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Without parametric assumptions, high-dimensional regression analy-
sis is already complex. This is made even harder when data are subject to
censoring. In this article, we seek ways of reducing the dimensionality of
the regressor before applying nonparametric smoothing techniques. If the
censoring time is independent of the lifetime, then the method of sliced
inverse regression can be applied directly. Otherwise, modification is
needed to adjust for the censoring bias. A key identity leading to the bias
correction is derived and the root-n consistency of the modified estimate is
established. Patterns of censoring can also be studied under a similar
dimension reduction framework. Some simulation results and an applica-
tion to a real data set are reported.

1. Introduction. Survival data are often subject to censoring. When this
occurs, the incompleteness of the observed data may induce a substantial bias
in the sample. Several approaches have been suggested to overcome the
associated difficulties in regression, including the accelerated failure time
model, censored linear regression, the Cox proportional hazard model and
many others. Survival analysis becomes even more intricate when the dimen-
sion of the regressor increases. To apply any of the aforementioned methods,
users are required to specify a functional form which relates the outcome
variables to the input ones. However, in reality, knowledge needed for an
appropriate model specification is often inadequate. As a matter of fact, the
acquisition of such information may well turn out to be one of the primary
goals of the study itself. Under such circumstances, it seems preferable to
have exploratory tools that rely less on such model specification. This is the
issue to be addressed in this article. The dimension reduction approach of Li
Ž .1991 will be extended to settings which allow for censoring in the data. We
shall offer methods of finding low-dimensional projections of the data for
visually examining the censoring pattern. We shall show how censored
regression data can still be analyzed without assuming the functional form a
priori.
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Dimensionality sets a severe limitation even in the exploratory stage of
data analysis. This is true even without the presence of censoring. For
example, when the dimension is one or two, a two-dimensional or three-
dimensional scatterplot of the response variable against the regressor is
helpful in obtaining general ideas about the shape of the regression function,
the pattern of heterogeneity and other valuable structural information. How-
ever, as the dimension increases, the total number of two-dimensional or
three dimensional scatterplots escalates quickly. Very soon this task could
turn into an extremely laborious exercise. Without proper guidance, it may
not be easy for us to put together a clear global picture about the data from
various plots. How to bypass the curse of dimensionality has been an impor-

Ž .tant issue; see, for example, Huber 1985 .
Li’s framework for dimension reduction in regression begins with the

following formulation:

1.1 Y � g � � x, . . . , � � x, � .Ž . Ž .1 k

Ž .The main feature of 1.1 is that g is completely unknown and so is the
distribution of � , which is independent of the p-dimensional regressor x.

Ž .When k is smaller than p, 1.1 imposes a dimension reduction structure by
claiming that the dependence of Y on the p-dimensional x only comes from
the k variates, � � x, . . . , � � x, but the functional form of the dependence1 k
structure is not specified. The k-dimensional space spanned by the k� vectors

Ž .is called the e.d.r. effective dimension reduction space and any vector in this
space is referred to as an e.d.r. direction. The primary goal of Li’s approach is
to estimate the e.d.r. directions so that we can plot y against the e.d.r.
variates for visually exploring the structure of the regression and for more
effectively applying various low-dimensional regression techniques to the
reduced space. The notion of e.d.r. space and its role in regression graphics

Ž . Ž .are further explored in Cook 1994 and Cook and Weisberg 1994 .
To incorporate censoring into the dimension reduction framework, let

Y o � the true unobservable lifetime,Ž .
C � the censoring time,

� � the censoring indicator; � � 1, if Y o � C and � � 0, otherwise,

� o 4Y � min Y , C , the observed time.

We assume that

1.2 Y o follows model 1.1 ;Ž . Ž .
1.3 Conditional on x, C is independent of Y o .Ž .

Ž .The observed sample consists of n i.i.d. observations, Y , x , � , i � 1, . . . , ni i i
Ž . ofrom the distribution of Y, x, � . The continuous random variables, Y , C,

Ž .are not observed. Condition 1.3 is the usual independence assumption to
Ž .ensure identifiability under the random censoring scheme. If 1.3 is violated,

then one needs more information on the censoring mechanism to build an
appropriate model. This is not considered in this paper.
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For k � 1, our formulation may include the generalized linear model
� Ž .� �McCullagh and Nelder 1989 and the linear transformation model Doksum
Ž .�1987 as special cases. The latter also includes several survival analysis
models such as the accelerated failure time model, the proportional hazard

�model, the proportional odds model and the logit and probit models Doksum
Ž .�and Gasko 1990 .

Ž .Without censoring, sliced inverse regression SIR is a simple method for
Ž .finding the e.d.r. space. Instead of directly estimating E Y � x , a p-dimen-

sional surface, the roles of x and Y are reversed�the focus turns to the
Ž . pinverse regression E x � Y , which is a curve in R . Under appropriate

� Ž .�conditions Lemma 3.1 of Li 1991 , the inverse regression curve is shown to
fall into a k-dimensional subspace. In particular, when the regressor distribu-
tion has mean zero and with the identity covariance, this k-dimensional
subspace coincides with the e.d.r. space. Exploring this connection, SIR begins
with a simple estimate of the inverse regression curve by partitioning the
data into several slices according to the Y values and computing the mean of
x within each slice; this is the slicing step. It is then followed by an
eigenvalue decomposition step�a principal component type of analysis in-
tended to locate the subspace containing the inverse regression curve. See Li
Ž .1991 for further details. Properties of SIR have been studied in several

Ž . Ž .places: Carroll and Li 1992, 1995 , Chen and Li 1998 , Cook and Weisberg
Ž . Ž . Ž . Ž .1991, 1994 , Duan and Li 1991 , Hsing and Carroll 1992 , Schott 1994 ,

Ž .Zhu and Ng 1995 .
How does censoring affect SIR? This depends on the relationship between

the censoring time C and the regressor x. Section 2 considers the indepen-
dence case in which
1.4 C is independent of x and Y o .Ž .

We show that the general theory of SIR is applicable without modification
and the directions found by SIR are still consistent. Thus for the indepen-
dence case, censoring does not introduce bias to the SIR estimates.

