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CONSISTENT ESTIMATION OF MIXTURE COMPLEXITY1

By Lancelot F. James, Carey E. Priebe and David J. Marchette

Johns Hopkins University and Naval Surface Warfare Center

The consistent estimation of mixture complexity is of fundamental
importance in many applications of finite mixture models. An enormous
body of literature exists regarding the application, computational issues
and theoretical aspects of mixture models when the number of components
is known, but estimating the unknown number of components remains
an area of intense research effort. This article presents a semiparametric
methodology yielding almost sure convergence of the estimated number of
components to the true but unknown number of components. The scope of
application is vast, as mixture models are routinely employed across the
entire diverse application range of statistics, including nearly all of the
social and experimental sciences.

1. Introduction. Let φ�x� θ� be the normal density function with param-
eters θ = �µ�σ2� ∈ � = �× �0�∞� and consider the generalized mixture

f�x�η� =
∫
φ�x� θ�dη�θ��

where η is the mixing distribution. If the mixing distribution is finite, then f
is a finite mixture model

f�x�η� =
m∑
t=1

πtφ�x� θt�

and m < ∞ is the mixture complexity. Given a random sample Xn = �X1� � � � �
Xn� drawn from f, this article proposes a semiparametric density estimator
of the form

f̂�x�Xn� =
m̂∑
t=1

π̂tφ�x� θ̂t�

with the property that

m̂ → m a.s. as n → ∞�

That is, our methodology results in a consistent estimate of mixture complex-
ity. If f is indeed a finite mixture of m normals (f ∈ �m), then the resultant
estimate converges to the correct mixture representation (up to relabeling of
the components). If, on the other hand, f is not an element of �m for any m,
then m̂ → ∞ but f̂ → f nonetheless.
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Methodologies for consistent estimation of a mixing distribution are well
known; for example, the nonparametric maximum likelihood estimate of η
is consistent [see, e.g., Kiefer and Wolfowitz (1956); Pfanzagl (1988); Leroux
(1992)]. However, the literature regarding consistent estimation of the mix-
ture complexity m is sparse but burgeoning: see Henna (1985); Chen and
Kalbfleisch (1996); Dacunha-Castelle and Gassiat (1997, 1999); Keribin (2000);
and Priebe and Marchette (2000). Efforts to address the related problem of
testing hypotheses about m have met with mixed results; the limiting dis-
tribution for the likelihood ratio test statistic was until recently unavailable
[Dacunha-Castelle and Gassiat (1999)], and so bootstrap testing methodolo-
gies have been developed [see, e.g., McLachlan (1987)]. Finally, in nonpara-
metric Bayesian density estimation, posterior consistency for the number of
components can be established for mixtures of normals using Dirichlet pro-
cess priors [see, e.g., Escobar and West (1995)] or by the method of Roeder and
Wasserman (1997).
Some preliminaries regarding mixture models and kernel density estima-

tion are given in Section 2. In Section 3 we develop our alternating ker-
nel and mixture semiparametric density estimation procedure. In particular,
equation (3) gives our estimator m̂n for mixture complexity. The main result,
consistency of m̂n, is presented in Section 4. We conclude, in Section 5, with
simulation experiments and an example of application.

2. Preliminaries. Let

� =
∞⋃

m=1
�m��m ⊂ �m+1 ∀m

denote the family of normal mixtures. That is, for each fixed m < ∞,

�m = �f�· �m�π� θ�� �π� θ� ∈ �m ×�m�
where

f�x�m�π� θ� =
m∑
t=1

πtφ�x� θt��

�m =
{
πt� t = 1� � � � �m�

m∑
t=1

πt = 1� πt ≥ 0
}

and

�m = ��µt� σ
2
t �� t = 1� � � � �m� �µt� σ

2
t � ∈ � = �× �0�∞���

Note that �1 corresponds to the family of univariate normal densities. We
hereafter denote the vector of �3m− 1� parameters as

