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ESTIMATING THE PROBABILITY OF A RARE EVENT!

By LAURENS DE HAAN AND ASHOKE KUMAR SINHA

Erasmus University Rotterdam

Let (X,,Y7),(X,,Y,),...,(X,,Y,) be a random sample from a bivari-
ate distribution function F which is in the domain of attraction of a
bivariate extreme value distribution function G. A subset C of R? is given,
which contains none of the observations. We shall give an asymptotic
confidence interval for Pr((X;,Y;) € C) under certain conditions.

1. Introduction. Extreme wave height and still water level are two very
important factors for causing floods along a seacoast. Figure 1 shows the
wave height and still water level during 828 independent storm events,
recorded along the Dutch coast. The shaded area in the figure represents a
possible failure area; any observation falling in this area is dangerous for the
“Pettemer zeedijk,” a sea-dike near the town of Petten. Our main problem is
to estimate the probability that a future storm can cause a wave height and
still water level combination which falls in this failure region. We also want
to construct a confidence interval for the failure probability. For further
details on the data and the failure region see, for example, reports on
the Neptune Project in http://www.few.eur.nl/few /people /ldehaan /
neptune.htm. An expository paper about this problem and the underlying
theory is de Haan and de Ronde (1998).

We can formulate the problem mathematically as follows: let {(X,,Y));
i=1,...,n} be a sample from the bivariate distribution function F.
Suppose C €.2(R?). On the basis of the sample, we want to estimate p =
Pr((X,,Y;) € C), the failure probability.

The set C is such that none of the sample points falls into the region C, so
we cannot use the empirical distribution function to estimate p. To estimate,
we shall use some extra condition on the distribution function F' in the field
of extreme value theory. Since none of the observations fall into C, in first
approximation the probability p must be less than 1/n. Now the fact that
none of the observations is close to the failure region is an essential feature of
the problem, which we want to retain when applying asymptotic theory as we
will do. Thus the inequality n Pr((X,Y) € C) < 1 forces us to assume that in
fact, when applying asymptotic theory, the set C depends on n (notation: C,)
and that the sequence p, = Pr((X,Y) € C,) tends to zero as n — ». We go
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Data and the failure region
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FiGc. 1. Data and failure region.

one step further. The failure region in Figure 1 is in fact determined by a
function: its functional form is

{(s,t): 0.3s + ¢ > 7.6}.

Thus in the rest of the paper we shall assume that
C, = {(s,0): fu(s,t) = 1)

and, more specifically, that

s t
S, t) = s |
hul ) =1 X Yn
where x, and y, are some positive numbers and f is some fixed known
function.
We now explain the mathematical framework in which we work and give a
sketch of how we shall solve the problem.
Assume that F is in the domain of attraction of some bivariate extreme
value distribution function G [notation: F € 2(G)], that is, there exist se-
quences a;(n) > 0 and b,(n) € R; j = 1,2, so that

(L) lim F"(a,(n)x + by(n), as(n)y + by(n)) = G(x, )
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for all continuity points (x, y) € R%. We shall choose normalizing constants
ai(n) and b,(n) in such a way that the jth marginal distribution of G will
have the form exp{—(1 + ij)‘l/“/j} whenever 1+ y,x > 0 where v, € R,
j=1,2.

It is known that G satisfying (1.1) is a max-stable distribution function,
that is, for all n > 1, there exist constants d,(n), @,(n) > 0, b,(n), by(n) € R
such that,

G"(@(n)x + by(n),dy(n)y + by(n)) = G(x, )

[see de Haan and Resnick (1977) for this as well as other results up to (1.3)
below]. A max-stable distribution in R? is called a simple extreme value
distribution if each marginal is equal to the extreme value distribution
function ®,(x) = e /*I(x > 0) where I(-) stands for the indicator function.
We denote G((x" — 1)/v,,(y"2 = 1)/v,) by Gy(x,y). Note that G, is a
simple extreme value distribution function. Hence [see de Haan and Resnick
(1977)], there is a measure v concentrating on [0, %]%\ {(0, 0)} such that,

1. v is a finite measure on compact subsets of [0, ]2\ {(0, 0)};
2. Gy(x, y) = exp{ —v{(0, x] X (0, y]})}.

Moreover,
(1.2) sv(sB) = v(B); VB ez([0,%]*\{(0,0)})

for s > 0, provided B is bounded away from the origin. This measure v is
called the exponent measure of the distribution G,.
Let T: [0, <)%\ {(0,0)} — (0,%] X [0, 7/2] be the transformation such that

y
T(x,y) = (r,w) withr = (x? +y2)1/2, w= arctan(—).
x

Now from here we can show that G, is a simple stable distribution function
with exponent measure v iff there exists a finite measure ® on [0, 7/2] such
that

voT }dr,dw) =r ?dr ®(dw),
and
f cos w P(dw) =1=f sin w P(dw).
[0, 7/2] [0, 7/2]

The measure ® is called the spectral measure or angular measure of the
distribution G,.
Now (1.1) is equivalent to

31_1)120 n[1 - F(a;(n)x + by(n),as(n)y + by(n))] = —log G(x, y).

We can replace n by a continuous variable ¢ > 0 and get

lim ¢[1 — F(a,(£)x + by(£), as(t)y + by(1))] = ~log G(x, ),
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that is,

lim ¢ Pr

t—>x»

(Xl‘_bl(t) n—_w>y)=_10ga(x .

> x or
ay(t) ay(?)
Therefore for all (x, y) [R{i,

1/v /v

X o) T

a(t)
x" — 1 yY2 — 1)

= —log G( ,
Y1 Y2

Y1 - b2(t)
ay(?)

lim ¢ Pr

t—>

1+, 1+ vy, >y

= —log Gy(x, ) = »({[0, x] x [0, 7]}").

