivalent CGs con-
tains a distinguished representative which he called the largest chain graph (it
has the greatest number of lines within the class of Markov equivalent CGs).
Note that this result has no analogy in the case of DAGs: Markov equiva-
lent DAGs have no distinguished members and have to be represented by
more general mathematical objects, for example, essential graphs [3]. This
fact causes many complications for search procedures within the class of DAG
models (i.e., the procedures for estimation of the most suitable DAG model
approximation on the basis of statistical data). However, in the case of CGs,
one can simply represent every CG model by the corresponding largest CG
and search within the class of the largest CGs only. One just needs a suit-
able graphical characterization of the largest CGs. Note that the paper [26]
describes a recovery algorithm which, on the basis of a given CG model, finds
the corresponding largest CG. Moreover, an algorithm which converts every
CG into the corresponding largest CG is presented there and this leads to a
certain graphical characterization of the largest CGs. However, an even more
natural and simple graphical characterization of the largest CGs was found
very recently [29]. Thus, it may appear to be a more convenient approach to
represent even the classes of Markov equivalent DAGs by the corresponding
largest CGs!

6.3. Open questions. Let us comment on the results achieved in this pa-
per and formulate the corresponding open problems. The new separation cri-
terion, based on the concept c-separation, has its own significance. For ex-
ample, it easily implies that every CG model satisfies the following property
from [22]:

��X�Y �Z	 & �X�W �Z	� −→ �X�YW �Z	 composition�
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which may be complicated to verify using the moralization criterion. One of the
reviewers asked whether c-separation could be interpreted by simple stories
as in the case of UGs and DAGs. In fact, we have not tried to elaborate such a
story so far, although we have a few vague ideas as to how (possibly) to develop
such interpretation. Of course, such a story would be more complicated than
in the case of DAGs because c-separation is a more complicated concept than
d-separation (no wonder, that is a natural price for more general models).
Nevertheless, we admit that such a story is important especially for students
and consider this question as one of the open problems.

Another open question concerns the computational complexity of the
c-separation criterion. Perhaps it can be effectively used as the basis of an
algorithm for testing independency statements represented in a CG, provided
that one finds a clever method of implementation. On the basis of the alterna-
tive formulation of the separation mentioned in the end of Section 4, one can
construct a locally performed propagation algorithm, which for given disjoint
sets X�Z ⊂ N, indicates those nodes y ∈ N which are not c-separated by Z
from X [27]. However, in general, we do not know what is the complexity of
a testing algorithm based on the separation criterion in comparison with an
algorithm based on the moralization criterion. Our naive estimate is that the
separation criterion can appear to be more suitable in the case where one has
to read a dependency statement from a CG (since one needs to find just one
active route), while in the case where one has to confirm an independency
statement represented in a CG, the moralization criterion should be more
suitable.

In [12], the concept of d-separation was generalized to the concept of D-
separation to handle more effectively the case when deterministic (i.e., func-
tionally dependent) variables in a DAG are specified. Perhaps c-separation
could be generalized in this direction, too.

Our strong completeness result justifies completely the use of CGs in prob-
abilistic reasoning. However, as mentioned in the remark concluding Sec-
tion 6.1, the question of the existence of a probability distribution given a
prescribed CG model and domains for variables remains open. We share the
reviewer’s opinion that such a (perfectly Markovian) distribution exists in
case of nontrivial (i.e., two-element) prescribed domains. We hope that the
method used by Meek [21] in the case of DAGs can be extended to the case of
CGs. In fact, Meek showed that under a suitable parametrization, the class
of nonperfectly Markovian distributions with prescribed domains becomes a
lower-dimensional variate in the class of all Markovian distributions with
prescribed domains. Thus, the main problem seems to be to find an analogous
parametrization suitable for every CG (perhaps the parametrization method
used in Section 5, for special simple CGs only, can be generalized for this
purpose).

Another possible direction of future research activity is to extend the com-
pleteness result to more general graphs as, for example, Koster’s reciprocal
graphs [14]. We conjecture that our completeness result can be proved in the
framework of general hybrid graphs provided that the corresponding concept
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(such as Markovian distribution, etc.) can be extended to that case. Our con-
jecture is inspired by Spirtes [24], who extended the completeness result for
DAGs [10] to the case of general directed graphs without problems.

A further open question is whether an analogous completeness result can
be proved also in the framework of other (nonprobabilistic) calculi for dealing
with uncertainty in artificial intelligence [25].

From the point of view of the calculus of relational databases and for the
class of all probability distributions (i.e., not only strictly positive ones), the
semigraphoid properties are of more interest than the graphoid properties.
Namely, if a functional dependency among the variables occurs, then the distri-
bution is not strictly positive and the intersection property cannot be applied.
Therefore, it would be interesting to find (for every CG) an alternative list of
independency statements such that the semigraphoid closure of the list is the
corresponding CG model and that the list has minimal cardinality within the
class of such semigraphoid-generating lists. Of course, as mentioned in the
remark concluding Section 3, the number of items of such a list can be higher
than the number of nodes in the CG in general.

In [4], criteria for reading conditional dependence statements from a graph
which is a minimal I-map [22] of some graphoid were developed (both in the
case of UGs and DAGs). Is it possible to develop a similar criterion for CGs
which preferably generalizes these two graphical criteria?

In [22], UG models were characterized as independency models satisfy-
ing certain properties (axioms), analogous to the graphoid properties. Similar
properties for DAG models were formulated there too, although they do not
characterize DAG models completely. It would be interesting to find such an
axiomatic characterization of CG models.