However, SIR will be affected by other censoring mechanisms that do not
Ž .follow 1.4 . In Section 3, we introduce a general strategy to overcome this

difficulty. The proposed approach is to introduce a suitable weight function
for the censored observations for offsetting bias in estimating the slice means.
The weight function can be estimated by nonparametric estimation tech-
niques for conditional survival functions. For simplicity, the kernel method is
used and we establish the root-n consistency for the modified SIR.

In Section 4, we bring out a dimension reduction setting for studying the
Ž .pattern of censoring when the independent censoring condition 1.4 is vio-

lated. We argue for the importance of visualizing the heavy censoring region,
a nontrivial task in the high-dimensional situation. Data analysts have to
recognize this region because heavy censoring sets severe limitations in
finding the structure of regression. The dimension reduction assumption on C

Ž .is a natural counterpart of 1.2 ,
1.5 C � h � � x, . . . , � � x, � � .Ž . Ž .1 c
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Ž . Ž .Then 1.2 and 1.5 together allow us to treat the survival time and
censoring time equivalently. But to avoid confusion, we shall refer to � ’s andi
their linear combinations as e.d.r. censoring directions. In contrast, the e.d.r.
directions for Y o will be called e.d.r. lifetime directions. Both censoring and
lifetime directions as well as their linear combinations will be called joint
e.d.r. directions. We show how to estimate the joint e.d.r. directions through a
double slicing procedure.

From the joint e.d.r. directions, we can recover the e.d.r. lifetime directions
by further applying the modified SIR strategy of Section 3. This is illustrated
in Section 5. The performance of the procedure is examined through two
simulation studies. We apply our method to a data set about the study of

Ž .primary biliary cirrhosis PBC at the Mayo Clinic. Section 6 concludes this
article by summarizing our findings. Some questions are raised for further
study.

( )2. SIR under the independence assumption 1.4 . Denote the uncen-
oŽ o. Ž o o.sored inverse regression curve by � y � E x � Y � y . Without censoring

Ž o.i.e., Y � Y , the population version of SIR is based on the following eigen-
value decomposition:

	 o b � 
 	 b ,� i i x i


 � ��� � 
 ,1 p
2.1Ž .

where
2.2 	 o � cov E x � Y oŽ . Ž .Ž .�

and
	 � cov x .Ž .x

The justification for using the first k eigenvectors b with nonzero eigen-i
Ž .values to estimate the e.d.r. lifetime directions follows from Lemma 3.1 of Li

Ž .1991 , which can be stated as follows.

Ž .LEMMA 2.1. Assume that the dimension reduction assumption 1.2 holds.
o �1Ž oŽ . Ž .. Ž .Then for any y , 	 � y � E x falls into the e.d.r. lifetime space underx

the condition that

2.3 for any vector b , E b�x � � � x, . . . , � � x is linear .Ž . Ž .1 k

Ž .Design condition 2.3 has been discussed in several places. The perfor-
mance of SIR is not very sensitive to this condition; see the discussion and

Ž . Ž . Ž .the rejoinder of Li 1991 , Cook 1994 , Cook and Weisberg 1991, 1994 .
Ž .Carroll and Li 1995 . In view of the fact that most low-dimensional projec-

�tions of high-dimensional data often appear like normal distributions Di-
Ž .� Ž .aconis and Freedman 1984 , Hall and Li 1993 argue for the generality of

this condition in high-dimensional situations. On the other hand, reweighting
Ž .and subsampling methods can also be applied to achieve 2.3 : Brillinger

Ž . Ž .1991 , Cook and Nachtsheim 1994 . Further discussion on this condition can
Ž .be found in Li 1997 .
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Censoring alters the distribution of the observed time Y. Its effect on SIR
Ž .can be studied by comparing the censored inverse regression curve � y �

Ž . oŽ o.E x � Y � y with the uncensored one � y . By conditioning, we have

2.4 E x � Y � y � E E x � Y o , C � Y � y .Ž . Ž . Ž .Ž .
Ž . Ž o . Ž o.Under 1.4 , E x � Y , C is equal to E x � Y , implying that

2.5 E x � Y � y � E � o Y o � Y � y .Ž . Ž . Ž .Ž .
oŽ o.Since Lemma 2.1 applies to � y , the following result is obtained.

Ž . Ž . �1Ž Ž . Ž ..LEMMA 2.2. Assume that 1.2 and 1.4 hold. Then 	 � y � E xx
Ž .falls into the e.d.r lifetime space under 2.3 .

Ž . Ž .To implement SIR on the data Y , x , i � 1, . . . , n, we follow Li 1991 .i i
First we partition y� s into H intervals, I , h � 1, . . . , H. Then for eachi h
interval, we compute the partition slice mean x by averagingh

1
x � x ,Ýh inh x �Ii h

where n is the number of cases falling into I . Then the covariance matrixh h

H nh ˆx � x x � x � � 	Ž . Ž .Ý h h �nh�1

is formed. Finally we conduct the eigenvalue decomposition

ˆ ˆ ˆ ˆ	 b � 
 	 b ,� i i x i

ˆ ˆ
 � ��� � 
 .1 p

Ž .With Lemma 2.2 and following the argument in Li 1991 , we obtain the
ˆroot-n consistency of SIR estimates b for finding e.d.r. lifetime directions.i

Thus censoring does not introduce bias to SIR. However, this is true only
when the censoring time is independent of the regressors and the true

Ž .lifetime. Without 1.4 , this appealing result vanishes and substantial bias
Ž .may be induced by censoring under the more general condition 1.3 .