Thus we have that (1.1) is equivalent to the vague convergence of measures
on [0, ]\ {(0, 0)}, that is,

lim ¢ Pr

1+
(1.3) toa N

X, —by(t) | Y, —by(1) 7™

=v(").
We denote for all i = 1,2,...,n,

Xi - bl(t)
ay()
So for 0 < & < n, (1.3) gives us

Y, — by(t) }/

1/
} ) Y,(t) = [1 + 7 (1)

Xi(t) = [1 + 7

n - (n\ . (n
as n >, koo and k/n > 0; VB €.%(0,%]2\ {(0,0)}) provided B is
bounded away from the origin and v(dB) = 0. We shall assume k£ — =« and
k/n — 0 throughout the paper.

In view of the theory just developed involving the transformation from
(X,Y) to (X(n/k),Y(n/k)), it seems natural to apply the same transforma-
tion to the failure region C,. In fact the problem becomes tractable with our
method only if we assume that the set C, is of the following form: there exist
a positive sequence {c,} (with ¢, — ©) and a measurable set A in [0,%]*\
{(0, 0)}, bounded away from the origin so that

(1.5) Cn=a(%)¢+b(%).

Here a(¢) = (a,(2), ay(£)),b(2) = (b,(¢), by(¢)), v = (4, v5) and all operations
(addition, multiplication and taking powers) are componentwise.
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Thus we have

p, = Pr((X,Y) €C,)

o a2 o)
()52 <o

k
~v(c,4)  [by(14)]

u

k
- —(4) [y (12)].

n

So we shall try to estimate p, by (k/nc,)v(A). However, we do now know c,,,
A and ». Therefore we propose

koo
1.6 p = —1 (A
(1.6) Byi= = h(A)

as the estimator of p, where 7,, ¢, and A are the estimators of v, ¢, and A,
respectively, which are defined as follows.

We shall use some specific estimators of a(-), a,(-), b;(-), b,(-), yl and v,
studied by Dekkers, Emmahl and de Haan (1989). Let X, ,) <X, ,) < -+ <

XpmandY, )<Y, , < <Y, , bethe order statistics. We define the
estimators as follows: deﬁne functions, # =t A 0 and

2
(1-1%)(1 - 27)°

1
pi(t) = 1—_2; pa(t) =

and for r = 1,2,

wlv—a

M.(X) = Z {log X, n_iny — log X(n,km)}r.

Now we define estimators as

. 1 M(X)"|
(17) Y1 1=M1(X)+1—§(1—m) ,
(1-8) 81(%) = X(n—k,n)’

n\y X mVBM(X)? - My(X
L9) L) - VBM(X)" — My(X)

\/3( P1( 71)) - 92(71)

Then ¥,, 132 and d, are defined in the same way by replacing X with Y.
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Next we denote for 1 = 1,2,...,n,
r A 1/ 91
N X, —by(n/k
Xl(_) = |1 + ,’)\/1# s
k a(n/k)
Y(n) . Y, - by(nsk) |7
A\~ Y24, (n k)

We shall use the estimator 7, as suggested by de Haan and Resnick (1993),

which is defined as
1.10 D ! i iz (272

. . = — A — d — [SEEIN
(1.10) w0 =5 L[5 )5 (F) <

Next we consider ¢, and A. The role of the sequence {c,} is illustrated later
in Figures 2 and 3: v(A) can be estimated via the empirical measure but not
v(c,A). Since ¢, and A are not uniquely determined, we have to make a
choice; our choice is to determine A such that min{s: (s, s) € A} = 1, that is,

the point (1, 1) is on the boundary of A. Before proceeding further, we would
like to introduce some notation in order to avoid cumbersome expressions. We

denote
s =t o) 5 o3 5ol 5 )
)55 il

r ol 5 865 o
br/y = {(s,t) 1 fu(c,s,c,t) = 1).

>~ S

So from (1.5) we get that
C —

n

1
(11)  A=—|l+y

n

According to our choice of A, the point (1, 1) must be on the boundary of A.
So ¢, must be the solution of f,(s,s) = 1. This determines c, = s(a, b, y).
However, we do not know (a, b, y). So we can only find ¢, = s(a, b, ¥), which
is the solution of

(1.12) fi(s,s) =1.

Geometrically we can explain ¢, as the intersecting point of fn(s, t)=1and
the straight line s = ¢.
Finally, we define A as follows:

To construct the confidence interval for p,, we also need an estimator of
the spectral measure. There are two consistent estimators available for the
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spectral measure which are defined as follows.
Semiparametric estimator:

00 =3 ()17 (2(F) + (7)) > 2

(1.13)

[Einmahl, de Haan and Sinha (1997)].
Nonparametric estimator:

(X,,Y): (n —Ryx) "+ (n—Ry)

( n—Ry ) }

arctan| ————| € -

n—Ry

[Einmahl, de Haan and Piterbarg (1998)], where Ry and Ry stand for
rank(X,) and rank(Y), respectively. '

Without any ambiguity, we shall denote the distribution function gener-
ated by the spectral measure ®, that is, ®([0, 6]), by ®(8). Similarly ®,((0, 61)
will be denoted by ®,(6).

To prove the asymptotic normality, we need to assume certain conditions
apart from (1.1) and (1.5). In Section 2, we mention these conditions. One of
the conditions is the Vapnik—Cervonenkis (VC) property. Some examples of
collections of sets which satisfy this property are mentioned in Appendix B.

Section 3 states some lemmas with proofs which are necessary to prove the
main theorem. The main theorem is stated and proved in Section 4.

Section 5 deals with the construction of the asymptotic confidence interval
for p,. Section 6 discusses an application of the main result to the wave
height and still water level data near the Pettemer zeedijk.

We have used only the two-dimensional set-up for the proof. An extension
to higher dimension is immediate.

