
The Annals of Statistics
1999, Vol. 27, No. 4, 1230–1239

TESTS OF GOODNESS OF FIT BASED ON THE
L2-WASSERSTEIN DISTANCE1

By Eustasio del Barrio, Juan A. Cuesta-Albertos, Carlos Matrán
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We consider the Wasserstein distance between a sample distribution
and the set of normal distributions as a measure of nonnormality. By con-
sidering the standardized version of this distance we obtain a version of
Shapiro–Wilk’s test of normality. The asymptotic behavior of the statistic is
studied using approximations of the quantile process by Brownian bridges.
This method differs from the “ad hoc” method of de Wet and Venter and
permits a similar analysis for testing other location scale families.

1. Introduction. Goodness-of-fit tests are often based on some distances
between probability laws (p.l.’s). In this work we follow this approach by using
the L2-Wasserstein distance between a fixed distribution and a location scale
family of probability distributions on R. We focus on the (more interesting)
normal case, but our approach can be used to cover other distributions (see
[8] for details).

Let �2�R� be the set of probabilities on R with finite second moment. For
probabilities P1 and P2 in �2�R�, the L2-Wasserstein distance between P1
and P2 is defined as

� �P1�P2� �= inf
{�E�X1 −X2�2�1/2 � � �X1� = P1�� �X2� = P2

}
�

For distributions P1 and P2 on R the distance � can be explicitly calculated
(see, e.g., [1]):

� �P1�P2� =
[∫ 1

0
�F−1

1 �t� −F−1
2 �t��2 dt

]1/2

�(1.1)

where F−1
1 and F−1

2 are the quantile functions of P1 and P2, respectively
[recall that for a distribution function F the quantile function F−1 is defined
by F−1�t� = inf�s� F�s� ≥ t
 and note that the right-hand side of (1.1) is equal
to �E�F−1

1 �U� − F−1
2 �U��2�1/2, where U is a r.v. with uniform distribution on

�0�1�].
For simplification of notation we will often identify a probability law with its

distribution function (d.f.). The d.f. of the standard normal law will be denoted
by � and its density by φ. We write �� �= �H� H�x� = ���x− µ�/σ�, µ ∈ R,
σ > 0
 for the class of normal laws on the line.
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Now, observe that if P ∈ �2�R� has d.f. F, mean µ0 and standard deviation
σ0, then

� 2�P��� � �= inf�� 2�P�H�� H ∈ �� 


= inf
σ>0

{∫ 1

0
�F−1�t� − µ0 − σ�−1�t��2 dt

}

= σ2
0 −

(∫ 1

0
�F−1�t� − µ0��−1�t�dt

)2

= σ2
0 −

(∫ 1

0
F−1�t��−1�t�dt

)2

�

(1.2)

Thus, the normal law closest to P is given by σ = ∫ 1
0 F

−1�t��−1�t�dt and
µ = µ0. Note also that the ratio � 2�P��� �/σ2

0 is not affected by location or
scale changes on P. Hence, it can be considered as a measure of nonnormality.

Now let X1�X2� � � � �Xn be a random sample with underlying d.f. F and let
Fn denote its empirical d.f. and S2

n the sample variance. A sample version of
� 2�P��� �/σ2

0 is given by

�n �= � 2�Pn��� �
S2
n

= 1 − �∫ 1
0 F

−1
n �t��−1�t�dt�2

S2
n

�(1.3)

This quantity can be used as a test statistic for the hypothesis of normality. In
fact, �n is connected with correlation tests and in particular with the Shapiro–
Wilk’s test of normality; see [14]. This has been noted, in the context of normal
probability plots, in [2]. Moreover, �n is asymptotically equivalent to Shapiro–
Wilk statistics, Shapiro–Francia statistics and De Wet–Venter statistics. This
can be obtained from the results in [11] and [15].

For literature concerning statistics related to Shapiro–Wilk’s W statistic,
see [7], [9], [11], [15] or [12]. All the proofs of the asymptotic behavior of any
of these statistics given in [11], [15] and [12] rely on the results in [9].

Some other statistical applications of L2-Wasserstein statistics can be found
in [13]. Here, a trimmed version of the L2-Wasserstein distance is considered
as a dissimilarity measure between distributions and the asymptotic normal-
ity of its empirical version is shown.

The purpose of this paper is to analyze the asymptotic behaviour of �n

through approximations of quantile processes by Brownian bridges, B�t�. This
approach was also used in [3] to treat a simplified version of W, but the proof
makes heavy use of the results in [9] to give a sense to the limit expression,

Z �=
∫ 1

0

B2�t� −EB2�t�
�φ��−1�t���2

dt�(1.4)

Note that Z is not defined because the set of trajectories of a Brownian
bridge B�t� for which the function t �→ �B2�t�−EB2�t��/�φ��−1�t���2� is inte-
grable has probability zero. This difficulty will be circumvented in Theorem 2,
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where we will show that the sequence

{∫ 1−1/n

1/n

B2�t� −EB2�t�
�φ��−1�t���2

dt

}
n

is an L2-Cauchy sequence, so we can define Z as the L2-limit of this sequence.
We should remark that the ambitious program on the convergence of inte-

grals of empirical and quantile processes developed in [4], [5] and [6] does not
cover our results.