vm = �π1� � � � � πm−1� µ1� σ
2
1 � � � � � µm� σ2

m�
and write, for elements of �m,

f�x�vm� =
m∑
t=1

πtφσt
�x− µt��
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where

φσ�z� = σ−1φ�σ−1z��

in which φ�z� denotes the standard normal density, and

πm = 1−
m−1∑
t=1

πt�

Note that the nonparametric normal kernel density estimator with band-
width h > 0, defined as

f̃h�x� = �1/n�
n∑

i=1
φh�x−Xi��

is an element of �n.
For each fixedm < ∞ we say that two parameters vm and ṽm are equivalent

in the sense of the quotient topology [see Redner (1981), Redner and Walker
(1984)] if they define the same density; that is, if vm and ṽm are both elements
of a set

T�v� = �v′� f�x�v′� = f�x�v� ∀x��

Given an arbitrary density g, we define the index of the economical repre-
sentation of g, relative to the family of normal mixtures, as

m�g� = min�m� g ∈ �m��

Thus if g is a finite mixture of normals thenm�g� is finite and denotes the mix-
ture complexity. That is, if m�g� = m, then there exists a vector vm such that

g�x� = f�x�vm��

but there does not exist vj for any j < m such that

g�x� = f�x�vj��

clearly for all k > m there exist vk such that

g�x� = f�x�vk��

Thus m�g� represents the index of the most parsimonious normal mixture
model representation for g. Naturally, if g is not a finite normal mixture then
m�g� = ∞�
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3. Estimation procedure. Given Xn = �X1� � � � �Xn� independent and
identically distributed from an unknown density g0, we devise an iterative
estimation scheme to estimate m0 = m�g0�. Let

KL�g�f� =
∫
g�x� ln

(
g�x�
f�x�

)
dx

denote the Kullback–Leibler distance between two densities g and f. Let f̃h

be the normal kernel density estimator as above and define for an integer
m > 0,

ĝm = arg min
f∈�m

KL�f̃h�φh ∗ f�(1)

and

gm
0 = arg min

f∈�m

KL�φh ∗ g0� φh ∗ f��(2)

where g0 denotes the true underlying density and ∗ denotes the convolution
operator. Note that for f ∈ �m, the density φh ∗ f is a normal mixture model
with variance components σ2

t + h2, t = 1� � � � �m. Our initial motivation for
convolving elements of �m with φh is simple; the kernel estimator f̃h is an
unbiased estimator for φh ∗ g0, rather than for g0. Moreover, if one considers
the case of m = 1—that is, the class of univariate normal densities with
mean µ and variance σ2—then

ĝ1�x� = φ�x� �µ̂� σ̂2���

where �µ̂� σ̂2� are the well-known maximum likelihood estimators. Thus
�µ̂, σ̂2) are root n-consistent provided that g0 has a finite second moment,
and efficient if m0 = 1. In contrast, if one were to use

g̃1 = arg min
f∈�m

KL�f̃h� f��

then

g̃1�x� = φ�x� �µ̂� σ̂2 + h2���

which, when m0 = 1, produces an asymptotically biased estimator for σ2 with
bias of order h2. The estimator (1) is similar to the method of Beran (1977),
specialized to a finite mixture model. However Beran’s (1997) method is based
on the Hellinger distance. Other work which specifically considers the case of
a fixed finite mixture model using a Hellinger or other mimimum distance
method includes Cutler and Cordero-Braña (1996), Cordero-Braña and Cutler
(2001), Cao, Cuevas and Fraiman (1995), Cao and Devroye (1996), Clarke and
Heathcote (1994), Tamura and Boos (1986).
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We now present a brief comparison showing the relationship between our
convolution approach and penalized maximum likelihood. Notice that, for
f ∈ �m, ∫