The estimation of failure probability is actually a generalization of estimat-
ing the exceedance probability in higher dimension, where we have sets of the
form C, = {(s,t): s/x, V t/y, > 1}. The estimation procedure is more or less
the same but the proof of asymptotic normality is quite different. It is much
more difficult in the case of failure probability than in the exceedance
probability case. The estimation of exceedance probability and its asymptotic
normality have been discussed in de Haan (1994), and Sinha (1997), page 11.
The one-dimensional version of the exceedance probability has been discussed
in Dijk and de Haan (1992).

An alternative approach to the problem uses a much more restrictive, in
fact, purely parametric, model [cf. for example, Smith, Tawn and Yuen
(1990), Coles and Tawn (1991), Joe, Smith and Weissman (1992), Coles and
Tawn (1994)]. It is assumed that the underlying distribution function on an
interval of the form (x,,*) X (y,,®) actually coincides with a multidimen-

R 12
®,() =5 L1
(1.14) -l
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sional extreme value distribution (i.e., the underlying distribution function
equals the limit distribution function on a tail set). Moreover the exponent
measure is modelled as

(100, 5] X(0,5)) = (& 3,

where 0 < a < 1 or variants of this formula. Since the model is completely
specified, the probability of any set can be calculated, including the failure
set. Due to the parametric context, the parameters can be estimated by the
maximum likelihood method.

In contrast, our conditions, as detailed in Section 2, rather than requiring
equality of the two sides of (1.1) for any n and some set of (x, y)-values,
require mainly a polynomial convergence rate in (1.1) [cf., e.g., (2.3)] as well
as various conditions restricting the sequence {k(n)} [(2.5) and (2.6)] in order
to avoid bias and restrictions on the boundary of the failure region [(2.7), (2.9)
and (2.10)].

Finally, the methods we have sketched above are valid only when the
limiting extreme value distribution does not have independent components.
Otherwise the methods have to be refined [see Ledford and Tawn (1997)]. In
the problem under study there does not seem to be asymptotic independence
[cf. de Haan and de Ronde (1998), Figures 4 and 5].

2. Conditions. Let us consider the following class of sets in R2: @ :=
{C:n>1and :={,C, +1,11,,l, € R%C, €&}

However, we need to restrict our £ so that the class & = {[1 + yS]V”:
S € £} should not contain any element for which the »-measure is infinite.
Hence we assume that the class

1 2
(21) gz, = {S ez: [1+yS]V" c [O,oo]z\[O,E} } is a VC class.

We also assume that the sets of £, satisfy condition (SE) of Gaenssler (1983).
Assume that
(2.2) sup

Sez %Pr((x(%)’ﬁ(%)) elr+ ys]l/y) - v([1+8]"7)

where &' ={SNS":S,S" €%,}.
Suppose that
+b,(2), ay(t)

t[l—F(al(t) o -

— v({[0, x] x [0, y]}) = O(d(2))

locally uniformly for (x, y) € (0,<]%, where d(¢) is a regularly varying func-
tion and d(¢) — 0 as ¢t — «. In fact, often there exists a function d such that
the left-hand side of (2.3) divided by d(#) converges for each x and y as t -
[cf. de Haan and Resnick (1993)].

- 0,

x" —1 y72_]_

(2.3) + bz(t)”
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Next we define a transformation @,: R} X R* x R* x.%([0, %]\ {(0,0)}) —

[0, 1],
. (n\ .(n B"—1 177
Q,(a,B,m,B) =Pr (XL(E),YI(Z))E 1+ vy|a + B s
and we impose the following condition:
n B™ —1 1
zQy(arHBnannaB)_V 1+7 o n +Bn
(2.4) "

-ol4(5))

for all sequences («,, 8,,n,) = (1,0,y) + O(k~'/?) uniformly in B €
(10, %]*\ {(0, 0)}).

Next we define for x > 0, the function

q,(x) =x""7 (flxwl(log u) du

(see Appendix A for more details about the function g,). We assume the
following conditions about the growth of the sequence c,:

o5 e VR
(29 P k)
and

(2.6) \/_C”d(n/k)

n—e q71/\72(c )

Assume that f has first-order partial derivatives f and f®. We also
assume that

f(l)
(27) ﬁ > 0.
This actually implies that if (x, y) satisfies f(x,y) = 1, then y is a nonin-
creasing function of x, because dy/dx = —f/f® < 0. Or in other words,

the boundary of the failure region C,, that is, the set {(s, ¢): f(s/x,,¢/y,) =
1}, is a decreasing function of the first variable.
We define

ay(n) %, FP(ex,¢,)
al(n) yn( ) f(l)(cnx,cny) ’

&(x,y) =

where

FO(s,t) = fO Lf sm—1 b 1] sm»-1 b
2 (8, 1) = —ia + , —ia +
xn ! ’Y1 ! yn 2 72 2

; Jj=1,2.
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Suppose that

(2.8) ,}iggofn(x,y) =§&(x,y)

exists uniformly in [0, «]2. Furthermore, (2.7) implies that £(x, y) > 0.

Let {(p(6)cos 0, p(8)sin 0): 6 € [0, 7/2]} be the boundary of A, that is,
p(0) = s(a,b, y) is a solution of f,(c,s cos 6, c,s sin §) = 1. We assume that,
given & > 0,

sup sup fu(c,scos 0,c,ssin 0)

00, 7/2] [s—p (0))I<e

1 (c scos )" —1
(2.9) ) + 5,0,
Xn 71
1 (c,ssing)? -1
—{ay ~ +by)||—0,
Yn Y2

where (a/a,(b —b)/a,y) = (1,0, y) + O(k~'/2). This assumption actually
ensures that p(6) — p(0) uniformly for 6 € [0, 7/2], where {(5(6)cos 6,
p(8)sin 0): 6 € [0, 7/2]} is the boundary of (¢, /c,, )A, that is, p(0) = s(a, b, y)
is a solution of f (c,scos 0,c,ssin ) = 1.