APPENDIX

A. Outline of the subgraph choice procedure. In this appendix, we
show how a subgraph required in Summary 5.1 can be found. To give a global
view, we describe the main steps of the procedure performed in the following
sections:

1. First, we introduce certain criteria by which to compare the “complexity” of
different active routes between two nodes and choose a route with minimal
complexity in this sense—for details, see Section B. Moreover, we make
many observations about such a route.

2. Second, we choose a free slide to every tail-terminal of a hit section of the
chosen route.

3. Third, we perform regularization of the chosen route, that is, its modifica-
tion, in such a way that the new obtained route still has minimal complexity,
and moreover it is a trail, its sections meet regularly and the chosen slides
are regular w.r.t. their host sections—for details, see Section D. Note that
the regularization procedure is necessary to derive all the properties from
Summary 5.1.



1476 M. STUDENÝ AND R. R. BOUCKAERT

4. Fourth, we choose a downroute for every free head-to-head section of the
regularized route.

5. Fifth, we verify that the regularized route, the chosen slides and the down-
routes comply with all the requirements from Summary 5.1 and therefore
the chosen subgraph composed of them solves our problem.

B. Minimal complexity principle. Throughout the Appendix, we sup-
pose that G is a CG over N and �a� b �Z	 ∈ E�N� such that ¬�a� b �Z	sepG is
given. Supposing that ρ is a route between a and b, which is active w.r.t. Z,
the section score of ρ is the number of sections of ρ which are either hit by Z
or head-to-head w.r.t. ρ. The return score of ρ is the number of pairs of distinct
sections of ρ which meet each other. We say that ρ has minimal complexity if
it has minimal section score within the class of active routes between a and
b, and moreover, has minimal return score within the class of active routes
between a and b with minimal section score.

Every pair of different sections α, β of the route ρ in G delimits a subroute
of ρ consisting of sections between α and β including α and β. One can classify
the terminals of α as follows: one of them is the outward terminal w.r.t. the
subroute (i.e., the endpoint of the subroute between α and β) and the other
one is the inward terminal w.r.t. the subroute. The terminals of β can be
classified similarly. Note that this classification of terminals is independent of
the classification according to the orientation of outgoing edges introduced in
Section 4.1 (i.e., tail-terminals and head-terminals).

In all observations below, we suppose that ρ is an active route between a
and b which has minimal complexity. Note that, in proofs, we will often utilize
the following clear transitivity principle. If nodes u and v of G are connected
by a free undirected route in G and there exists a free slide in G to u, then
there exists a free slide in G to v.

Another heritage principle will be used when an old active route ρ in G
will be replaced by a new route 4. If v is a node in N (usually a tail-terminal
of a section of 4) which was a tail-terminal of a hit section of ρ, then the
assumption that ρ is active implies that there exists a free slide in G to v.

Observation B1. Different free sections of ρ do not meet each other.

Proof. Suppose for a contradiction that different free sections α and β
share a node w. Let u (resp. v) be the outward terminal of α (resp. β)—see
Figure 15a. Note that it may happen that u = w or v = w. Then one can
create from ρ a new route 4 between a and b by replacing the subroute of ρ
delimited by α and β by a new section γ made of the part of α between u and
w and the part of β between w and v.

In case γ is a head-to-head section w.r.t. 4� there exists a descending route
copying ρ from w to a head-to-head section δ of ρ (possibly δ = α or δ = β).
Thus, w has a descendant in Z� and therefore 4 is active w.r.t. Z and the
section score of 4 does not exceed the section score of ρ.
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Fig. 15. Illustrative pictures for the proofs of Observation B1 and Observation B2.

In case γ is not a head-to-head section, it is not blocked since it is free.
Thus, also in this case 4 is active and the section score is again not raised by
the described change.

However, it is evident that 4 has lower return score than ρ, contradicting
the assumption that ρ has minimal complexity. ✷

Observation B2. A free head-to-tail section of ρ does not meet another
section of ρ.

Proof. Suppose for a contradiction that α is a free head-to-tail section
which shares a node w with a different section β and u (resp. v) are the out-
ward terminals of α (resp. β)—see Figure 15b (which depicts the subcase in
which u is a tail-terminal). By the same procedure as in the proof of Obser-
vation B1, one can form a new route 4.

In case γ is a head-to-head section w.r.t. 4, one can repeat the arguments
from Observation B1 to show that 4 is active and its section score does not
exceed the section score of ρ.

In case γ is not a head-to-head section, it suffices to show that γ is not
blocked in 4. It is evident when γ is free. If γ is hit and u is its tail-terminal
w.r.t. 4, then a free slide in G to u exists, made of nodes of α and the tail-
terminal of the neighboring section of α in ρ in direction to β (recall that α
is a free head-to-tail section). In the case where v is a tail-terminal of γ, the
heritage principle ensures that there is a free slide in G to v� since v is a
tail-terminal of hit section β of ρ. In either case, 4 is active w.r.t. Z and the
section score was not raised by the described change.

Finally, 4 has lower return score than ρ� which contradicts the assumption
that ρ has minimal complexity. ✷

Observation B3. There is no undirected route in G between nodes of dif-
ferent hit sections of ρ. In particular, different hit sections do not meet each
other.
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Proof. Suppose for a contradiction that α and β are different hit sections
with outward terminals u and v and that an undirected route τ connects a
node w of α and a node t of β—see Figure 16a. Note that the case in which α
and β meet each other occurs if w = t, that is, τ consists of one node. One can
create from ρ a new route 4 by replacing its subroute between u and v by a
new section γ made of the part of α between u and w, by τ, and by the part
of β between t and v.