( )3. A strategy for modifying SIR under 1.3 . An ideal way of bypass-
Ž .ing the difficulties caused by general censoring 1.3 is to slice the true

survival time Y o. At first sight, this does not appear feasible because under
censoring, Y o is unobservable. The promise comes from an identity derived in
Section 3.1, which relates the conditional expectation of x in each slice to the
observed time Y and the censored indicator. This leads to a modified slicing
step by a suitable weighting scheme for offsetting the censoring bias in
estimating the slice means. The consistency of this new procedure is dis-
cussed in Section 3.2.
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3.1. An identity. Let 0 � t � t � ��� � t � � � t be a partition on1 2 H H	1
� othe survival time. The expected value of x in a slice, m � E x � Y �j

� .4t , t , can be written asj j	1

o o oE x1 Y � t , t . E x1 Y � t � E x1 Y � t½ 5Ž . � 4 � 4Ž . Ž .j j	1 j j	1
3.1 m � � ,Ž . j o oo E 1 Y � t � E 1 Y � tP Y � t , t � 4 � 4Ž . Ž ..� 4 j j	1j j	1

Ž .where 1 � is the indicator function. The two numerator terms take the same
Ž o .form, which involves the unobservable indicator 1 Y � t . They can be

converted into terms with Y and � via the identity,

3.2 E x1 Y o � t � E x1 Y � t 	 E x1 Y � t , � � 0 w Y , t , x ,� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .

where for t� � t,

So t � xŽ .
3.3 w t�, t , x � ,Ž . Ž . oS t� � xŽ .

o � o 4S t � x � P Y � t � xŽ .
3.4Ž .

� conditional survival function for Y o , given x.

Consider the plane of variables Y o and C in Figure 1. The integration
o Žregion Y � t is decomposed into two parts. The first region area I in Fig-

. oure 1 with Y � t, C � t or equivalently, Y � t, contributes to the first term
Ž . oon the right side of 3.2 . The second region with Y � t, C � t, falls into the

Žcensored area, � � 0. It is contained in the larger region dashed area II in
. Ž .Figure 1 with Y � t and � � 0. The second term on the right side of 3.2

comes from integration over this larger region with the weight adjustment

FIG. 1. Integration regions.
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Ž .w �, � , � . Conditioning is the key to justify this term:

E x1 Y o � t , C � t � E x1 Y � t , � � 0 1 Y o � t� 4 � 4Ž . Ž . Ž .
o� E x1 Y � t , � � 0 E 1 Y � t � Y , � � 0, x� 4Ž . Ž .
o o� E x1 Y � t , � � 0 E 1 Y � t � C , Y � C , x� 4Ž . Ž .

� E x1 Y � t , � � 0 w C , t , x� 4Ž . Ž .
� E x1 Y � t , � � 0 w Y , t , x .� 4Ž . Ž .

Here the next to the last equality is due to the conditional independence
Ž .assumption 1.3 , which assures that conditional on x, the probability for the

true survival time Y o to exceed t given C � t� and Y o � t� is equal to the
Ž .conditional probability given by 3.3 .

By a similar argument, the denominator terms can be converted via the
identity

3.5 E 1 Y o � t � E 1 Y � t 	 E 1 Y � t , � � 0 w Y , t , x .� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .

Ž .The weight function 3.3 can be further expressed as

3.6 w t�, t , x � exp �
 t�, t � x ,� 4Ž . Ž . Ž .
where

1 t� � Y � t , � � 1Ž .

 t�, t � x � E x ,Ž . ½ 5S Y � xŽ .Y

S �� x � the conditional survival function of Y conditional on x.Ž .Y

Ž .Then 3.6 follows from the well-known relationship between survival func-
tions and cumulated hazards; for a proof, see the Appendix. The term
Ž . Ž .
 t�, t � x is simply the integrated conditional hazard given x function over

� �the interval t�, t .

3.2. Estimation. To construct an estimate for m , we replace each expec-j
Ž . Ž .tation term in 3.2 and 3.5 by the corresponding first sample moment,

ˆ o ˆ oE x1 Y � t � E x1 Y � t� 4 � 4Ž . Ž .j j	1
3.7 m � ,Ž . ˆ j o oˆ ˆP Y � t � P Y � t� 4 � 4j j	1

n n
o �1 �1ˆ3.8 E x1 Y � t � n x 	 n x w Y , t , x ,� 4Ž . Ž . Ž .ˆÝ Ýi i i i

i : Y �t i : Y �t , � �0i i i

n
o �1�̂ 4 � 43.9 P Y � t � � i : Y � t 
n 	 n w Y , t , x ,Ž . Ž .ˆÝi i i

i : Y �t , � �0i i

Ž . Ž .where w �, � , � denotes an estimate of the weight function 3.3 to be dis-ˆ
cussed later.
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Ž .After estimating each slice mean by 3.7 , we can form the covariance
matrix of the slice means in the usual way;

	̂ � m � x m � x �p ,ˆ ˆ ˆŽ . Ž .Ý� j j jo
j

ˆ o ˆ op � P Y � t � P Y � t .� 4 � 4ˆj j j	1

Finally, we may conduct the eigenvalue decomposition as before to find the
SIR directions

ˆ ˆo ˆ ˆ ˆo
o	 b � 
 	 b ,� i i x i

3.10Ž .
ˆ ˆ
 � ��� � 
 .1 p

Ž .Smoothing is needed in estimating w t�, t, x . There are several ways to
proceed. For example, we can apply Beran’s estimates for conditional survival

Ž .functions and their variants. Under appropriate conditions, Beran 1981 and
Ž .Dabrowska 1987, 1992 established the consistency of their estimates at

Ž .convergence rates slower than the root n rate similar to those commonly
found in nonparametric regression. These consistency results lead to the

ˆ oconsistency of m as an estimate of m . It is easy to see that 	 is alsoˆ h h �

Ž .consistent for the covariance matrix of the slice means m s. As in Li 1991 ,h
ˆwe can apply Lemma 2.1 to establish the consistency of b as estimates ofi

e.d.r. lifetime directions.
Despite the slow rate of convergence in estimating conditional survival

� Ž .�functions hence the weight 3.3 , it is still possible to establish the root n
convergence for m . We only consider the kernel smoothing method here forˆ h

Ž . psimplicity. Let K � be a kernel function on R and h be the bandwidth inp n
Ž . peach coordinate. We shall assume that h � o 1 and nh tends to infinity.n n

Ž .Further constraints will be imposed later. It is common for K � to take ap
Ž . Ž . Ž .product form, K x , . . . , x � K x ��� K x , for some one-dimensionalp 1 p 1 p
Ž . Ž .kernel function K � . Our kernel estimate of 3.6 is defined by setting

�1�1 n �p �1ˆn Ý S Y � x h K h x �xŽ . Ž .Ž .Ž .i : t �� Y � t , � �1 Y i i n p n ii iˆ3.11 
 t�, t � x � ,Ž . Ž .
f̂ xŽ .

n�1Ýn h�pK h�1 x � xŽ .Ž .j : Y � Y n p n j ij iˆ3.12 S Y � x � ,Ž . Ž .Y i i f̂ xŽ .i
n

�1 �p �1ˆ3.13 f x � n h K h x � x .Ž . Ž . Ž .Ž .Ý n p n i
i

A sketch proof of the following claim together with the regularity condi-
tions needed is given in the Appendix.