However, we need another assumption similar to (2.9). We assume that,
given ¢ > 0,

sup sup |f~n(cns cos 6,c,ssin 6)
(2.10) 6<l0,m/2] ls—p (ODI<s

—f,(c,Ri(s)cos 6, ¢, Ry(s)sin 0)| -0,

where R (x) =[1+ (n,/a{(x% — 1)/, — B}]l/’b and (a, B,7v) = (1,0,y) +
O(k~1/2). This, along with (2.9), ensures that SUPy < (0. /2yl P(B) — p(B) = O,
where {( p(0)cos 0, p(8)sin 6): 0 € [0, w/2]} is the boundary of A and
{C p(0)cos 0, p(0)s1n 0): 6 €[0,7/2]} is the boundary of [1 + y{(A/a) AY —
1)/y + (b — b)/a}]"/.

Suppose ®(-) is the spectral measure of v and {( p(8)cos 0, p(9)sin 0): 0
[0, 7/2]} is the boundary of A. We assume that there exists a § (0 < § < 7/4)
such that for y,, vy, # 0,

(p(0)cos 6) (p(0)sing) ™
oy 7w e STyt <
' llog( p(6)cos 6)] llog( p(6)sin 6)]
[I "0 D(do) < =, fI 0 D(do) < =,
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and
lo 0)cos 6))>
ify, = 0, fl( g(pl()(;) ) ®(do) < =,
(2.12) ,
lo 0)sin 6
if y, = 0, fl( g(pf)(;) ) D(dh) < =,

where I € {[0, §),(w/2 — 8, w/2]}.

REMARK 2.1. Note that as x — =, for y <0 we have ¢, (x) - x77/y"
Hence if v,, v, < 0, the condition (2.5) can be written as lim, vk ¢! 72 = oo,
Hence the conditions (2.3), (2.5) and (2.6) will be compatible when vy,, vy, >

3
3. Some lemmas.

LEMMA 3.1. Suppose that (1.1), (2.1), (2.2) and the second-order condition
(2.3) hold for the underlying distribution function F. Moreover, suppose that
k = k(n) is so that

lim V& d( )
n— o
Let W, be a bounded, uniformly continuous, zero-mean Gaussian process with

Cov(W,(B,),W,(B,)) = v(B; N By).

Then there exist probabilistically equivalent versions of A, a, b and % (which
we denote, without any loss of generality, by the same symbol) such that they
are defined on the same probability space as W, () and

{ J(A), W(;—l b-b

’i’_ ‘)’)} = (0’A7B7F)1

with

A, () =
and (A,B,T) are expressed as functionals of the process W, as follows:

1-%°1-2y)( 3P  Q
5 3]

f{ ()——Q(a b- b,a,-)}—wy(-)

a

A=’yWV(1)+ 1_4_ —E
_ 30 - 2y)’ + (1 - 3)(1 - 27)" — 41 - v)

(1-47)*(1 - 7)(1 - 27)

B = W,(1),

(1-7%)*(1 - 27)
2

F={y-v-21-»"1-2y)}P+ Q.
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where s = s A 0, and if the jth component of W, is W,; (j = 1,2) then the jth
component of P is

ocW dS ]_
'/1 (9) s 1-
and the jth component of Q is

s%—1 ds

2! [w, . W,,(1
{fl W) TS T T o) (-2, )}‘

J

ProOF. Define #,() == (1/k)L, {(X,(n/k),Y(n/k)) € -}. First, note
that

Y a

b 1/y
— + H )=ﬂn([1+y(zlcn+lg>]”’),

where I, = (aé?)~! and I, = I,[a(1 — é))/% — b] + (b — b)/a. Note that by
(2.1), # is a VC class.

Then we proceed in the same way as in Proposition 3.2 of Einmahl, de
Haan and Sinha (1997). O

LEMMA 3.2. Under conditions (1.1), (2.1), (2.2), (2.3) and (2.8),

vk (611 ) 78 + §(1,1)7,8,
qyl/\yz(cn) 1 + §(1’1) ,

where 7,7, are as defined in (A.1) and with the notation y = y A 0,
S, =T, - 3A, +7%B; j=1,2
and (A,B,T") are as defined in Lemma 3.1.

REMARK 3.1. By (2.8) and (2.7), £(1,1) > 0 and so 1 + £(1,1) > 0. Hence
the limit is always defined.

ProoF. First recall that c, = s(a, b, y) is the solution of f.(s,s) =1, and
— s(a, b, %) is the solution of f (s,s) =1.
Now
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By the implicit function theorem
s af ( p f)
oy Y1 ds |

d . a; . Qg =
Efn(s’s) = x_sh lfél)(s’s) + y_s*yz 1f£2)(s’s)’

n n

Here

d a s - a -
—f.(s,8) = x—:(/lu““_l log udu)fél)(s,s) = x—lsquh(s)f,gl)(s,s).

n

Thus
s (a,/x,)s"q,(s) (s, s)
Mlavy  (@1/2)8" 05, 8) + (a2/9,)5" F2(5,9) |y
B 5q,,(s)
L+ (ay/ay)(x,/ya) 8" (s, 8) /(s 5) @,b, )
_ Caty(Cn)
1+&(1,1)°
Hence
Vi R ds \/E(% —7v1) ¢.q,(¢c,)
ctrred T | T T g (e T (LD

71
- -
1+ ¢£(1,1)

Similarly, one can show that

vk as VR (G1/a; — 1) ¢, (1= ¢;) /%)

— (4 —ay) — =
chyl/\yz(cn) ! ' aal (a,b,y) cnq71/\72(c”) 1+ g”(l’ 1)
T V1A,
= T
1+ ¢(1,1)

VR R ds \/i?((l;l — bl)/al) clmm
o ey b o) T 1 1,1
quyl/\yz(cn) d 1 (a,b,y) cnq'yl/\yz(cn) + gn( ’ )