We also remark that the present approach can be applied to other location
scale families, including those with heavy tails (see [8] for details).

2. The results. The normal law closest to the empirical d.f. Fn has mean
µ̂n = µ�Fn� = X̄n and standard deviation

σ̂n =
n∑
k=1

Xkn

∫ k/n
�k−1�/n

�−1�t�dt

if we denote the order statistic by Xkn� k = 1�2� � � � � n.
Our measure of nonnormality is then

�n = � 2�Pn��� �
S2
n

= 1 − σ̂2
n

S2
n

�

where S2
n = �1/n�∑n

i=1�Xi − X̄n�2 is the variance of the sample distribution.
We will study �n under the hypothesis F�x� = ���x− µ0�/σ0�.

The invariance of �n with respect to location or scale changes, allows us
to assume F = � and, by the convergence S2

n → σ2��� = 1 a.s., we can study
the asymptotic behavior of �n through that of S2

n�n. We use the following
decomposition:

0 ≤ �∗
n �= S2

n�n =
∫ 1

0
�F−1

n �t� −�−1�t��2 dt

−
(∫ 1

0
�F−1

n �t� −�−1�t��dt
)2

−
(∫ 1

0
�F−1

n �t� −�−1�t���−1�t�dt
)2

�= �
�1�
n −�

�2�
n −�

�3�
n �

(2.1)

Observe that n��2�
n = �n1/2X̄n�2 has a χ2

1 asymptotic law. On the other hand,

n�
�3�
n =

(
n1/2

(∫ 1

0
F−1
n �t��−1�t�dt− 1

))2

= �n1/2�σ̂n − 1��2
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has a scaled χ2
1 asymptotic law. Note that n��1�

n is the statistic L0
n of De Wet

and Venter. We need a joint treatment of ���1�
n ��

�2�
n ��

�3�
n �. Note also that

�
�1�
n =

∫ 1

0

(
ρn�t�

φ��−1�t��
)2

dt�(2.2)

�
�2�
n =

(∫ 1

0

ρn�t�
φ��−1�t�� dt

)2

�(2.3)

�
�3�
n =

(∫ 1

0

ρn�t��−1�t�
φ��−1�t�� dt

)2

�(2.4)

where ρn is the quantile process defined by

ρn�t� �= n1/2φ��−1�t����−1�t� −F−1
n �t��� 0 ≤ t ≤ 1�

We will use the following result on ρn.

Theorem 1 (see Theorem 6.2.1 in [5]). On a rich enough probability space
we can define a sequence of Brownian bridges �Bn�t�� 0 ≤ t ≤ 1
n such that

n�1/2�−ν sup
1/�n+1�≤t≤1−�1/�n+1�

�ρn�t� −Bn�t��
�t�1 − t��ν =

{
OP�log n�� if ν = 0�
OP�1�� if 0 < ν ≤ 1

2 �

Before we make use of the approximation of ρn, given in Theorem 1, we
treat the behavior of the integrals in (2.2), (2.3) and (2.4) at the boundary.

Proposition 1. If �Xin� i = 1� � � � � n
 is the ordered sample obtained from
an i.i.d. sample with standard normal law, then

n
∫ 1/n

0
�X1n −�−1�t��2 dt→p 0 and n

∫ 1

1−1/n
�Xnn −�−1�t��2 dt→p 0�

Proof. By symmetry it suffices to consider the behavior of �X1n
n� It is
well known (see, e.g., [10]) that an�X1n−bn� converges weakly to a nondegen-
erate limit law for some an → ∞ and bn = �−1�1/n�. Hence

n
∫ 1/n

0
�X1n − bn�2 dt = �X1n − bn�2 →p 0�

The result follows from

n
∫ 1/n

0
�bn −�−1�t��2 dt→ 0�(2.5)

Claim (2.5) is an easy consequence of l’Hôpital’s rule and the well-known
equivalence φ��−1�x�� ≈ ��−1�x��x as x→ 0, as follows:

lim
x→0

1
x

∫ x
0
��−1�x� −�−1�t��2 dt = lim

x→0

2
∫ x

0 �
−1�x� −�−1�t�dt
φ��−1�x��

= lim
x→0

−2x
�−1�x�φ��−1�x�� = 0� ✷
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Proposition 2. On an adequate probability space, there exists a sequence
�Bn�t�
n of Brownian bridges such that the statistic n�∗

n = n�S2
n− σ̂2

n� fulfills

n�∗
n −

(∫ n/�n+1�

1/�n+1�

(
Bn�t�

φ��−1�t��
)2

dt−
(∫ n/�n+1�

1/�n+1�
Bn�t�

φ��−1�t�� dt
)2

−
(∫ n/�n+1�

1/�n+1�
Bn�t��−1�t�
φ��−1�t�� dt

)2)
→p 0�

Proof. From Proposition 1 and the obvious inequality (valid for every
Borel set A),