Ž . Ž . Ž . Ž .LEMMA 3.1. Under the regularity conditions B.1 , B.3 , B.5 and B.8 ,
given in the Appendix, m is a root-n consistent estimate for m , h � 1, . . . , H.ˆ h h
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Ž .We can use this lemma and follow the same argument as in Li 1991 to
show that the modified SIR is root-n consistent. This is stated in the following
theorem. The proof is omitted.

ˆTHEOREM 3.2. Under the assumption of Lemma 3.1, each b is a root-nh
consistent estimate for an e.d.r. direction.

Ž . Ž .Assume that f � and S �� x are d-times continuously differentiable and
i Ž .that the kernel function satisfied the moment conditions Hx K x dx � 0 forp

d Ž .i � 1, . . . , d � 1, and Hx K x dx is nonzero. Then the regularity assump-p
tions in Lemma 3.1 can be satisfied with bandwidth H � n�1
2 d provided
p � d.

What we have presented so far in this section is a general strategy for
offsetting the bias due to censoring. The theoretical result of Theorem 3.2,
however, may not help much in practice. The problem is that kernel smooth-
ing only works well in the low-dimensional case. Thus, before applying the
kernel method in estimating the weight function, we may want to reduce the
dimensionality first. This is to be discussed in the next two sections.

4. Dimension reduction model for censoring time. Analyzing the
censoring pattern is an important step in studying the censored data. It helps
the recognition of the information-poor region in x, the region where censor-
ing is heavy and the regression structure is thus harder to explore. Some-
times such an analysis may even become a primary part of the study. In some
industrial applications, Y o may be the potential yield of a production process
and censoring C may occur because of machine malfunctioning, for example.
In addition to learning how various input variables x may affect the potential
yield, quality control engineers may equally be interested in how they affect
the censoring rate; they need such knowledge to prevent machine malfunc-
tioning as much as possible.

Like its counterpart Y o, we now assume that the censoring time C also
Ž .has a dimension reduction structure given by 1.5 . Again, the functional form

of h and the distributional form of � � are both unspecified. This model
suggests only that the dimension of the regressor can be reduced from p to c.
The relationship between the e.d.r. space for the censoring time and the e.d.r.
space for the true lifetime is arbitrary. They can be either identical, partly
overlapped, or disjoint. Linear combinations of their elements form a space
which will be called the joint e.d.r. space. If Y o and C were used for slicing,
then by the same argument used in deriving Lemma 2.1, it is easy to see that

4.1 	�1 E x � Y o , C � E x falls into the joint e.d.r. space.Ž . Ž . Ž .Ž .x

Ž o .However, instead of Y , C , we can only observe Y and � . This suggests
Ž . Žthat Y and � can be used simultaneously for slicing. Let � Y, 0 � E x � Y �d

. Ž . Ž . Ž .y, � � 0 , and � Y, 1 � E x � Y � y, � � 1 . We may replace 2.1 withd

Cov � Y , � b � 
 	 b ,Ž .Ž .d i i x i


 � ��� � 
 .1 p

4.2Ž .
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Ž . Ž Ž o . .. Ž .By conditioning, E x � Y, � � E E x � Y , C � Y, � . Thus from 4.1 , we see
that

	�1 � y , � � E x falls into the joint e.d.r. space.Ž . Ž .Ž .x d

Ž .This justifies the use of eigenvectors from 4.2 to estimate the joint e.d.r.
space.

Ž .The sample version of 4.2 is easy to carry out. Denote the number of slices
Ž .for the uncensored � � 1 observations by H . Let I , j � 1, . . . , H be a1 1 j 1

partition of the positive real line into nonoverlapping intervals. Similarly,
Ž .denote the number of slices for the censored � � 0 observations by H , and0

let I � , j � 1, . . . , H be another partition of the positive real line. We first0 j 0
form the individual slice means by taking

n
�1

x � np x 1 � � l , Y � I ,ˆ Ž .Ž . Ýl j l j i i i l j
i�1

where p is the proportion of cases with � � l falling into interval I . Thenˆl j i l j
ˆ Žwe compute the covariance matrix for the slice means, 	 � Ý Ý p x �ˆd l j l j l j

.Ž .x x � x . Finally we conduct the eigenvalue decompositionl j

ˆ ˆ ˆ ˆ ˆ	 b � 
 	 b ,d di di x di
4.3Ž .

ˆ ˆ
 � ��� � 
 .d1 d p

Ž .Li 1991 proposed a chi-squared test for determining the number of
significant e.d.r. directions obtained by SIR. It should be clear that we can use
the same test for the double slicing case.

So far we have only located the joint e.d.r. directions. We shall show in the
next section how to use the procedure in Section 3 to recover the e.d.r.
lifetime directions. Likewise, we can also recover the e.d.r. directions for
censoring time by exchanging the roles of censoring time and lifetime. Before
we proceed, an example is given below to illustrate the double slicing proce-
dure discussed in this section.

Ž .EXAMPLE 4.1. Take p � 6 and let x � x , . . . , x � be generated from the1 6
standard normal distribution. Suppose

o � �Y � 4 � x � 1 	 � � ,Ž .1 1 1

C � 3 	 � � for x � 0, x 	 x � 0,2 2 1 2 3

� 10 otherwise,
where � � � � 0.1. Here � , � are normal random variables. Generate 3001 2 1 2
cases. Sixty-six observations in the data set are censored. Now apply double
slicing with the number of slices equal to 5 and 10, respectively, for the
censored and the uncensored groups. The eigenvalues of SIR are found to be

ˆ0.76, 0.35, 0.08, 0.06, . . . , indicating that the first two eigenvectors, b �d1
ˆŽ . Ž1.14, 0.05, �0.03, �0.00, �0.04, 0.04 � and b � �0.06, 0.69, 0.74, �0.02,d2

.�0.10, �0.05 � are important. This is confirmed by the chi-squared test in Li
Ž .1991 .
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'Ž . Ž .Ž .The joint e.d.r. directions 1, 0, 0, 0, 0, 0 � and 1
 2 0, 1, 1, 0, 0, 0 � are
ˆ ˆcaptured successfully by b and b . The censored cases are found to clusterd1 d2

Ž .in the first quadrant in the plot of the first two SIR variates; see Figure 2 c .
Statistical information about the behavior of the true lifetime in that region
is very sparse.