7171 B,

T U1t e

Proceeding in the same way, we can find the limit of the other terms and
combining all these we get the required result. O
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COROLLARY 3.1. Under the conditions of Lemma 3.2 and assumption (2.5),

LEMMA 3.3. Suppose the conditions (1.1), (2.1)-(2.4), (2.8)—-(2.12) hold for
the underlying distribution function F. Moreover, suppose that k = k(n) is so
that

lim \/Fd(ﬁ) = 0.

n— o k

Then there exists a probabilistically equivalent version of v, (which we denote,
without any loss of generality, by the same symbol) such that

WVE{s,(A) - v(A)) - W (A) - RA,B,I)| — Oas,,
where W,, A,B, I" are as defined in Lemma 3.1 and

R(A,B,T)
='/77/2 {h(Al’ By, T, p(0)cos 0) +D(0)h(A,, By, Ty, p(0)sin 9)} ®(d)
0 p(6)[1 + D(0)] ’
where for j = 1,2,
h(4;, B;, T}, s) :Ajs_y;—_l — B;s7 —Tq,(s),
j

®() is the spectral measure of v, {(p(6)cos 6, p(6)sin 0): 0 € [0, w/2]} is
the boundary of A and D(8) = &(p(0)cos 6, p(8)sin 6)( p(#)sin 6)*>"1)/
((p(B)cos )™,

Proor. First by invoking the Skorohod construction we can obtain a new
probability space on which all the random elements of Lemma 3.1 are defined
and where the weak convergence can be replaced by strong convergence.
Thus we reduce the problem to an analytical problem. Without any ambigu-
ity, we maintain the old notation for these new random elements.

Now

e[, (A) - v(A)]
- V&

f/n(A)—Qy(

a b-b

—
a a

+VE Qy(
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A A 1
aA -1 b-b»\]"
—v|[1+ y{— +
a vy a
A A 1
AaA -1 b-b)]"" X
1+ y{— + —V(A).
a vy a

o ab-b
Vn(A)_Qy ;7 B ,Y,A

The second-order condition (2.4) will give us that

A A N 1/y
aA”-1 b-b
—v||1+ y{— + - 0.
Y a

Now WeAconsider the third part. Notice A=Q1 /e + y((C, — b) /a7
={(s,t): f,(é,5,¢,t) = 1}. If {(p(6)cos 6, p(6)sin 6): 6 € [0, 7/2]} is the
boundary of A, then it satisfies the equation f (é,s,¢,t) = 1. Similarly,
if {( p(0)cos 0, p(0)s1n 0): 6 [0,7/2]} is the boundary of [1+ y{(a/a) X
(A= 1) /y + (b b)/a}]'/” then it satisfies the equation

N /%

a, [s""—=1 b, —b, 7

1 + 'yl ) - )
a Y1 a;

A 1/%

tr2 — 1 b, —b
144,22 - -z 2 = 1.

Qy Y2 2

N As N 1/y
aA’-1 b-b N
1+y{——F— + -v(A)
Y a
:@[/”/zfx 2 dra(de) — [ r‘zdrfb(df))}
0 O] 0 p(0)

w/2( B(0) = B(0)
"l ( 5(0)5(0)

2 - 1 A
»_;{ (5= )5 (o)

p(8)5(0) o,

+\/F|:V

By Lemma 3.1,

- W,(A)| -

a b-b .
\/F[Qy(;, a ,?,A)

[

fulé

We have

Ve | v

[

D(d)
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a. w/2 ,3
+VE|-2L -1 Ao o P(de)
b, — b, 1
E [ —p<I>(d9) :
a; o p(0)p(0) B (a,B,m

where (a, B, 1) = t(a/a,(b — b)/a, ¥) + (1 — t)1,0, y), for some ¢ € (0, 1).
Now proceeding as in Lemma 3.1 and by assumptions (2.8), (2.9), (2.10) we
get that

1 a_[) 1 q,(p(0)cos9)
p(0)p(0) on;  p(8) [1+D(6)]

Moreover, for any 0 < 6 < 7/4,

sup
0[5, m/2- 3]

1 b
p(0)p(0) am;|

for some positive constant M. On the other hand, when 6 [0, §), p(6)cos 6
is close to 0. As x — 0,

myx~ "1, if vy, > 0,
m [x7 -1 1/m 1 ; Y1
1+ — - B ~ { (log x)" /2, ify; =0,

a
! N mylog x + my, ify, <0,

for some positive constants m,, m,, m,. Using this we get, for v, > 0,

sup % [1 + (p(6)cos ) «/1]
o<lo,5)| P(0)p(0) 3”’7; (9)
for y, = 0,
L P M, (log( p(0)c0s 0))°
A og( p(0)cos
ocl0,5)| P(0)p(0) ‘9"’71 (0)

and for y, < 0,

1 5
p(0)p(0) ﬁnj

(0) ———(log( p(60)cos 0) + 1),

[0, 8)

where M,, M,, M, are positive constants. Similarly, we can get uniform
bounds for 0 € (7/2 — 8, w/2].



748 L. DE HAAN AND A. K. SINHA

According to assumptions (2.11) and (2.12), these bounds are integrable.
So, applying Lebesgue’s dominated convergence theorem,

A

. /2 1 ap
VE (%, — Vl)fo Wﬁ_mq)(de)

B jw/z q,( p(0)cos 0)
o p(0)(p(6)cos )" [1+ D(9)]

Similarly, we get the other terms. O

D(do).