f̃h�x� lnφh ∗ f�x�vm�dx

=
n∑

i=1

1
n

∫
φ�z� ln

( m∑
t=1

πtφ�Xi + hz� �µt� σ
2
t + h2��

)
dz�

A Taylor expansion about z = 0 gives∫
f̃h�x� lnφh ∗ f�x�vm�dx

∼=
n∑

i=1

1
n
ln
( m∑

t=1
πtφ�Xi� �µt� σ

2
t + h2��

)
+ 1
2
h2Gn�h�

where Gn is the empirical measure on the Xi’s and

�h = φh ∗ f′′

φh ∗ f
−

[
φh ∗ f′

φh ∗ f

]2
�

It follows that our maximization procedure may be viewed as a variant of a
penalized m.l.e. (with a random penalty function). [See Bickel, Klaassen, Ritov
and Wellner (1993) for some references on this subject.]
Our estimator m̂n for m0 is defined as

m̂n = min�m� KL�f̃h�φh ∗ ĝm� ≤ KL�f̃h�φh ∗ ĝm+1� + an�m+1��(3)

where �an�j� j ≥ 1� are positive sequences chosen such that they converge to
zero as n increases to ∞. We take an�m = 3/n in practice.
One sees that our choice of m̂n is natural by noting that m0 can be

expressed as

m0 = min�m� KL�φh ∗ g0� φh ∗ gm
0 � ≤ KL�φh ∗ g0� φh ∗ gm+1

0 ��
= min�m� KL�φh ∗ g0� φh ∗ gm

0 � = 0�
= min�m� KL�g0� g

m
0 � = 0��

Our estimator m̂n also bears some similarities to one developed in Section 3
of Ritov and Bickel (1990), although their estimator appears in a somewhat
different context. In practice we may wish to choose h based upon the optimal
bandwidth for the estimated ĝm; as such, the scalar h is replaced by a random
hm at each stage. In Section 5 we will demonstrate the performance of this
random bandwidth approach.

4. Main result. In this section we show that consistency of our method
essentially follows from consistency of the nonparametric kernel density esti-
mator. To support our main results, for bandwidths which may be random,
we present the following lemma (obtained under minimal conditions) which is
deduced from an application of Nolan and Marron (1989).
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Lemma 1. Let h be a bandwidth satisfying h → 0 and nh/ log n → ∞.
Then for g0 such that KL�f̃h�φh ∗ g0� < ∞,

KL�f̃h�φh ∗ g0� → 0 a�s�

In addition, if h is replaced by a random bandwidth h�x�n�, possibly depend-
ing on x, such that there exists positive sequences αn ≤ βn satisfying βn ≥
h�x�n� ≥ αn for all x, eventually almost surely, βn → 0 and nαn/ log n → ∞,
then

KL�f̃h�x�n�� φh�x�n� ∗ g0� → 0 a�s�

Proof. Since the class of translates of the standard normal kernel,
�hφh �x−·�� x ∈ �� h > 0�, constitutes a Euclidean class, we have by Theorem 1
of Nolan and Marron (1989) [see also Pollard (1984), page 35] that

sup
x

∣∣∣∣ f̃h�x�
φh ∗ g0�x�

− 1
∣∣∣∣ → 0 a�s�

The analogous result for h�x�n� follows from Corollary 2 of Nolan and Marron
(1989). These results, coupled with the fact that

KL�f̃h�φh ∗ g0� =
∫
f̃h�x� ln

(
f̃h�x�

φh ∗ g0�x�
)
dx

≤
∫
f̃h�x�

[
f̃h�x�

φh ∗ g0�x�
− 1

]
dx�

conclude the proof. ✷

Theorem 1. Suppose that n and h satisfy the conditions in Lemma 1. Then
for any sequence an�m → 0,

m̂n → m0 a�s�

Proof. The proof follows by showing that for each m > 0�

KL�f̃h�φh ∗ ĝm� −KL�f̃h�φh ∗ ĝm+1�

=
∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ ĝm�x�

)
dx → cm a�s��

where cm > 0 for m < m0 and cm = 0 for m ≥ m0� This is established in
Lemmas 2, 3, 4 below. ✷

Lemma 2. For m > 0 an arbitrary integer,
∫
f̃h�x� ln

(
φh ∗ ĝm�x�
φh ∗ gm

0 �x�
)
dx → 0 a�s�

as n → ∞.
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Proof. From the definitions of ĝm and gm
0 in (1) and (2) it follows that