5. Implementation of modified SIR. The directions found by double
slicing can be used to relieve the difficulties encountered in Section 3 when

Ž .kernel smoothing is to be applied for estimating the weight function 3.3 .
Under the dimension reduction assumptions for both the true lifetime and

Ž . Ž .the censoring time, 1.2 and 1.5 , it is easy to see that the dependence of the
Ž .weight function 3.3 on x is only through joint e.d.r. variates. This suggests

the following two-stage procedure:

ˆŽ .1. Apply double slicing on Y, � and find the joint e.d.r. directions, b . Letdi
ˆ ˆ ˆŽ .B � b , . . . , b be the matrix formed by the first r significant direc-r d1 dr
tions.

�̂2. Apply r-dimensional kernel smoothing on B x, to obtain the weightr
function w,ˆ

ˆ5.1 w t�, t , x � exp �
 t�, t � x ,Ž . Ž . Ž .� 4ˆ

where


̂ t�, t � xŽ .
�1�1 n �r �1ˆ ˆn Ý S Y � x h K h B x � xŽ . Ž .Ž . Ž .ž /i : t �� Y � t , � �1 Y i i n r n r ii i� ,

f̂ xŽ .

5.2Ž .

Ž .FIG. 2. Three-dimensional scatterplot of Y against the first SIR variate x-axis and the second
Ž .SIR variate z-axis found by double slicing. The highlighted points are censored.
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�1 n �r �1 ˆn Ý h K h B x � xŽ .ž /ž /j : Y � Y n r n r j ij iˆ5.3 S Y � x � max , c ,Ž . Ž .Y i i ½ 5f̂ xŽ .i
n

�1 �r �1ˆ ˆ5.4 f x � n h K h B x � x .Ž . Ž . Ž .Ž .Ž .Ý n r n r i
i

Ž .Note that a small positive number c set to 0.05 in our examples is used to
ˆ Ž .bound S Y � x away from zero. This is needed in order to increase theY i i

ˆ �1Ž . Ž .stability of the factor S Y � x in 5.2 . After estimating the weightY i i
Ž . Ž .function, we can apply 3.7 � 3.9 and then carry out the eigenvalue decom-

Ž .position 3.10 to obtain estimates of e.d.r. lifetime directions.
We first report two simulation studies to illustrate how this strategy

works. Then we apply our method to a data set concerning a study of primary
Ž .biliary cirrhosis in the liver PBC .

Ž .EXAMPLE 5.1. We take p � 6 and generate x � x , . . . , x � from the1 6
standard normal distribution. The true survival time Y o and the censoring
time C are generated from

log � log �1 2oY � � ; C � � ,x x1 2� �

� �where � , � are independent uniform random variables from 0, 1 . Condi-1 2
tional on x, Y o and C are seen to follow the exponential distributions with
the natural parameters 
 , 
 linking to x via 
 � � x1; 
 � � x 2 , respec-1 2 1 2
tively.

Ž .We obtain 300 independent observations of Y, � ; among them, 138 cases
are censored. We proceed with the SIR analysis. First, the method of double

Ž .slicing on Y and � as described by 4.3 gives eigenvalues 0.34, 0.27, 0.05, . . . .
ˆ Ž .The first two eigenvectors, b � �0.67, �0.70, �0.08, 0.06, 0.11, 0.15 � andd1

ˆ Ž .b � 0.69, �0.73, 0.12, �0.04, �0.10, �0.12 �, are close to the joint e.d.r.d2
space for Y o and C. We use these two directions to reduce the x dimension

Ž .before estimating the weight function w �, � , � . With the weight adjustment
Ž . Ž . Ž .given by 5.1 , we perform SIR as described by 3.7 � 3.10 to find the e.d.r.

lifetime directions. The eigenvalues are 0.40, 0.10, 0.03, . . . , and the leading
ˆo ˆoŽ .eigenvector is b � �0.92, �0.12, �0.21, 0.08, 0.25, 0.11 �. We see that b is1 1

Ž .quite close to the true e.d.r. lifetime direction 1, 0, . . . , 0 �.
For comparison, we also carry out the SIR analysis on Y without weight

adjustment as if the censoring were independent of x. The first direction
Ž .�0.68, �0.69, �0.058, 0.07, 0.13, 0.08 � does have a substantial bias.
Therefore the weight adjustment is crucial in this example.

We used the bivariate normal kernel function here and the bandwidth is
set at 0.18. The sensitivity to the bandwidth choice seems mild.

EXAMPLE 5.2. Important prognostic variables affecting the hazard rate
may be different at different survival stages. In this example, we assume that
the true survival time Y o follows an exponential distribution with the



DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 13

TABLE 1
The first three eigenvectors and eigenvalues of SIR
for Example 5.2 with the double slicing procedure

Ž .First vector �0.93, �0.11, 0.03, 0.03, 0.04, �0.06

Ž .Second vector 0.09, �0.76, �0.60, �0.01, 0.03, �0.13

Ž .Third vector �0.10, 0.55, �0.73, �0.03, �0.02, 0.27

Ž .Eigenvalues 0.52, 0.21, 0.15, 0.03, 0.01, 0.01

natural parameter equal to � 2 x1 until time � � log 2. From time � on, the
additional survival time follows the exponential distribution with the natural
parameter � 3 x 2. More specifically, we assume

Y * � exponential with parameter 
 � � 2 x1 ,

Y ** � exponential with parameter 
 � � 3 x 2 ,

Y o � Y *1 Y * � � 	 � 	 Y ** 1 Y * � � .Ž . Ž . Ž .

The censoring time C follows an exponential distribution with parameter
equal to � x3�1 .