If γ is a head-to-head section w.r.t. 4, then it is not blocked by Z since it
has evidently a descendant in Z.

If γ is not a head-to-head section, then it is either a free section or one can
show that it is not blocked by the heritage principle. In either case, γ is not
blocked.

Thus, 4 is an active route with lower section score than ρ� which contradicts
the assumption. ✷

Observation B4. There is no free undirected route in G between nodes of
different free tail-to-tail sections of ρ.

Proof. Suppose for a contradiction that α and β are different free tail-to-
tail sections with outward terminals u and v and that a free undirected route
τ leads from a node w of α to a node t of β—see Figure 16b. One can create
from ρ a new route 4 by the same procedure as in the proof of Observation B3.

The new section γ is a free tail-to-tail section w.r.t. 4. Therefore, 4 is an
active route with lower section score than ρ (there is at least one head-to-head
section of ρ between α and β), which contradicts the assumption. ✷

Observation B5. There is no free descending route in G from a node of a
free section of ρ to a tail-terminal of a hit section of ρ.

Proof. Suppose for a contradiction that α is a free section and β is a hit
section, u is the outward terminal of α, v the outward terminal of β, t is the
inward terminal of β and that a free descending route τ leads from a node w
of α to a tail-terminal of β. Thus, one can distinguish two basic cases: either τ

Fig. 16. Illustrative pictures for the proofs of Observation B3 and Observation B4.
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leads to v or τ leads to t—see Figure 17. In both cases, one can create from ρ
a new route 4 by replacing the subroute between u and v by a new subroute
σ made of the part of α between u and w, by τ, and possibly by the whole
section of β between t and v.

In case τ leads to v� the whole subroute σ is composed of free head-to-tail
or tail-to-tail sections. Therefore, 4 is active and has lower section score than
ρ� which contradicts the assumption.

In case τ leads to t� the only section of σ which is not a free head-to-tail
or tail-to-tail section is the last section γ, containing v. If γ is a head-to-head
section w.r.t. 4, it is not blocked because it is hit. In the case where γ is not a
head-to-head section, we use the heritage principle to show that there exists
a free slide in G to its possible tail-terminal v. The existence of a free slide
in G to the other tail-terminal of γ (it may even be u!) can be shown by the
transitivity principle: it is connected by an undirected free subroute of σ to t,
and there exists a free slide to t (by the heritage principle). Thus, 4 is active.

On the other hand, since t is a tail-terminal of β� there exists a head-to-head
section δ of ρ between α and β [otherwise, the part of ρ from t to w� together
with τ� forms a directed pseudocycle in G—see Lemma 2.2(ii)]. Therefore, the
old subroute of ρ gave at least two points to the section score, while σ gives
just one point. Hence, 4 has lower section score than ρ, which contradicts the
assumption. ✷

Observation B6. There is no free descending route in G from a head-
terminal of a hit section of ρ to a tail-terminal of a hit section of ρ.

Proof. Suppose for a contradiction that α is a hit section with a head-
terminal and β a hit section with a tail-terminal, u (resp. v) is the outward
terminal of α (resp. β), w (resp. t) is the possible inward terminal of α (resp. β)
if it exists (note that, in general, one can have α = β) and that a free descend-
ing route τ in G leads from a head-terminal of α to a tail-terminal of β. Thus,
one can distinguish four basic cases according to the end nodes of τ—see

Fig. 17. Illustrative pictures for the proof Observation B5.
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Figure 18. In all cases, one can create from ρ a new route 4 by replacing the
subroute between u and v by a new subroute σ made possibly by α (if τ leads
from w), by τ, and possibly by β (if τ leads to t).

In case τ leads from u to v (see Figure 18a; it may happen that α = β), the
new subroute σ is composed of free head-to-tail sections, and therefore 4 has
lower section score than ρ, which contradicts the assumption.

In case τ leads from u to t (see Figure 18b; here α �= β), only the section γ
of σ containing v deserves attention. As it is hit, it is not blocked in the case
in which it is a head-to-head section. Otherwise, we use the heritage principle
for v. The subroute σ adds just one point to the section score, while the old
subroute gave at least two points. Hence, the contradiction.

In case τ leads from w to v (see Figure 18c; here α �= β), only the section δ
containing u is interesting. To show that δ is not blocked, one can use the her-
itage principle for u and the transitivity principle for the other tail-terminal
(w has a free slide in G, simply the arrow of ρ heading to w). The decrease of
the section score contradicts the assumption.

In the case where τ leads from w to t (see Figure 18d), only the sections con-
taining either u or v deserve attention. The arguments as to why they are not
blocked can be repeated from the previous two cases. Moreover, there exists a
head-to-head section in the subroute of ρ between α and β (otherwise, the part

Fig. 18. Illustrative pictures for the proof of Observation B6.
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of ρ from t to w can be prolonged by τ to a directed pseudocycle). Therefore,
the old subroute between u and v gave at least three points to the section
score while σ gives at most two points, which contradicts the assumption. ✷

Observation B7. There is no free descending route in G from a head-
terminal of a hit section of ρ to a node of a free tail-to-tail section of ρ.

Proof. Suppose for a contradiction that α is a hit section with a head-
terminal and β is a free tail-to-tail section, u (resp. v) is the outward terminal
of α (resp. β), w the inward terminal of α and a free descending route τ leads
from a head-terminal of α to a node t of β. Thus, one can distinguish two basic
cases—see Figure 19. In both cases, one can create from ρ a new route 4 by a
similar procedure to that used in the proof of Observation B6.