KL�f̃h�φh ∗ gm
0 � −KL�f̃h�φh ∗ ĝm� =

∫
f̃h�x� ln

(
φh ∗ ĝm�x�
φh ∗ gm

0 �x�
)
dx ≥ 0

and similarly

KL�φh ∗ g0� φh ∗ gm
0 � −KL�φh ∗ g0� φh ∗ ĝm�

=
∫
φh ∗ g0�x� ln

(
φh ∗ ĝm�x�
φh ∗ gm

0 �x�
)
dx ≤ 0�

However, from the results in Lemma 1, it follows that the two quantities are
asymptotically equal almost surely and hence they must both almost surely
converge to zero as n → ∞. ✷

Lemma 3. If m ≥ m0, then

∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ ĝm�x�

)
dx → 0 a�s�

as n → ∞.

Proof. Notice that
∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ ĝm�x�

)
dx =

∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ g0�x�

)
dx

−
∫
f̃h�x� ln

(
φh ∗ ĝm�x�
φh ∗ g0�x�

)
dx�

Recall that g0 ∈ �m0
implies g0 ∈ �j for j ≥ m0 and hence using (1) it

follows that
∫
f̃h�x� ln

(
φh ∗ ĝj�x�
φh ∗ g0�x�

)
dx

= KL�f̃h�φh ∗ g0� −KL�f̃h�φh ∗ ĝj� ≥ 0�

Thus since KL�f̃h�φh ∗ ĝj� ≥ 0, it follows that

0 ≤ KL�f̃h�φh ∗ ĝj� ≤ KL�f̃h�φh ∗ g0�

and hence by Lemma 1, KL�f̃h�φh ∗ ĝj� → 0 a.s. as n → ∞. ✷

Lemma 4. If m < m0, then for some positive constant cm,

∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ ĝm�x�

)
dx → cm a�s�
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Proof. Notice that∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ ĝm�x�

)
dx =

∫
f̃h�x� ln

(
φh ∗ ĝm+1�x�
φh ∗ gm+1

0 �x�

)
dx

+
∫
f̃h�x� ln

(
φh ∗ gm

0 �x�
φh ∗ ĝm�x�

)
dx

+
∫
f̃h�x� ln

(
φh ∗ gm+1

0 �x�
φh ∗ gm

0 �x�
)
dx ≥ 0�

By Lemma 2, the first two terms on the r.h.s. of the equality converge almost
surely to zero, which implies that for large enough n,

∫
f̃h�x� ln

(
φh ∗ gm+1�x�
φh ∗ gm

0 �x�
)
dx ≥ 0 a�s�

Moreover, it follows from Lemma 1 that∣∣∣∣
∫ [

f̃h�x� −φh ∗ g0�x�
]
ln
(
φh ∗ gm+1

0 �x�
φh ∗ gm

0 �x�
)
dx

∣∣∣∣ → 0 a�s�

An application of Leroux [(1992), Lemma 3] gives
∫
φh ∗ g0�x� ln

(
φh ∗ gm+1

0 �x�
φh ∗ gm

0 �x�
)
dx → cm

for some cm > 0, completing the proof. ✷

5. Computational experiments. The development above gives rise to
an iterative algorithm described as follows. First one fits a nonparametric esti-
mator f̃ to the data, and computes the KL distance between f̃ and a single
normal. A component is added (yielding a mixture of two normal components
at this first stage) and the mixture �ĝ2� is updated in such a way as to satisfy
equation (1). The change in KL distance is computed as in equation (3) and
compared with the threshold an�2. This process repeats, adding more com-
ponents to the mixture, until the change is less than a, at which time the
procedure terminates.
We present three examples of this algorithm in action. The first is a Monte