Ž .Again 300 independent observations of Y, � are obtained. Among them,
98 cases are censored. The output of the double slicing procedure is given in
Table 1. The first three eigenvectors, which have relatively larger eigenvalues
compared to the rest, are then used in estimating the weight function for
finding the true e.d.r. lifetime directions. After the weight adjustment, the
final output of SIR is given in Table 2. Now we see that only the first two
eigenvectors stand out and the important variables x and x can be1 2
identified.

EXAMPLE 5.3. The PBC data set collected at the Mayo Clinic between
1974 and 1986 has been analyzed in the literature. The data set and a

Ž .detailed description can be found in Fleming and Harrington 1991 . There
are originally seventeen regressors. Fleming and Harrington selected five of
them in their final equation for fitting a Cox proportional model. These five

Ž .regressors plus another variable, the platelet count x below , will be used in5
this illustration:

Y � number of days between registration and the earlier of death or
censoring;

� � 1 if Y is due to death; 0 otherwise;
x � age in years;1

x � presence of edema;2

x � serum bilirubin, in mg
dl;3

x � albumin, in gm
dl;4
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TABLE 2
The first two eigenvectors and eigenvalues of SIR

for final result of Example 5.2 with weight adjustment

Ž .First vector �0.97, �0.15, 0.10, �0.04, 0.10, �0.15

Ž .Second vector 0.16, �0.95, �0.18, �0.02, �0.06, �0.20

Ž .Eigenvalues 0.66, 0.34, 0.05, 0.04, 0.02, 0.02

x � platelet count;5

x � prothrombin time.6

Cases with missing values are ignored and there are 308 cases remaining.
We first apply double censoring with slice numbers H � H � 10. The first1 0
two directions are significant, as judged from the sequence of output eigenval-
ues 0.55, 0.15, 0.05, 0.0, 0.0, 0.0. Figure 3 shows the scatterplot of the first two
SIR variates. Two outliers labeled as 104 and 276 are found from the

Ž .three-dimensional plot not shown here of Y against the first two SIR
variates. They are removed. We apply double slicing again to the remaining
306 cases. The SIR output essentially remains the same. This suggests that
the dimension of the joint e.d.r. space is two.

We proceed to find the true e.d.r. lifetime directions. We take r � 2 and use
the two SIR directions reported in Table 3 to reduce the x dimension before
estimating the weight function. The kernel function and the bandwidth are
the same as in Example 5.1. The output of the weighted SIR is given in

ˆoTable 4. Judging from the eigenvalue sequence, the first direction b is1

FIG. 3. Scatterplot of the first two SIR variates found by double slicing. �� observed, square �
censored cases.
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TABLE 3
The first two eigenvectors and eigenvalues of SIR

for the PBC data in Example 5.3

Ž .First vector 0.02, 1.04, 0.10, �0.50, �0.00, 0.39

Ž .Second vector 0.02, �1.62, 0.17, �0.97, �0.00, �0.87

Ž .Eigenvalues 0.54, 0.16, 0.05, 0.01, 0.00, 0.00

clearly important. The second direction is also worth further examination.
ˆo� ˆo�Ž . Ž .Figure 4 a and b show the scatterplots of Y against b x and against b x.1 2

Ž .Earlier analysis in Fleming and Harrington 1991 yields that the true
lifetime depends on x through the variate Q � 0.0333x 	 0.7847x 	1 2
0.8792 log x � 3.0553 log x 	 3.0157 log x . This variate turns out highly3 4 6

�oˆ 'correlated with the first SIR variate b x; the correlation coefficient is 0.858 .1
� �o oˆ ˆ 'The correlation between Q and 1.3b x � 0.25b x is equal to 0.89 . Variable1 2

x makes very little contribution to the first two SIR variates, with a squared5
multiple correlation of only 0.11. This is consistent with Fleming and Har-
rington’s finding that platelet count is not important.

Finally, we estimate the censoring e.d.r. directions by reversing the roles of
censoring time and the true lifetime. This amounts to replacing � with 1 � �
throughout our estimation procedure. The output is given by Table 5 and

Ž .Figure 5. The assumption of independent censoring 1.4 is seen to be invalid
for this data set. We further notice that the first censoring time direction is
quite close to the first lifetime direction. The correlation coefficient between
the first lifetime SIR variate and the first censoring SIR variate turns out to

'be 0.93 .
Some caution needs to be taken regarding the design condition. Of special

Ž .concern is the second regressor presence of edema which is discrete and
Ž .takes only three values 0, 0.5, 1 . Nevertheless, the corresponding regression

coefficient from Table 4 is 0.90, which is quite close to the coefficient 0.7847
based on the Cox proportional hazard model. A further study would be to
carry out another SIR analysis by focusing on the group with x � 0. The2
other groups have only 29 and 19 cases and thus it is not feasible to carry out
separate analyses for them.

TABLE 4
The first two eigenvectors and eigenvalues of the

lifetime SIR directions for the PBC data in Example 5.3

Ž .First vector 0.02, 0.90, 0.09, �0.62, �0.00, 0.38

Ž .Second vector 0.03, �2.3, 0.20, �0.28, �0.00, �0.68

Ž .Eigenvalues 0.54, 0.16, 0.05, 0.02, 0.01, 0.00
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FIG. 4. Scatterplot of Y against the first two lifetime SIR variates. �� observed, dot � censored
cases.

REMARK 5.1. In both of our simulation examples, we take p � 6. As the
regressor dimension p gets larger, the problem certainly gets harder and one
might expect the performance of our procedure to deteriorate as well. To
study this effect, we vary p from 6 to 10, 15 and 20. The sample size is kept
the same, n � 300. For each simulation run, we compute an R-squared term
for evaluating how close to the true e.d.r. lifetime directions the estimated
directions are. For the set-up of Example 5.1, which has only one true e.d.r.
lifetime direction, the R-squared term is simply the squared correlation

ˆo� � �coefficient between b x and � x. Since � x � x , the R-squared term is1 1 1 1
ˆo Ž .equal to the square of the first coordinate of b . Table 6 left side panel gives1

a summary of the R-squared values for 100 simulation runs in each case. For
comparison, the R-squared values for the SIR estimate without the weight
adjustment are given in the right side panel. We can see that the improve-
ment for the modified SIR procedure is still substantial for p as large as 20.