In case τ leads from u (see Figure 19a), one can repeat the arguments used
in the first case of the proof of Observation B6.

In case τ leads from w (see Figure 19b), one can verify that 4 is active
similarly to the third case in the proof of Observation B6. As there exists a
head-to-head section in the subroute of ρ between α and β (otherwise, there
exists a directed pseudocycle in G), the old subroute gave at least two points
to the section score while σ gives just one point. Hence, the contradiction. ✷

Observation B8. There is no free route without head-to-head sections in
G between different tail-terminals of a hit section (or hit sections) of ρ.

Proof. Suppose for a contradiction that α and β (possibly α = β) are hit
sections and that a free route τ in G without head-to-head sections leads from a
tail-terminal of α to a tail-terminal of β. Let u (resp. v) be the outward terminal
of α (resp. β) (in the case where α = β� simply u and v are the tail-terminals
of the section). Denote by w (resp. t) possible inward terminals of α (resp. β)
in the case where α �= β. One can distinguish three basic cases depending
on whether outward or inward terminals are connected—see Figure 20. In all

Fig. 19. Illustrative pictures for the proof of Observation B7.
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Fig. 20. Illustrative pictures for the proof of Observation B8.

cases, one can create from ρ a new route 4 by a similar procedure to that used
in the proof of Observation B6.

If τ connects u and v (see Figure 20a; here possibly α = β), then σ consists
of free head-to-tail or tail-to-tail sections and no point is added to the section
score by σ . But the old subroute gave at least one point to the section score,
which contradicts the assumption.

If τ leads from u to t (see Figure 20b; here α �= β), then only the section
containing v deserves attention. The argument as to why σ is not blocked is
similar to the second case of the proof of Observation B5. The case when τ
leads from w to v is covered by interchange of α and β.

If τ connects w and t (see Figure 20c), then only the sections of σ containing
u and v are of interest. One can use the heritage and transitivity principles
to show that they are not blocked and get the desired contradiction similarly
to the fourth case of Observation B6. ✷

Observation B9. There is no descending route in G which is free with the
possible exception of its last node, and leads from a node of a free head-to-
head section of ρ to a node of a different section of ρ. In particular, a free
head-to-head section of ρ does not meet a different section of ρ.

Proof. Suppose for a contradiction that α is a free head-to-head section, β
a different section, u (resp. v) the outward terminal of α (resp. β), a descending
route τ in G leads from a node w of α and a node t of β, and all nodes of τ
with the possible exception of t are outside Z—see Figure 21a. Note that the
case when α meets β corresponds to the situation w = t. Then one can create
from ρ a new route 4 by replacing the subroute between u and v by a new
subroute σ made possibly of the part of α between u and w (if u �= w), by τ,
and possibly by the part of β between t and v (if t �= v). With the possible
exception of the section γ containing v, all sections of σ are free head-to-tail
sections.

If γ is a head-to-head section w.r.t. 4, then either β is a head-to-head section
w.r.t. ρ or there exists a head-to-head section δ of ρ between α and β (otherwise,
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Fig. 21. Illustrative pictures for the proofs of Observation B9 and Observation B10.

the part of ρ from t to w, together with τ� forms a directed pseudocycle). In
either case, γ is active. Therefore, the old subroute between u and v gave at
least two points to the section score while σ adds at most one point, which
contradicts the assumption.

If γ is not a head-to-head section, then it is either a free section (and the
section score decreases) or one can use the heritage principle to show that it
is not blocked. Then σ adds just one point to the section score while the old
subroute gave at least two points. In either case, it contradicts the assump-
tion. ✷

Observation B10. Descending routes in G from nodes of different free
head-to-head sections of ρ to nodes in Z, which are free with the exception
of their last nodes, do not meet each other.

Proof. Suppose for a contradiction that α and β are different free head-
to-head sections, u (resp. v) is the outward terminal of α (resp. β), τ is a
descending route from a node w of α to a node in Z, ω is a descending route
from a node t of β to a node in Z, and τ and ω share a node z—see Figure 21b.
Then one can form from ρ a new route 4 by replacing the subroute of ρ between
u and v by a new subroute σ consisting of the part of α from u to w (if u �= w),
the part of τ from w to z, the part of ω from z to t and the part of β from t to
v (if t �= v).

All sections of σ with exception of the section containing z are free head-
to-tail sections. The section which contains z is a head-to-head section w.r.t.
4 and has a descendant in Z. Therefore, σ adds just one point to the section
score while the old subroute gave at least two points. That contradicts the
assumption. ✷

Observation B11. All the occurrences of nodes of a free tail-to-tail section
of ρ within a hit section α of ρ cannot be confined in the subroute of α between
the occurrences of nodes of a different tail-to-tail section within α.
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Proof. Suppose for a contradiction that α is a hit section, β and γ are
different free tail-to-tail sections, u and v are the first and last occurrence
of a node of β within α, at least one node w occurs both in γ and α, and all
the occurrences of nodes of γ in α are between u and v—see Figure 22. Then
one can form from ρ a new route 4 by replacing the subroute of ρ within α
between u and v by a new subroute σ made of the part of β from u to v.