Carlo simulation demonstrating the performance on a given target density
over a variety of sample sizes. The second is a Monte Carlo simulation for
a fixed sample size on a variety of target densities taken from Marron and
Wand (1992). The final example involves the income data set from Marron
and Schmitz (1992).
Among the numerous implementation details which must be considered in

the course of realizing the above algorithm, the precise nature of the nonpara-
metric estimator f̃ is an important issue. One choice for f̃ is a kernel estimator
with the bandwidth chosen initially (as a function of n) and fixed throughout.
Alternatively, the bandwidth can be updated at each iteration of the algorithm
based on the current best-fit mixture, using the mixture to improve the fit of
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the kernel estimator. In the simulations below we explore these two choices. In
one case we use the normal reference rule described in Silverman (1986); we
denote this estimator the NKE (for “normal reference rule kernel estimator”).
We compare the performance of the algorithm based on the NKE with that
of the “mixture reference rule kernel estimator” MKE. That is, we choose the
bandwidth for the kernel estimator to be “optimal” (in the approximate mean
integrated squared error sense) for the current mixture estimate, rather than
a fixed density.
A slight modification is in order for the MKE. Intuitively, we want to com-

pare the best m component mixture with the best m+ 1 component mixture.
We modify equations (1) and (3) as follows:

ĝm+1 = arg min
f∈�m+1

KL�f̃hm
�φhm

∗ f�(4)

and

g̃m = arg min
f∈�m

KL�f̃hm
�φhm

∗ f��(5)

The estimate of mixture complexity is now given by

m̂n = min�m� KL�f̃h�φh ∗ g̃m� ≤ KL�f̃h�φh ∗ ĝm+1� + an�m+1��(6)

Thus, at each iteration, ĝm is used to obtain a new bandwidth hm by utilizing
the “optimal” bandwidth for the mixture ĝm, which in turn defines a new
kernel estimator. Several methods for obtaining this bandwidth are possible;
we choose a simple one based on minimizing the approximate mean integrated
squared error. We then fit two new mixtures to this kernel estimator, one with
m components and one with m + 1 components, as in equations (4) and (5).
Finally, we determine whether the change in the estimators is small, using
equation (6). This modification has no effect on the theory presented earlier,
but it does seem to improve the performance of the algorithm in simulation.
The choice of the threshold a is critical to the functioning of these algo-

rithms. One basis for this model selection criterion is the minimum descrip-
tion length (MDL) penalty of Rissanen (1978); this choice is used throughout
this section, and leads to the threshold an�m = 3/n [see, e.g., Barron and
Cover (1991)].

5.1. Simulation experiment. The target density for this simulation is the
three component mixture

f�x� = �1/2�φ�x�0�10� + �1/4�φ�x� −0�3�0�05�
+�1/4�φ�x�0�3�0�05��

(7)

a large variance normal (the first component) with two small variance com-
ponents giving rise to dramatic modes. This bimodal mixture is chosen to be
difficult for the normal reference rule kernel estimator; accurately detecting
the two modes at x = ±0�3 comes at the cost of undersmoothing the tails.
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This is also true for the MKE; however, changing the bandwidth according to
the mixture allows the MKE to improve its fit.
We investigate the performance of the two algorithm implementations on

sample sizes n = 50�250�500�1000. For 100 Monte Carlo replications at each
sample size, we tally the number of components chosen by each algorithm
for each replication. Results are given in Table 1. For comparison, we pro-
vide results obtained via the bootstrapping procedure of McLachlan (1987)
(Bootstrap), the CDF method of Henna (1985) (Henna), and the Bayesian
methodology proposed by Roeder and Wasserman (1997) (R&W).
The simulation demonstrates that incorporating mixture reference rule

bandwidth selection yields superior performance in correctly identifying the
mixture. The NKE gives a relatively poor estimate of the mixture complexity

Table 1

Mixture complexity esimation results for Monte Carlo simulation [Target mixture, equation (7),
has three components]