∫
A
�F−1

n −�−1�2 ≥
(∫

A
�F−1

n −�−1�
)2

∨
(∫

A
�F−1

n −�−1��−1
)2

�

it follows that

n�∗
n −

(∫ n/�n+1�

1/�n+1�

(
ρn�t�

φ��−1�t��
)2

dt−
(∫ n/�n+1�

1/�n+1�
ρn�t�

φ��−1�t�� dt
)2

−
(∫ n/�n+1�

1/�n+1�
ρn�t��−1�t�
φ��−1�t�� dt

)2)
→p 0�

Therefore, our claim reduces to showing that (on an adequate space)

L
�1�
n �=

∫ n/�n+1�

1/�n+1�

(
ρn�t�

φ��−1�t��
)2

dt

−
∫ n/�n+1�

1/�n+1�

(
Bn�t�

φ��−1�t��
)2

dt→p 0�

L
�2�
n �=

(∫ n/�n+1�

1/�n+1�
ρn�t�

φ��−1�t�� dt
)2

−
(∫ n/�n+1�

1/�n+1�
Bn�t�

φ��−1�t�� dt
)2

→p 0 and

L
�3�
n �=

(∫ n/�n+1�

1/�n+1�
ρn�t��−1�t�
φ��−1�t�� dt

)2

−
(∫ n/�n+1�

1/�n+1�
Bn�t��−1�t�
φ��−1�t�� dt

)2

→p 0�

(2.6)

We will study first the asymptotic behavior of L�1�
n . Theorem 1 guaran-

tees the existence of a sequence of Brownian bridges such that, for every



GOODNESS OF FIT AND WASSERSTEIN DISTANCE 1235

ν ∈ �0�1/2�:
∣∣∣∣
∫

1/�n+ 1�n/�n+1�
(

ρn�t�
φ��−1�t��

)2

dt−
∫ n/�n+1�

1/�n+1�

(
Bn�t�

φ��−1�t��
)2

dt

∣∣∣∣
≤

∫ n/�n+1�

1/�n+1�

(
ρn�t� −Bn�t�
φ��−1�t��

)2

dt+ 2
∫ n/�n+1�

1/�n+1�
�ρn�t� −Bn�t���Bn�t��

φ��−1�t��2
dt

≤ Op�1�n2ν−1
∫ n/�n+1�

1/�n+1�
�t�1 − t��2ν

φ��−1�t��2
dt

+Op�1�nν−
1
2

∫ n/�n+1�

1/�n+1�
�t�1 − t��ν�Bn�t���

φ��−1�t��2
dt

�= A
�1�
n +A�2�

n

However if 0 < α < 1, then

lim
n→∞n

α−1
∫ n/�n+1�

1/�n+1�
�t�1 − t��α
φ��−1�t��2

dt = 0(2.7)

because the equivalence �x���x� ≈ φ�x�, as x→ −∞, easily shows that

nα−1
∫ 1/2

1/�n+1�
tα

φ��−1�t��2
dt

= −nα−1

�n+ 1�α
�−1�1/�n+ 1��

φ��−1�1/�n+ 1���

− nα−1
∫ 1/2

1/�n+1�
αtα−1φ��−1�t�� + tα�−1�t�

φ��−1�t��2
�−1�t�dt→ 0�

Therefore A�1�
n →p 0. On the other hand, also for ν ∈ �0�1/2� [taking α = ν+ 1

2
in (2.7)],

E

[
nν−1/2

∫ n/�n+1�

1/n

�t�1 − t��ν�Bn�t���
φ��−1�t��2

dt

]

= nν−1/2
∫ n/�n+1�

1/n

�t�1 − t��ν+1/2

φ��−1�t��2
dt→ 0�

thus A�2�
n →p 0. This shows that L�1�

n →p 0.