The revised section α is not blocked in 4 for the same reason that the
original section α was not blocked in ρ. Moreover, the section score of 4 does
not exceed the section score of ρ. However, as β does not meet a section other
than α (see Consequence D2 below, which is proved without this Observation
B11), 4 has lower return score than ρ (γ and α do not meet each other after the
change), which contradicts the assumption that ρ has minimal complexity. ✷

C. Choice of the route and free slides. Given a CG G over N and
�a� b �Z	 ∈ E�N� with ¬�a� b �Z	sepG , our first construction step is to choose a
route between a and b which is active w.r.t. Z and has minimal complexity
in the sense described in Section B. Let us denote it by ρ. Although it could
be modified within sections in the following Section D, its arrows between
sections will remain fixed. The first basic property of the chosen route is for-
mulated here.

Consequence C1. If α, β are different sections of a minimal complexity
active route which share a node, then, up to the mutual interchange of α and
β, the following conditions hold:

(i) α is a free tail-to-tail section;
(ii) β is a hit section;

(iii) the shared nodes do not belong to any terminal free zone of β.

Proof. Observation B1 excludes the possibility that both α and β are free,
while Observation B3 excludes the possibility that both α and β are hit. Let us
suppose concretely that α is free and β hit. By Observation B2, α is not a head-
to-tail section; by Observation B9, α is not a head-to-head section. So, α is a
tail-to-tail section. Finally, by Observation B5, α cannot meet a tail-terminal

Fig. 22. An illustrative picture for the proof of Observation B11.
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free zone of β and by Observation B7, α cannot meet a head-terminal free
zone of β. ✷

The second construction step is to choose, for every tail-terminal of a hit
section of ρ� a free slide in G to that tail-terminal. To avoid ambiguity of the
procedure, the following property is useful.

Consequence C2. Terminal free zones for different tail-terminals of hit
sections (resp. of a hit section) of a minimal complexity active route do not
meet each other. In particular, no node of G can be twice (or more times) a
tail-terminal of a hit section of ρ.

Proof. This follows directly from Observation B8. ✷

The chosen route ρ is active w.r.t. Z by the assumption, and therefore there
exists at least one free slide to every tail-terminal of a hit section of ρ. We
choose and fix just one free slide for every such tail-terminal. Owing to Con-
sequence C2, “tail-terminal” zones in ρ are disjoint, and therefore no slide
in G can lead to distinct “tail-terminal” zones. Thus, every (free) slide in G
has uniquely determined its host section in a minimal complexity active route
ρ (more exactly, the “tail-terminal” free zone of the host section is uniquely
determined). And, of course, one cannot ascribe the same free slide to dif-
ferent tail-terminals. Moreover, one can easily derive the following stronger
conclusion.

Consequence C3. The (chosen) free slides to different tail-terminals of hit
sections (resp. of a hit section) of a minimal complexity route do not meet each
other. Any chosen free slide does not meet a free section of the route or a terminal
free zone of a hit section of the route (except the corresponding terminal free
zone of the host section).

Proof. The first claim follows from Observation B8, the second one from
Observation B5 and the third one from Observations B6 and B8 (depending
on whether one considers a head-terminal free zone or a tail-terminal free
zone). ✷

D. Regularization. The third construction step is regularization of ρ,
that is, a series of possible changes within sections. The changes will be per-
formed in the following three stages:

1. Sections of ρ will be possibly shortened to consist of distinct nodes.
2. Hit sections with tail-terminals will be possibly modified to have the chosen

free slides regular with respect to their host sections.
3. Hit sections which meet tail-to-tail free sections will be possibly modified

to meet regularly those free tail-to-tail sections.
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Fig. 23. Shortening of sections.

D1. Shortening of sections. Supposing α is a section of ρ and u a node of α
which is repeated in α� we omit the subroute of ρ (within α) between the first
and the last occurrence of u in α and replace it by a single occurrence of u—see
Figure 23. Evidently, the shortened section α has the same terminals as the
original section α, and therefore the modified route will also be active and the
section score will not be raised. As ρ was supposed to have minimal section
score, the section score remains unchanged. Similarly, the return score is saved
by the described change and the modified route also has minimal complexity.
Nevertheless, the result of all such modifications is a route having sections
consisting of distinct nodes.

D2. Regularization of hit sections with respect to free slides. Supposing u is
a tail-terminal of a hit section of ρ (already with sections consisting of distinct
nodes), α is the hit section having u as its tail-terminal (uniquely determined
by Consequence C2) and ε the free slide chosen for u in Section C. Then we find
the last node w of α in the direction away from u which belongs to ε. Surely, w
is not the top node of ε (otherwise, a directed pseudocycle is formed by ε and
by a part of α). Thus, one can replace the subroute of ρ between u and w within
α by the corresponding part of ε—see Figure 24 (i.e., under condition that ε
is not already regular with respect to α). As only α could possibly be changed,
but not its terminals, the modified route will also be active. The section score
is surely not raised by this modification. Owing to the assumption that ρ has
minimal complexity, the section score keeps the same value. To see that the
return score was not raised by the described change, one needs the following
property.

Fig. 24. Regularization with respect to free slides.
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Consequence D1. There is no free undirected route in G between a tail-
terminal of a hit section of a minimal complexity route and a different section
of the route.

Proof. In the case that the other section is hit, it follows from Obser-
vation B3; in the case that it is free, from Observation B5 (note that every
undirected route is a descending route). ✷

Indeed, if a section β of the modified route (different from α) meets α in
the modified route, then β is a section of the original route ρ and, by Conse-
quence D1, it cannot meet ε in a nontop node. Hence, β also has to meet α in
the original route ρ. Thus, the return score was not raised, so by the assump-
tion about ρ, it is saved and the modified route also has minimal complexity.