LEMMA 3.4. Suppose (1.1), (2.1)-(2.3), (2.8), (2.10)—(2.12) hold, then
Vi i é, s
qyl/\'yz(cn) V( ) - C_V( )

> =i [ p(6)cos )
x{p(0)[( p(0)cos )"
+£(p(0)cos 0, p(6)sin ) ( p(0)sin 0)"*]} " D(d6)
- 7252/07/25( p(8)cos 6, p(8)sin 6)( p(6)sin )"
x{p(8)[( p(6)cos 6)™

+£(p(0)cos 8, p(6)sin 0)( p(8)sin )]} D(de),
where {( p(8)cos 0, p(8)sin 0): 6 € [0, 7w/2]} is the boundary of A.

The proof is almost the same as for Lemma 3.3.
4. The main theorem.

THEOREM 4.1. Under conditions (1.1), (1.5) and (2.1)-(2.12) and if
lim,  Vkd(n/k) =0, then

[, 1)
qyl/\yz(cn) pn
_ TSy w2 (y,V0)
- V(A)'/;) (p(0)cos 0)

x{p(0)[(p(0)cos 0)"

+£(p(0)cos 8, p(6)sin ) ( p(8)sin 6)"*]} P(d6)
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755y (w2 . . Vo
V(A)L/ £( p(0)cos 6, p(6)sin 6)( p(6)sin 6)72""

<{p(0)[( p(0)cos 0)"
-1
+£(p(0)cos 6, p(0)sin ) ( p(0)sin 6)*]}  B(db).
In particular, the limit random variable is normal with mean zero.

Proor. Using Lemmas 3.3 and 3.4 and Corollary 3.1, we get that p, =
(k/né,)o,(A) ~ (k/né,)v(A).

w12 = B8 5, )

~

k A
k” (;ﬁn(A) - Pr((X,Y) € cn))
= [5.(A) = w(A)] + |v(4) - Z—"wm}

n

n 1

Now by Lemma 3.3 we get that
VE[5,(A) = v(A)] > W,(A) + R(A,B,T).
By conditions (2.4) and (2.6) we obtain

c[% Pr((X,Y) €C,) - ;V(A)} 50

Therefore, combining Lemmas 3.3 and 3.4, we get

VE b )
- [ _1
q'yl/\'yz(cn) Py
Bu) 1 vk v(A) ) )
Db, — P,
P V(A) Qy. nqy,(Cn)

fw/z( p(0)cos 0)““””

x{p(0)[( p(0)cos 6)"

+£(p(0)cos 8, p(6)sin 0)( p(8)sin )]} D(do6)

V(A)
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755y (w2 . . Vo
V(A)L/ £( p(0)cos 6, p(6)sin 6)( p(6)sin 6)72""

<{p(0)[( p(0)cos 0)"

+£(p(0)cos 0, p(6)sin 0)( p(0)sin 6)™*]} " @(dd).

5. Confidence interval. Let us denote

_ T /2 (y;V0)
gl_ V(A)'/‘O (p(G)COS 0)7

x{p(0)[(p(6)cos 6)"

+£(p(0)cos 8, p(6)sin 0)( p(8)sin )]} @(de),

{y = — V(Ti) fow/Zg( p(0)cos 0, p(0)sin 6)( p(6)sin 0)(72v0)

x{p(0)[(p(6)cos 6)"
+£(p(6)cos 0, p(0)sin 0)( p(0)sin 6)"]) " ®(do).

So by our main theorem we get that

3

qyl A yz( cn )

pn
p—n - 1) = {18; + £:S,.

Notice that by assumption (2.5), k~'/?q, ,,(c,) = 0, so (p,/p, — 1 — 0.
Since x ~ log(1 + x) as x — 0, we have

3

qyl A 72( Cn)

Dn
log| — | = 41S; + £,S,.

n

Now S;,S, are linear combinations of (A,B,T), which are again some
functionals of the bounded, uniformly continuous, zero-mean Gaussian pro-
cess W (see Lemma 3.1). Thus one can compute the variance of
kR2q, (e, X{1S; + {5S;) and that will determine the asymptotic vari-
ance of log(p,/p,), which we denote by v,(v;, vy, @y, @y, by, by, ¢,,, ). How-
ever, this depends on unknown parameters vy, v,, @y, @y, b; bz,cn and &.
Nevertheless, v,(y;, v4, @1, @y, b1, by, ¢,, P) can be estimated cons1stently by
replacing the unknown parameters with their respectlve consistent estima-
tors, that is, by v,(¥1, ¥4, 41, Gy, by, by, &, D,) =

Thus we get

A—1/2
vn

lim Pr[ﬁn eXp(— Za/Z) <p, <D, exp( ~1/2 Za/Z)] =1- a,

n— o
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where for « € (0,1), z, represents the (1 — a)th quantile of the standard
normal distribution.

5.1. Computation of 0,. First we compute Var({;S; + {,S,). We denote
for j=1,2,

o ds oo S7j - 1 d.S'
L= [ Wi s, = W9 —— o

So B,P,Q' = M,(W,,(D,W,,(,I,I,,1,,1,), where M, = (m,(, ) is
a 6 X 6 matrix with m(i,i) =1ifl <i <4 @Qifi=5,6); m3, D= -1 -
?1)71, m1(4, 2) = _(1 - 72)71, m1(5, 1) = _2[(]- - 71)(1 - 271)]717
m,6,2) = —2[(1 — y,)(1 — 23,)] " and m,(i, j) = 0 otherwise.

Now (A,B,T) = M,(B,P,Q)’, where M, = ((m,(i, j))) is a 6 X 6 matrix
which is defined as follows: for j = 1,2, 9, = (1 — 7)*(1 — 27)A — 4y)" %
t; = [31 - 23/])3 + 1 - 7)A - 2y)* — 4(1 - ¥’ 11 - 47)*Q — )0 —
29750 =, -2 - y)*1 - 2y), [, = 1q- 72 — 27

Then(forJ—12) mQ(JJ) yj, (4+J,4+J)—l my(4 +j,2 +j) =
_]’ 2(‘],2—1—])_319(1_7]) ! _/]’ 2(.]’4+.])_ _% tjl_]’ 2(2+J7.])
= 1. All the other terms are 0.