Estimated number of components

1 2 3 4 5 6 7 8

n = 50

NKE 44 56
MKE 44 53 3
R&W 22 7 59 10 1 1
Bootstrap 0 96 4
Henna 25 68 6 1

n = 250

NKE 0 99 1
MKE 0 87 11 1 1
R&W 0 0 60 22 18
Bootstrap 0 83 16 1
Henna 0 90 10

n = 500

NKE 0 97 3
MKE 0 58 34 6 2
R&W 0 0 22 12 61 5
Boostrap 0 74 20 6
Henna 0 85 15

n = 1000

NKE 0 86 14
MKE 0 18 63 10 2 3 1 3
R&W 0 0 0 1 89 10
Bootstrap 0 79 15 4 2
Henna 0 78 15 5 1 0 1
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for these sample sizes, while the MKE does significantly better. For a sample
size of n = 50, neither approach is accurate, while the R&W algorithm does
quite well for n = 50�250. For larger sample sizes, the MKE correctly identifies
the complexity a substantial and increasing percentage of the time. (The MKE
does occasionally overestimate the number of components; at n = 1000�19
of 100 replicates yield m̂ > 3 while 18 of 100 replicates yield m̂ < 3.) The
other two algorithms, Bootstrap and Henna, perform roughly comparably to
the NKE version.
It is possible that the estimated number of components is a misleading

measure of performance and does not accurately represent the quality of the
estimator. For example, an estimate with two components in the tails and
one for the two modes at x = ±0�3 should not be considered accurate despite
having (by coincidence) the correct number of components. Figure 1 depicts
the 63 three-component estimates obtained via MKE for n = 1000 and demon-
strates that these estimates do indeed correctly identify the bimodal structure
nearly every time. That is, the tabular results represent accurate estimation
of mixture complexity.

5.2. Marron and Wand mixtures. Marron and Wand (1992) presented a
set of 15 normal mixture densities which have come to be a standard set for
comparison of mixture estimators. In this section we consider a comparison
of the different algorithms on mixtures 2–10. The sample size for the study is
n = 1000.

Fig. 1. Simulation results indicate accurate estimation of mixture complexity for target
density (7). Depicted are the 63 three-component estimates obtained via MKE for n = 1000. This
figure demonstrates that these estimates do indeed correctly identify the bimodal structure.
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We first need to set the parameters of the algorithms. This is done by ref-
erence to the standard normal density (mixture 1 in Marron and Wand’s set).
The parameters were set so that in an experiment consisting of 100 replicates
of size n = 1000 from a normal distribution, the algorithm returns an esti-
mate of 1 for the number of components 95 times. This was then the choice of
parameters used throughout the study.
The densities are depicted in Marron and Wand [(1992), pages 717 and 718].

These densities show a range of unimodal, skewed and multimodal densities
that provide a good exercise for any algorithm. We drew 100 replicates of size
1000 from each density, and the results of running the algorithms on these
samples is depicted in Table 2. The true model complexity is indicated by an
asterisk for each model.
As may be expected, no algorithm outperforms all the others on all the den-

sities, and each algorithm has at least one mixture for which its performance
is as good or better than all the others. Our proposed method is not dominated
by any of the alternatives and, from a practical point of view, is therefore a
valuable addition to the practitioner’s toolbox.
All the algorithms considered except the bootstrap have similar, and accept-

able, computational requirements. The bootstrap, while it does a very good job
on these examples, is quite computationally complex. This is due in part to
the use of the EM algorithm, which in this implementation is run several
times with different initial values in order to avoid local minima. For some of
the models (in particular mixture 10), this resulted in an unacceptably long
run time (several days on a dedicated machine to run the 100 simulations).
This could be alleviated by using a less expensive estimation algorithm within
the bootstrap. The drawback might be a less accurate estimator. We did not
pursue this in this work.