As w is the last occurrence of a node of ε in α, the rest of α after w does
not meet the new part of α. Moreover, both α in the original route ρ and ε
consist of distinct nodes. Therefore, also the modified section α will consist of
distinct nodes. Owing to Consequence C3, the node w can never occur in a
part of α formed from a (free) slide to another tail-terminal of α during a prior
regularization step. Thus, all formerly regularized slides remain regular and
the result of all these modifications will be a route with sections consisting
of distinct nodes such that all chosen slides are regular with respect to their
host sections.

D3. Regularization of hit sections with respect to free tail-to-tail sections.
To ensure feasibility of the procedure below, the following property is needed.

Consequence D2. A free tail-to-tail section of a minimal complexity route
meets at most one other section of the route.

Proof. Suppose that a free tail-to-tail section α meets two different sec-
tions β and γ. By Observation B1, both β and γ are hit. But then an undirected
route in G between nodes of β and γ composed of nodes of α exists, which con-
tradicts Observation B3. ✷

Thus, supposing α is a free tail-to-tail section of ρ which meets another
section of ρ, the (hit) section β which meets α is uniquely determined. We
find the first and the last occurrences of a node of α in β and denote them
by u and v and possibly replace the subroute of ρ between u and v within
β by the corresponding part of α—see Figure 25 (i.e., under condition that
α and β do not meet regularly already). As only β can possibly be affected
by the change, but not in its terminals, the modified route will remain active.
Moreover, the section score will not be raised and therefore, by the assumption
about ρ, the value of the section score is saved. A similar conclusion holds for
the return score. If a section γ of the modified route (different from β) meets
β in the modified route, then it is a section of the original route ρ and, by
Consequence D2, cannot share a node with α unless it is α. Hence, γ must
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Fig. 25. Regularization with respect to free tail-to-tail sections.

meet β also in the original route ρ and the modified route still has minimal
complexity.

Owing to the definition, the new part of β does not meet the remaining
original parts of β. As sections were already composed of distinct nodes, the
modified section β will also consist of distinct nodes.

Consequence C3 implies that the nodes u� v (belonging to a free section)
can never occur in the terminal parts of β which were possibly made of nodes
of (chosen) free slides during a former regularization procedure with respect
to the slides. Thus, the chosen slides will also remain regular with respect to
their host sections after the described change.

As one hit section β can meet several free tail-to-tail sections, we have also
to verify that the described change saves the results of a former regulariza-
tion procedure with respect to another free tail-to-tail section which meets β.
Owing to Observation B1, no node of α can belong to another free tail-to-tail
section; in particular, neither u nor v can be inside the part of β which was
possibly formed from the nodes of another free tail-to-tail section during a
prior regularization procedure. By Observation B11, a formerly regularized
part of β also cannot occur between u and v in β. Thus, the interval of the
original section β between u and v does not meet a formerly regularized region
of β. Hence, the results of all former regularizations will be saved.

Thus, after all described changes of the modified route, one has an active
route with minimal complexity, its sections consist of distinct nodes, the chosen
slides are regular with respect to their host sections and its sections meet
regularly. To see that the regularized route is a trail, we realize that its arrows
cannot be repeated, as otherwise two different sections share a tail-terminal,
which contradicts Consequence C1.

E. Choice of downroutes and verification of conditions from Sum-
mary 5.1. There exists at least one downroute for every free head-to-head
section of the chosen active trail. Our fourth construction step is to choose and
fix just one downroute for every free head-to-head section of the (regularized)
trail. As different free head-to-head sections do not share a node, by Observa-
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tion B1, one cannot ascribe the same downroute to different free head-to-head
sections. Moreover, one can easily derive the following properties.

Consequence E1. Downroutes chosen for different free head-to-head sec-
tions do not meet each other. Every chosen downroute does not meet any chosen
slide or a section of a minimal complexity route except its host section.

Proof. The first claim follows from Observation B10; the second claim can
be derived from Observation B9. ✷

The fifth construction step is to verify that the regularized route, the chosen
slides and the chosen downroutes satisfy all conditions from Summary 5.1.

Condition (a) follows from Consequence E1.
As concerns condition (b), the regularity of the chosen free slides was en-

sured in Section D; by Consequences C3 and E1, the chosen slides can only
meet hit sections outside their terminal free zones (with the exception of the
host section). If the slide meets a section in a nontop node, then by Obser-
vation B3, it is the host section. Otherwise, they share just the top node,
necessarily in a middle free zone, and the section is uniquely determined by
Observation B3 (otherwise, two different hit sections of ρ share a node).

As concerns condition (c), the regularity was ensured in Section D; the rest
can be derived from Consequences C1 and D2.

As concerns condition (d), the slide uniqueness follows from Observation B8,
the section uniqueness from Observation B4 and the combined uniqueness
from Observation B5.

Condition (e) is evident.
Condition (f ) can be verified by an analysis of possible connectivity compo-

nents in H using Consequences C1, C3 and E1:

1. If a node does not belong to a downroute, a slide or a section, then it is iso-
lated in H, and therefore its connectivity component is a singleton without
parents.

2. If a node belongs to a downroute, then either its connectivity component
in H is a simple path with one parent or it belongs to the connectivity
component of the host section of the downroute.

3. The top node of a slide either forms a singleton connectivity component
without parents in H or it belongs to a connectivity component of another
hit section.

4. A non-top node of a slide belongs to the connectivity component of the host
section.

5. If a node belongs to a free head-to-tail section, then its connectivity com-
ponent in H consists of a simple path with one parent.