The set-up of Example 5.2 has two true e.d.r. lifetime directions. For the
first modified SIR direction, the R-squared term is just the R-squared value

ˆo� � �for regressing b x against � x and � x linearly. This is equal to the sum of1 1 2
ˆthe square of the first two coefficients in b . The R-squared value for theo

second modified SIR direction is defined similarly. A summary for 100
simulation runs is given in Table 7.

TABLE 5
The first two eigenvectors and eigenvalues of the

censoring time SIR variates for the PBC data in Example 5.3

Ž .First vector 0.01, 1.43, 0.05, �0.42, �0.00, 0.55

Ž .Second vector 0.02, 0.38, �0.15, 1.22, 0.00, 0.85

Ž .Eigenvalues 0.39, 0.22, 0.05, 0.03, 0.01, 0.00
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FIG. 5. Scatterplot of Y against the first two censoring time SIR variates. �� observed, dot �
censored observations.

6. Conclusion. We have demonstrated how to extend the dimension
Ž .reduction method of sliced inverse regression SIR to censored data. The

extension is straightforward if censoring time is independent of the regressor.
Ž .SIR can be applied to the observed data Y , x directly. However, if censor-i i

ing time depends on the regressor, then SIR needs to be modified. We

TABLE 6
Performance of modified SIR as the number of

Ž .regressors p increases under the setting of
Example 5.1 with 100 runs

2( )Mean standard deviation for R

p Modified SIR Original SIR

Ž . Ž .6 0.9172 0.0599 0.4751 0.1100

Ž . Ž .10 0.8630 0.0632 0.4736 0.0937

Ž . Ž .15 0.7963 0.0899 0.4322 0.0915

Ž . Ž .20 0.7576 0.0815 0.4152 0.0881
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TABLE 7
Ž .Performance of modified SIR as the number of regressors p increases

under the setting of Example 5.2 with 100 runs

2( )Mean standard deviation for R

p First modified SIR direction Second modified SIR direction

Ž . Ž .6 0.9730 0.0237 0.9132 0.0689

Ž . Ž .10 0.9434 0.0270 0.8455 0.0739

Ž . Ž .15 0.9239 0.0267 0.7911 0.0755

Ž . Ž .20 0.8933 0.0340 0.7149 0.1017

introduce a weight function in estimating the slice means. The estimation of
the weight function requires nonparametric smoothing. There are two op-
tions. The first one is to apply the kernel smoothing method of Section 3. This

Ž .is feasible only if the number of regressors is small e.g., p � 3 or if the
sample size is substantially large. The other option, which seems more
realistic, is the two-stage procedure of Section 5. We conduct a double slicing
SIR first to reduce the dimension of x before applying kernel smoothing. This

Ž .two-stage procedure relies on condition 1.5 , which assumes that the censor-
ing variable also has a dimension reduction structure with respect to the
regressor. This assumption appears reasonable and it offers the possibility of
examining the censoring pattern visually.

The main feature that distinguishes our approach from most other meth-
ods in survival analysis is that it does not require the estimation of g at the
dimension reduction stage of data analysis. Instead, after the dimension is
reduced, the estimation of g can be pursued by applying any low-dimensional
smoothing methods. Furthermore, our approach can be used to check if a
popular survival model is appropriate by examining the eigenvalues and the
low-dimensional plots generated by SIR. These plots provide valuable infor-
mation about the general pattern of censoring, possible presence of outliers
and the shape of the regression surface.

Imputation is a powerful way of dealing with the incomplete censored
observation. We can impute the censored Y observation first and then apply

Ž .the SIR method in Li 1991 directly to the imputed data. One possible
Ž .imputation method is given in Fan and Gijbels 1994 . While their method is

effective for one or two regressors, it is not appropriate in the higher-dimen-
sional situation. A feasible alternative is first to apply the dimension reduc-
tion method as outlined in this article and then apply imputation to the
reduced variables. This prospect merits further study.

The proof of root n consistency as outlined in the Appendix can perhaps be
improved with less strenuous assumptions. While this requires further theo-
retical investigation, it should not affect the applicability of the procedure
proposed here.
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APPENDIX

( )A. Derivation of 3.6 . It suffices to show that

1 t � Y , � � 1Ž .
oA.1 S t � x � exp E x .Ž . Ž . ½ 5S Y � xŽ .Y

Ž . Ž .First, the conditional independence assumption 1.3 implies that S y � x �Y
oŽ . Ž . Ž . � 4S y � x S y � x , where S y � x � P C � y � x . Using this relationship,C C

Ž .the expectation term in A.1 can be written as
o o1 t � Y , � � 1 1 t � Y 1 Y � CŽ . Ž . Ž .

E x � E xo o o½ 5 ½ 5S Y � x S Y � x S Y � xŽ . Ž . Ž .Y C

1 t � Y oŽ .
o o� E E 1 Y � C � x, Y � xŽ .Ž .o o o½ 5S Y � x S Y � xŽ . Ž .C

Ž . Ž Ž o . o. Ž o .By 1.3 again, we have E 1 Y � C � x, Y � S Y � x . The last expres-C
sion is seen to become

o1 t � YŽ .
E xo o½ 5S Y � xŽ .

The rest of the derivation is straightforward from the relationship between
the hazard and the survival functions.