Let us now consider L�2�
n . We can rewrite it as follows:

L
�2�
n =

(∫ n/�n+1�

1/�n+1�
ρn�t� −Bn�t�
φ��−1�t�� dt

)(∫ n/�n+1�

1/�n+1�
ρn�t� +Bn�t�
φ��−1�t�� dt

)
�(2.8)
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The first factor on the right-hand side of (2.8) is bounded by

[∫ n/�n+1�

1/�n+1�

(
ρn�t� −Bn�t�
φ��−1�t��

)2

dt

]1/2

→p 0�(2.9)

where the last convergence is a consequence of the convergence A�1�
n →p 0

shown above. Moreover, it is well known that the law of

∫ n/�n+1�

1/�n+1�
Bn�t�

φ��−1�t�� dt

is N�0� σ2
1 �1/�n+ 1���, with

σ2
1 �x� �=

∫ 1−x

x

∫ 1−x

x

u ∧ v− uv
φ��−1�u��φ��−1�v�� dudv�

It is easy to verify that σ2
1 �x� → 1 as x→ 0. This shows

∫ n/�n+1�

1/�n+1�
Bn�t�

φ��−1�t�� dt = Op�1��

and, therefore, also

∫ n/�n+1�

1/�n+1�
ρn�t�

φ��−1�t�� dt = Op�1��

This and (2.9) show L
�2�
n →p 0. Similarly, we get

∣∣∣∣
∫ n/�n+1�

1/�n+1�
�ρn�t� −Bn�t���−1�t�

φ��−1�t�� dt

∣∣∣∣
≤

[(∫ 1

0
��−1�t��2 dt

) ∫ n/�n+1�

1/�n+1�
�ρn�t� −Bn�t��2

�φ��−1�t���2
dt

]1/2

→p 0�

Now
∫ n/�n+1�

1/�n+1� �Bn�t��−1�t�/�φ��−1�t���dt has a N�0� σ2
2 �1/�n+ 1��� law, with

σ2
2 �x� �=

∫ 1−x

x

∫ 1−x

x

u ∧ v− uv
φ��−1�u��φ��−1�v���

−1�u��−1�v�dudv→1/2 as x→0�

With similar arguments as for L�2�
n we get that L�3�

n →p 0. This completes the
proof of (2.6). ✷

In the next theorem we obtain the asymptotic law of �n through its equiv-
alent version based on the Brownian bridge. Note that the main dificulty is to
give sense to expression Z, defined by (1.4), because, as stated in the intro-
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duction, the integrand in the definition of Z is a.s. not integrable (see Lemma
2.2 in [6]). Thus

lim
n

∫ n/�n+1�

1/�n+1�
B2�t� −EB2�t�
�φ��−1�t���2

dt

does not exist.
However, it turns out that this limit does exist in the L2-sense and we can

define Z as this L2-limit. This will be done in the proof of the next theorem.

Theorem 2. Let �Xn
n be a sequence of i.i.d. normal random variables.
Then

n��n − an� →�

∫ 1

0

B2�t� −EB2�t�
�φ��−1�t���2

dt−
(∫ 1

0

B�t�
φ��−1�t�� dt

)2

−
(∫ 1

0

B�t��−1�t�
φ��−1�t�� dt

)2

�

(2.10)

where

an = 1
n

∫ n/�n+1�

1/�n+1�
t�1 − t�

�φ��−1�t���2 dt�

Proof. By the invariance of �n we can assume, without loss of generality,
that Xn has a standard normal law. Then, by the asymptotic normality of S2

n,
we have

n��n − an� − n��∗
n − an� =

n

S2
n

�∗
n�1 −S2

n� = Op�1�
√
n��∗

n − an + an� →p 0�

provided n��∗
n−an� = Op�1�. It remains to show that n��∗

n−an� converges to
the right-hand side of (2.10). By Proposition 2, it even suffices to give a limit
sense to

∫ 1

0

B2�t� −EB2�t�
�φ��−1�t���2

dt�

If

An �=
∫ n/�n+1�

1/�n+1�
B2�t� −EB2�t�
�φ��−1�t���2

dt�

then it can be shown that

EA2
n =

∫ n/�n+1�

1/�n+1�

∫ n/�n+1�

1/�n+1�
2�s ∧ t− st�2

�φ��−1�s���φ��−1�t���2
dsdt

→
∫ 1

0

∫ 1

0

2�s ∧ t− st�2

�φ��−1�s��φ��−1�t���2
dsdt <∞�

From this it is easy to see that E�An −Am�2 → 0 as n�m → ∞ and, hence,
that An converges in L2� ✷
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The next theorem provides the known explicit expression for the limit law
of �n; see [9]. A new proof of this result can be based on Theorem 2. The
proof, which will not be given here, relies on a careful principal components
expansion based on the eigenfunctions of the operator

Lf�t� �=
∫ 1

0

s ∧ t− st
φ��−1�s��φ��−1�t��f�s�ds�

see [8] for details.

Theorem 3. Let �Xn
n be a sequence of i.i.d. normal random variables.
Then

n��n − an� →� −3
2
+

∞∑
j=3

Z2
j − 1

j
�

where �Zn
n is a sequence of independent N�0�1� random variables and

an = 1
n

∫ n/�n+1�

1/�n+1�
t�1 − t�

�φ��−1�t���2 dt�
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