5.3. Example application: UK income data. We now consider the appli-
cation of our algorithm to the income data of Marron and Schmitz (1992).
The data are from the ESCR Data Archive at the University of Essex: Family
Expenditure Survey, covering the year 1975. The data are household incomes
normalized by the arithmetic mean for the year. There are n = 7201 observa-
tions in this data set. More details, and the results of analysis performed on
several years’ data, can be found in the reference.
Figure 2 depicts the MKE estimate for this income data, along with an

undersmoothed kernel estimator for comparison. We display the
undersmoothed kernel estimator so that the fine structure of the data can
be discerned. The NKE chooses a five-component estimate, while the com-
plexity estimate for the depicted MKE model is m̂ = 6. (The NKE estimate
was deemed inferior based on visual inspection.)
While our algorithm is a consistent estimator of mixture complexity, it is

not designed as a density estimator and does not necessarily produce the
best estimate of the mixture itself. Once the mixture complexity is deter-
mined, it is reasonable to estimate the mixture parameters by maximum like-
lihood, for instance. The MKE estimate depicted in Figure 2 is the result of
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Table 2
Mixture complexity estimation results for the Marron and Wand densities, 2–10a

Estimated number of components

1 2 3 4 5 6 7 8 9 10

Mixture 2

NKE 0 99 1∗
MKE 0 99 1∗
R&W 3 96 1∗
Henna 0 100 ∗
Boot 0 89 11∗

Mixture 3

NKE 0 0 96 4 ∗
MKE 0 1 54 37 8 ∗
R&W 0 0 0 8 38 25 20 7∗ 2
Henna 0 0 26 74 ∗
Boot 0 0 0 17 59 21 2 1∗

Mixture 4

NKE 0 99∗ 1
MKE 0 91∗ 6 3
R&W 0 0∗ 0 0 75 18 5 2
Henna 0 88∗ 12
Boot 0 95∗ 5

Mixture 5

NKE 0 96∗ 4
MKE 0 91∗ 8 1
R&W 0 55∗ 45
Henna 1 97∗ 1 0 0 0 0 0 0 1
Boot 0 95∗ 5

Mixture 6

NKE 0 100∗
MKE 0 98∗ 2
R&W 0 100∗
Henna 97∗ 3
Boot 0 95∗ 5

Mixture 7

NKE 0 100∗
MKE 0 96∗ 4
R&W 0 100∗
Henna 0 96∗ 4
Boot 0 93∗ 6 1
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Table 2
�Continued�

Estimated number of components

1 2 3 4 5 6 7 8 9 10

Mixture 8

NKE 0 100∗
MKE 0 97∗ 3
R&W 0 80∗ 20
Henna 0 99∗ 1
Boot 0 93∗ 7

Mixture 9

NKE 0 94 6∗
MKE 0 38 59∗ 2
R&W 0 91 9∗ 1
Henna 0 82 18∗
Boot 0 13 75∗ 12

Mixture 10

NKE 33 51 15 1 ∗
MKE 33 13 3 6 1 42∗ 2
R&W 15 0 0 0 0 0∗ 39 28 17 1
Henna 0 0 5 8 15 33∗ 14 9 10 6
Boot 5 28 15 21 11 11∗ 5 4

∗A indicates the correct number of components for the mixture.

an EM algorithm search for a maximum likelihood estimate based on the
n = 7201 observations, using the mixture obtained via the “consistent esti-
mation of mixture complexity” algorithm as the starting point for the EM
algorithm.

6. Conclusions. We have described a method for the estimation of mix-
ture complexity and showed its consistency. The method relies on comparing
a nonparametric estimator with the best parametric fit of a given complexity.
As shown by the simulations and example, this estimator is competitive with
other existing techniques and is therefore a valuable addition to the practi-
tioner’s toolbox.
The simulations imply that the performance of the estimator is dependent

on the quality of the nonparametric model. Thus, the performance is best when
the nonparametric model is allowed to adapt its bandwidth using the para-
metric model. This suggests that the performance may be further improved
by using a multiple bandwidth estimator such as the filtered kernel estimator
[Marchette, Priebe, Rogers and Solka (1996); Priebe and Marchette (2000)] or
variable kernel estimators. This is an area for further research.
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Fig. 2. Experimental results indicate accurate estimation of mixture complexity for U.K. income
data. Depicted are the six component MKE estimate (after application of the EM algorithm) and
an undersmoothed kernel estimator for comparison.
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