Finally, (S,,S;)’" = M5(A,B,I')’ where

-y 0 %% 0 1 0

So
(5.1) Var({1S; + £585) = ({1, §)Var(Sy,8,)( 4y, {p)’
and Var(S;, S;) = M;M,M,;3(M;M,M,)’ where X = Var(W, (1), W (1),

I,1,,1;,1,) = ((O'ij))6><6'
Now

o = v((1,%) X [0,)),

099 = ([0,%) X (1,)),
2

7 (1—=)1-2%) /(=) [0,2)),
2

T 1= )1 - 27,) v([0,%) X (1,2)),

6
Os5 = (1 —75)(1 —2%)(1 - 3y,)(1 — 4¥,)

v((1,%) x [0,)),
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6
706 = (1= 3)(1 — Z7,)(1 — B7)(1 = dyy) " (L07) ¥ (1)),

oy = v((1,°) X (1,%)),

1
o1y = m’/((l’”) X [0,%)),

= [ (L) X (5,) 57 s,

1
J15 = (1 — 71)(1 — 271) y((l’oo) X [()’oo)),
o s?2 — 1 —
T16 = /; 1/((]_’00) X (s,oo))( s )S 27 ds,

7= [ W((5,2) % (1,2) 57 1 ds,

1
Oos = (1——72)]}([07"0) X (1,%)),

o5 = [ v((5.9) % <1,w))(

1

e (1= 72)(1 = 27,) (102) x (1,=)),

T —

— sn~lds,
Y1

gy = [ [ 0((5,) X (1)) 57 e ds
3
75 = Ty - 21— gy () 0,
T35 = fjfjv((s,“) X (t,w))S%_l( ﬁ:y; t7"ldsdt,
® L0 -1 ~ _
Oy5 = /1 -[1 V((S’OO) X (t,oo))(s ?1 )3711t721 det,
3
70 = (=31 = 27, (1 = 8yy) V107 X (1),
o = [ [ v((s.) (tno))(sﬁ__ : )( i )ﬁzl ds .
171 7, Vs

Thus we get v, =k '(q, ., (c,)? Var({;S; + {,S;). Now to compute o,
we just replace the unknown parameters by their consistent estimators. The
integrals which appeared in the expressions of oy,, 05, 03, 095, O34, O36s
0y, 0sg can be computed by replacing v with 7,. Then the computed
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integrals are as follows:

flxan(u,oo) X (5,%))s% 1 ds

a3 )

(Yi(n/k))" - 1)_

Ve

fle’n((&oo) X (1,))sn " !ds

<L Erfonm i3] > p(5) )| B2,

i=1 "

fle)n((l,oo) X (S’OO))( ° — )3721 ds

- g Bl x(5) i) )

V2

[ 5((5.) % (1,°°))(8 - )d

1

- g BH{enm: &) > 17 1) - 1)

y (X(n/k)) —1);

Y1

[ 5((5%) x (820)) 571727 ds
171

S g )>1Y( )> }

| (Kin/m)” (Yu(n/k))" - 1),
Y1 Y2 ’

Yo —

Lw/;mﬁn((s,w) X (t,oc))s711(t —

)ﬂzl ds dt
2
1

) )

y ( (Xi(n/k))" -

5’1 3'2

(V(n/k))" — 1)2,

(Y(n/k))" ~ 1) ,

753
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s 17271 e dt

[ [ (s x (nw))(sh__

lil x,v): X(2)> 1,7 2) > 1
“ o & (R FIERRATIER}

(X(n/m)" =1\ [ (Bn/m)” -
Y1 Y2 ’
st —1 B Y2 — 1 B
f f 7,((s,%) X (¢, oc))( > )s%l(t = )t‘/zldsdt

1

" 1k _i { % 10): X(%) g lY(%) g 1}

(Yi(n/k))" ~
Vs

X((Xi(n/k)) ~1

Y1

6. Application. We have used our result to estimate the failure proba-
bility of the Pettemer zeedijk. We have a set of 828 data of wave height and
sea level which can be considered independent and identically distributed.
The failure region is given by the set C = {(x, y): 0.3x + y > 7.6} where x
and y are wave height and sea level, respectively (see Figure 1). So in this
case we have, x, = (7.6)/(0.3) and y, = 7.6. We used the upper 27 order
statistics (i.e., £ = 27). This choice is justified in de Haan and de Ronde
(1998), Figures 2 and 3. Our estimates of the unknown parameters are

d, Ay b, by Y1 ¥s )
0.5300 0.2915 5.5300 1.6900 —0.0074 -—0.1215

The transformed data (X, (n/k) Y.(n/k)) and the transformed failure
region [1 + y((C — by /Ay = =¢, A are shown in Figure 2 (logarithmic
scale). The ¢, is so chosen that the point (1,1) falls on the boundary of A.
This gives én = 2.9772 X 10°. Such a choice of ¢, allows 26 data points to
fall in the shifted failure region. The estimated failure probability is p, =
1.0547 x 10~%. Figure 3 shows the transformed data and the region A in
logarithmic scale.

To construct a 95% confidence interval for p,, we used two different
estimators of ®: semiparametric and nonparametric [for definitions, see
(1.13) and (1.14), respectively]. The confidence interval in the first case is
(5.75 x 1079, 1.934 x 10~ ®), while the second case gives a confidence interval
(3.41 x 1079, 3.263 X 10™®).

The above-mentioned p,, is the failure probability per storm of the consid-
ered type. Since the 828 observations cover a period of 13 years, the esti-
mated failure probability per year is 6.72 X 10~ 7 and its confidence intervals
in the two cases are (3.66 X 10~ 7, 1.23 X 10~ °) (semiparametric) and (2.17 X
1077, 2.07 X 10~ %) (nonparametric).
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w0 The transformed data and failure region
10 T T

Sea-level

10° 10
Wave-height

Fic. 2. Transformed data and failure region on log scale.