6. If a node belongs to a free tail-to-tail section, then its connectivity compo-
nent in H is a simple path without parents or it belongs to the connectivity
component of a hit section.
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7. If a node belongs to a free head-to-head section, then its connectivity com-
ponent is a simple path between the terminals of the section with a possible
branch made of nodes of the corresponding downroute.

8. If a node belongs to a hit section, then its connectivity component consists
of a simple path between its terminals and possible branches made of slides
or parts of free tail-to-tail sections which meet the hit section (note that no
cycle can appear as the route ρ was regularized!).

As concerns condition (g), the preceding analysis says that two arrows may
be directed only to a connectivity component of H which corresponds to a hit
or head-to-head section α. An entering arrow can either belong to a free slide
for a tail-terminal of α (then the parent node of the connectivity component is
the top node of the slide) or it can belong to the route (then the parent node is
a tail-terminal of a neighboring section of α). Thus, the parent nodes differ by
Consequences C1 and C3. They cannot be joined by an edge of a chosen slide
or a downroute by Consequences C3 and E1. Supposing that the parent nodes
are joined by a line of a section ξ, one can derive by Consequence C3 (the
case of the top node of a slide) [resp. by Consequences C1 and D2 (the case of
tail-terminals)] that the section ξ is hit and the considered line belongs to one
of its middle free zones. But that situation contradicts condition (d), which has
already been verified. Suppose the parent nodes are joined by an arrow u → v
of ρ (say, originating from a section β); Consequence C3 excludes u belonging
to a chosen free slide. But then at least one of the neighboring sections of α,
say γ, meets the section β at u. The case β �= γ means that they meet in
their terminals, which contradicts Consequence C1. The nasty possibility that
β = γ can be excluded as follows. Of course, the arrow u → v cannot coincide
with the arrow from β to α, as otherwise v is simultaneously a parent of the
component and belongs to the component (resulting in a directed pseudocycle).
Thus, the only remaining possibility is that β (= γ) is a singleton tail-to-tail
section. Then v is a head-terminal of a further section δ (in direction from
α to β). Thus, v cannot belong to a free slide by Consequence C3. Hence, v
has to be a tail-terminal of the other neighboring section of α, say of η (i.e.,
different from β). Since η �= δ, Consequence C1 leads to a contradiction. Thus,
the parent nodes cannot be joined by an edge in H.

To verify condition (h), suppose for a contradiction that λ1� u → t1
— · · ·— ts ← v, s ≥ 1� and λ2� u → w1 — · · ·—wr ← v, r ≥ 1� are complexes
in H having different nodes u� v as parents. The region of any complex in H
must belong to a connectivity component of H with two parents. Supposing
that �t1� � � � � ts� and �w1� � � � �wr� belong to different connectivity components
of H, which correspond to different sections β and γ of ρ� by Consequence C3
none of the arrows u → t1 and u → w1 can belong to a chosen free slide. Thus,
the arrows belong to ρ and u should be twice a tail-terminal of a section,
namely, of neighboring sections of β and γ. Therefore, by Consequence C1
the neighboring sections of β and γ containing u must coincide. The only
possibility is that the singleton �u� forms a free tail-to-tail section between β
and γ. However, the same conclusion can be derived for v� which implies the
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contradictory conclusion u = v. Thus, the regions of λ1 and λ2 must belong to
the same connectivity component C of H. Necessarily, t1 = w1� as otherwise
different arrows u → t1, u → w1 and v → ts enter C� which contradicts the
condition (g). Similarly, ts = wr. However, according to (f ) and Lemma 2.1(ii),
there exists just one undirected path between t1 = w1 and ts = wr in H.
Hence, λ1 = λ2.

F. Proof of Lemma 5.1. Throughout this section, we suppose that H is
the chosen subgraph for �a� b �Z	 ∈ E�N� mentioned in Summary 5.1 and
u1� � � � � un, n ≥ 3� is the corresponding sequence of segment delimiters in-
troduced in Section 5.2.3. Our proof is based on an analysis of special paths
in Hmor. By a basic path in Hmor (resp. in H), we will mean any path in
Hmor (resp. in H) between nodes of u1 � � � unZ whose inner nodes are outside
u1 � � � unZ.

The first claim of Lemma 5.1 says that, for i = 1� � � � � n − 2� every path
in Hmor from u1 � � � ui to ui+2 � � � un is hit by ui+1Z. To reach this conclusion,
it suffices to verify that every path in Hmor from ui to ui+2 � � � un is hit by
ui+1Z (for each i = 1� � � � � n − 2). One can show this by verifying that in
every case which can occur for ui� every basic path from ui in Hmor leads
either to a node in Z, or to ui+1, or to ui−1 (when i ≥ 2). We will give a
complete justification of our arguments on the basis of Summary 5.1 only in
several initial cases, just to show how a detailed proof can be carried out. The
justification of analogous arguments in later cases would be nothing but a
mechanical repetition of considerations already mentioned in the initial cases
and will be omitted. Several final cases will be left to the reader completely.

F1. Basic paths from the first node. First, we show that every basic path
in Hmor from u1 leads to u2Z. One can distinguish several possibilities for the
first section α of the considered trail, which has u1 as its tail-terminal.