B. Proof of Lemma 3.1. To obtain the root n consistency for m givenˆ h
Ž . Ž . Ž .by 3.7 using the kernel estimates 3.11 � 3.13 , some regularity conditions

will be imposed. Let

w � h�pK h�1 x � x ,Ž .Ž .i j n p i j

u � w � E w � x .� 4i j i j i j j

Ž̂ .We first require that the bias term of f x is of the root n,i

B.1 E w � x � f x � O n�1
2 .� 4Ž . Ž . Ž .i j j j p

The trade-off for imposing a smaller bias is the increasing of the variance, but
by averaging out many point estimates over an interval, the variance will
eventually remain small. The bias term, on the other hand, is harder to

Ž .cancel out. To ensure B1 , we need to use a bandwidth smaller than the
Ž .usual optimal rate. With B.1 , we can write

ˆ �1 �1
2B.2 f x � f x 	 n u 	 O n .Ž . Ž . Ž . Ž .Ýi i k i p
k

The rate of convergence for the term contributing to the variance is more
flexible. We need only assume that

B.3 n�1 u � O n�1
4 .Ž . Ž .Ý k i p
k
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Ž . Ž .Next we also assume that the bias for the kernel estimate of S t � x f xY
also has the root n rate

�1
2B.4 E 1 Y � Y w � x , Y � S Y � x f x � O n .Ž . Ž . Ž .Ž . Ž .k j k j j j Y j j j p

Ž .Typically with suitable smoothness conditions on S t � x , the same band-Y
Ž . Ž .width used to achieve B.1 may also imply B.4 . Denote

v � 1 Y � Y w � E 1 Y � Y w � x , Y .Ž . Ž .k j k j k j k j k j j j

Ž .Similarly to B.3 , we assume

B.5 n�1 v � O n�1
4 .Ž . Ž .Ý k j p
k

ˆ ŽBy Taylor’s expansion, we can find the leading terms for the term S Y �Y j
.�1x ,j

�1
�1 �1 �1
2ˆ ˆS Y � x � f x S Y � x f x 	 n v 	 O nŽ . Ž . Ž .Ž . Ž . ÝY j j j Y j j j k j pž /

k

�1�1ˆ� f x f x S Y � xŽ . Ž . Ž .j j Y j jž
�2�2 �1 �1
2�f x S Y � x n v 	 O nŽ . Ž .Ž . Ýj Y j j k j p /

k
B.6Ž .

�1 �2�1 �1� S Y � x � f x S Y � x n vŽ .Ž . Ž . ÝY j j j Y j j k j
k

�1�1 �1 �1
2	 f x S Y � x n u 	 O n .Ž . Ž .Ž . Ýj Y j j k j p
k

Ž . Ž .The last expression is obtained from B.2 and the assumptions B.3 and
Ž .B.5 .

To proceed, let us simplify the notation by taking

f � f x , S Y � x � S , 1 � 1 Y � Y � t , � � 1 ,Ž . Ž . Ž .i i Y j j j i j i j j

ˆ ˆ
 � 
 Y , t � x , 
 � 
 Y , t � x .Ž . Ž .i i i i i i

ˆŽ . Ž .Now apply B.2 and B.6 and expand the term 
 :i
�1�1 �1ˆ ˆ ˆ
 � f x n 1 S Y � x wŽ . Ž .Ýi i i j Y j j ji

j

� f �1 n�1 1 S�1 wÝi i j j ji
j

� f �1 n�1 1 w f �1S�2 n�1 vÝ Ýi i j ji j j k j
j k

B.7Ž .
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	 f �1 n�1 1 w f �1S�1 n�1 uÝ Ýi i j ji j j k j
j k

� f �2 n�1 u n�1 1 S�1 w 	 O n�1
2 .Ž .Ý Ýi k i i j j ji pž / ž /
k j

The first term will converge to the cumulative hazard 
 . Again, underi
suitable smoothness and boundedness conditions on the hazard function, the
same bandwidth used before should give a bias term at the root n rate. We
shall assume that

�1 �1
2B.8 E 1 S w � x , Y � 
 f � O n .Ž . Ž .i j j ji i i i i p

�1 Ž �1 .Let � � 1 S w � E 1 S w � x , Y , and denote the second, third andi j i j j ji i j j ji i i
Ž . Ž . Ž . Ž .fourth terms on the right side of B.7 as I , II , III , respectively. Byi i i

Ž . Ž .B.8 , we can rewrite B.7 as

ˆ �1 �1 �1
2
 � 
 	 f n � � I 	 II � III 	 O n .Ž . Ž . Ž . Ž .Ý i i ii i i i j p
j

Ž . �
 iDenote 1 � 1 Y � t, � � 0 , w � � . We can expand the second term oni i i i
Ž .the right side of equation 3.8 to

�1 �1 ˆn 1 x w Y , t , x � n 1 x exp �
Ž . � 4ˆÝ Ýi i i i i i i
i i

� n�1 x 1 w 	 n�2 x 1 w f �1
�Ý Ýi i i i i i i i j

i i , j
B.9Ž .

�1� n x 1 w I � II 	 III .Ž . Ž . Ž .Ý i i ii i i
i

Ž �1
2 .It remains to show that the second and third terms are O n .p
� � � �Abbreviate the conditional expectation E �� x , Y by E �� i . Note that wei i

Ž . � � Ž . Ž �p .have E � � 0, E � � i � 0, var � � O h . The second term takes thei j i j i j n
form of n�2Ý a � with a � x 1 w f �1. To evaluate its variance, we firsti, j i i j i i i i i
observe that

E a � a � � 0 if j � j�Ž .i i j i� i� j�

� O 1 if j � j�, i � i�Ž .
� O h�p if i � i�, j � j�.Ž .n

From this, a straightforward calculation leads to

�2 �4 3 2 �p �1B.10 var n a � � n n O 1 	 n O h � O n .Ž . Ž . Ž .Ž .Ý i i j nž /
i , j

Ž .The variance for the third term in B.9 can also be evaluated similarly. We
�1 Ž . �2can rewrite n Ý x 1 w I as n Ý a v , with˜i i i i i j, k j k j

a � n�1Ý x 1 w f �11 f �1S�2 w ,˜j i i i i i i j j j ji

where
E v � j � 0, var v � O h�p .Ž . Ž .Ž .k j k j n

From this expression, we can calculate its variance and obtain a result
Ž . Ž �2 . Ž �1 .similar to B.10 : var n Ý a v � O n . The calculation for the vari-˜j, k j k j
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�1 Ž .ance of n Ý x 1 w II can be carried out in exactly the same way. Finally,i i i i i
�1 �2Ž .to deal with the term n Ý x 1 w III , we express it as n Ý a u withi i i i i i, k i k i�2 �1 �1a � x 1 w f n Ý 1 S w . Then again, by the same argument, the vari-i i i i i j i j j ji

ance is shown to have the order of n�1.
Ž .We have now completed the proof for the root n convergence for 3.8 . The

Ž .proof for 3.9 is the same. Therefore, m is root n consistent, as claimed inˆ h
Lemma 3.1. �
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