Figure 4 shows how the estimated failure probability and its 95% confi-
dence interval change with different values of the blowup factor ¢, (in
logarithmic scale) while % is kept fixed at 27. The solid line represents the
failure probability, the small circle on this line corresponds to the estimated
value é, = 2.9772 X 10° as mentioned above, that is, it corresponds to the
choice of ¢, that follows from the condition: (1,1) is on the boundary of the
failure region. The dash-dotted line represents the 95% semiparametric
confidence interval and the dotted line stands for the 95% nonparametric
confidence interval.

The results of this paper have been obtained under various restrictions on
the sequences k = k(n) and ¢,. The optimal choice of % is a function of the
marginal distributions and has been discussed in various papers [Hall (1982),
Dekkers and de Haan (1993), Drees and Kaufmann (1998), Danielsson, de
Haan, Peng and de Vries (1997)]. In the problem at hand, the & was
determined in an intuitive way [cf. de Haan and De Ronde (1998), Figures 2
and 3]. The optimal choice of the sequence ¢, depends on the convergence
rate of the dependence structure and seems to be less critical. This follows
from the fact that the uncertainty in the determination of the y’s contributes
to the uncertainty in the determination of p, (via S; and S, in Theorem 4.1),
but the uncertainty in the determination of » or ® does not enter. See also
Figure 4. The situation regarding the choice of ¢, is similar to that of %.
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Data and blown-up (ailure region (transformed) on log-scale
10 T 4 v

Sea-level

10° 10"
Wave-height

10!5

Fic. 3. Transformed data and blownup failure region on log scale.

Choosing ¢, small could result in higher uncertainty and choosing ¢, very
big could result in introducing a bias.

6.1. Simulation study. We have simulated 50 samples, each of size 1000,
from the density function

1/y,-1 -1
2(1 + y,2) 7T HA + yyy) 7

3/2 >
77[1 + (1 + y,2)7" + (1 + yzy)z/”]

where 1+ y;x,1+ y,y > 0. We have chosen our (yq,v,) =[—0.0074,
—0.1215], the same as the estimated value of the extreme value indices from
the sea water sample. The exact probability of the failure region C =
{(x, y): 0.3x + y = 7.6} under this distribution is obtained by integrating the
density function on the failure region, and that is equal to 1.4224 X 10 *.
The failure probability for each of the 50 samples is also estimated by our
method. For each sample k2, the number of order statistics to be used is
selected in an intuitive way so that the extreme value indices and henceforth
the marginal distributions are estimated as accurately as possible. For each
sample, the blowup factor ¢, is estimated by solving equation (1.12). On the
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Plot of cn vs failure prob. & confidence intervals (log-scale)
10 T T T =

]
~
\

-
(=]
T
~
1

failure probability & conidence intervals

-10 R X L \

10° 10° 107 10

10

Fic. 4. Plot of the blowup factor c, against estimated failure probability and confidence
intervals.

basis of the samples drawn, we have that the average estimated failure
probability equals 1.6451 x 10~ 4.

APPENDIX A
Some properties of q,. Here we discuss some important properties of
the function g, (x) = x~7(J{" u” " 1log udu). One can easily compute that
(ylogx —1+x77)/y2, ify+#0,
qy( .’XJ) = 2 .
(log x)" /2, ify=0.
So it is obvious that, as x — o,
(log x)/y, ify>0,
q,(x) ~ { (log x)*/2, ify=0,
(x77)/v?, ify<o.
Therefore for all y € R, lim .. ¢,(x) = © and for a > 0,

lim —qy(ax) =q 1O
xXx—>® qy(x)
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and

llm q'Yl(x) _ ’YZ/’YI’ if’)’l’ 72 > 0}
x> q, (%) %, otherwise with y; < v,.

Thus we have, as x — ©,

q,(x) (vi A v2)/v1, i y1,72 >0,
(A1) ——— 57 =1, otherwise with y; < v,,
nn vl %) 0, otherwise with y; > y,.

Similarly we can define 7, as the limit of g, (x)/q, ., (x).

APPENDIX B

Some Vapnik-Cervonenkis classes. To prove the main theorem, we
need an assumption that a certain class of sets should satisfy the VC
property [see assumption (2.1)]. Here we would like to mention some classes
which will satisfy assumptions (2.1). For more details and examples on VC
classes, see Dudley (1987) and van der Vaart and Wellner (1996).

First, recall that our set C, = {(s, ¢): f,(s,¢) > 1} = {(s, t): f(s/x,,t/y,) =
1} where f is a certain function and x,, y, > 0. Now

#=1(C:n>1) = {{(s,t): f(xiyi) > 1}

and
(B.1) g ={,C, +1,11,,l, e R?,C, € 7}.

However, we need to restrict our £ so that the class & = {[1 + yS]V”:
S € £} should not contain any element for which the v-measure is inﬁnite.
Hence we consider the class &, ={S € :[1 + yS]V/? c[0,«]2\ [0, 212},
and we have to show £, is a VC class However, if £ is a VC class, then )
also is &, because it is just a restriction of Z.

Now the following classes & will generate a VC class £ as defined in (B.1):

X, ¥, >0,n>1,fes

x Yy
F={=+2>1
{a b

{%
(
=fa

a,b> O} , the collection of sets bounded below by

straight lines;

&

>1|a,b> 0} , the collection of sets bounded below by ellipses;

={cxy = 1| ¢ > 0}, the collection of sets bounded below by hyperbola;
a,(b; + clx) + ay(by + czy)p2 >1 | a;,c;>0,b,p,eR,i= 1,2}.

Here we assume that x, y are chosen in such a way that b, + c¢;x, b, +
cey > 0, so that f(x, y) is defined.
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