If α is a free head-to-tail section, then no other edge in H enters a node of α
except lines of α and the arrow from the tail-terminal u2 of the next section to
the head-terminal of α. Indeed, such an edge belongs either to the trail τ, or to
a free slide for some tail-terminal of a hit section of τ, or to a downroute for a
free head-to-head section of τ. It does not belong to a downroute, as otherwise
the downroute meets α� which contradicts Summary 5.1(a). It does not belong
to a slide, as otherwise the slide meets α, which contradicts Summary 5.1(b).
If the edge belongs to τ (and it is not of the type described above), then α
meets another section of τ� which contradicts Summary 5.1(c). Moreover, no
virt in Hmor can enter a node of α. Indeed, if a virt in Hmor enters a node
t ∈ N, then there exists an arrow in H outgoing from t� and this is not the
case. Thus, every basic path from u1 in Hmor leads to u2 in this case.

If α is a free tail-to-tail section with at least two nodes, then Summary
5.1(a)–(c) implies that the only edges in H (except the lines of α and the arrow
of τ outgoing from the other tail-terminal u2 of α) which can possibly enter α
are lines of a middle free zone of a hit section of τ (uniquely determined in
that case). But then no further edge in H enters a node of the middle free
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zone by Summary 5.1(d). Thus, every basic path in H from u1 leads either to
a node in Z (a limit of the middle free zone) or to the other tail-terminal u2
of α. With the exception of u2� the nodes of such a path cannot be entered by
a virt in Hmor. Hence, the claim can be extended to basic paths in Hmor.

If α is a singleton free tail-to-tail section, then the arrow from u1 enters the
next section β and one can distinguish four subcases depending on the type
of β. However, in each subcase, the arguments concerning a possible middle
free zone which meets α can be repeated:

1. If β is a free head-to-tail section, then by Summary 5.1(a)–(c), no other
edge in H enters β (except those implicitly considered). In particular, the
connectivity component of H containing the nodes of β has just one par-
ent u1. This implies that no virt in Hmor can enter u1 and every basic path
in Hmor from u1 leads either to Z or to the tail-terminal u2 of β.

2. If β is a hit head-to-tail section, then the arrow from u1 to β enters either
a node in Z or a head-terminal free zone of β. In the latter case, one can
show that no other edge in Hmor enters the head-terminal free zone (except
those implicitly considered). However, there exists a virt in Hmor between
u1 and the top node w of the slide to the tail-terminal of β. The slide then
leads to its heel u2 and the only possible branches in Hmor occur when a
middle free zone of another hit section contains w. In either case, every
basic path in Hmor from u1 leads to Z or u2.

3. If β is a hit head-to-head section, then one can repeat the arguments from
the previous case with the modification that the virt from u1 leads directly
to the tail-terminal u2 of the section following after β.

4. If β is a free head-to-head section, then one can use the same procedure,
but instead of a head-terminal free zone of β� one considers the whole free
section β and a downroute for β to a node in Z. By standard arguments,
one can show that no other edge in Hmor can enter β or the downroute
(except those implicitly considered).

If α is a hit section and the heel u2 of the slide to u1 differs from u1, then no
other edge in Hmor enters the path between u1 and u2 (except those implicitly
considered).

If α is a hit tail-to-tail section and u1 is also the heel of the slide for u1,
then the only two edges in Hmor entering u1 are a line of α and an edge of
the slide. The line of α leads in Hmor to a node in Z� while the slide leads to
its top node w. The only other edges of Hmor possibly entering w are the lines
of a middle free zone of another hit section which lead to a node in Z, and
the virt to the top node t of the slide to the other tail-terminal of α. With the
proviso of a possible middle free zone of a hit section which can meet t� the
other slide leads to its heel u2.

If α is a hit head-to-tail section and u1 the heel of the corresponding slide,
then one can repeat the procedure from the previous case with the modification
that the virt from w leads directly to the tail-terminal u2 of the next sec-
tion β.
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F2. Basic paths from the other nodes. The verification of the fact that every
basic path from ui (2 ≤ i ≤ n− 2) leads to ui−1ui+1Z is analogous and will be
left to the reader. The main difference is the larger number of cases, as one
has to distinguish several possible “directions” out of ui (up to six edges in
Hmor may enter ui).

If ui is a tail-terminal of a section α and an outgoing arrow from ui enters a
section β (either the next one or the preceding one), then one can distinguish
four cases for β depending on whether it is free or hit, and a head-to-tail or
a head-to-head section. This is completely analogous to the four subcases of
the situation from the preceding subsection, where u1 forms a singleton free
tail-to-tail section. The analysis used there can also be used here to show that
basic paths in Hmor from ui which start either with the outgoing arrow or
with the corresponding (possible) virt lead to ui−1ui+1Z.

If ui is a tail-terminal of a section α and one considers basic paths in Hmor

from ui which start with another edge in Hmor, then one can distinguish (up
to) nine cases analogous to all nine cases of the situation from the preceding
paragraph. The arguments of that analysis can be repeated here, too.

If ui is a heel of a slide for a different tail-terminal (either ui−1 or ui+1)
of a hit section α, then one can distinguish three cases: either to consider
the basic path from ui which starts with the line of α in the direction to-
wards the tail-terminal, or to consider the other directions (which involve also
the path copying the slide in direction towards its top node) and to distin-
guish two subcases depending on whether α is a head-to-tail or a tail-to-tail
section.

F3. The second claim of Lemma 5.1. To derive the second claim of the
lemma from the first one, it suffices to realize that, for every i = 1� � � � � n− 2�
the graph Hmor

T � where T = anH�uiui+1unZ�� is a subgraph of Hmor� and
therefore every path from ui to un in Hmor

T is also a path from u1 · · ·ui to
ui+1 · · ·un in Hmor.
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