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THE MULTITYPE GALTON-WATSON PROCESS
WITH IMMIGRATION! .

By NorMAN KAPLAN
University of California, Berkeley

A multitype branching process with immigration is considered. A
necessary and sufficient condition is found for when the process has a
limiting stationary distribution. As a corollary to this result we are able
to give necessary and sufficient conditions for when the extinction time for
an ordinary multitype process has finite expectation.

1. Introduction. The theory of a single type Galton Watson process with
immigration has been treated by many authors. Heathcote [4], [5] and Seneta
[10]among others have found under certain assumptions, necessary and sufficient
conditions for the process to possess a stationary limiting distribution. The most
general result of this nature appears in a paper by Foster and Williamson [2].
It is the purpose of this note to extend the results of Heathcote and Seneta to
a multitype process. In Section 2, we present a necessary and sufficient condition
for the existence of a limiting distribution in the multitype case. As a corollary
of this result, we give a necessary and sufficient condition for when the extinc-
tion time of a multitype process has finite expectation. This result is a direct
generalization of a theorem of Seneta [9].

We now introduce our notation and formally define the process of interest.
For any square matrix 4 we write as usual, 4 > 0 if all elements of 4 are posi-
tive, 4 > 0 if all elements of A4 are nonnegative. We call X the set of all p tuples
i = (i, -+, i,) where each element i, is some nonnegative integer. e, denotes
the vector with i, = d(e, v), v = I, - .-, p where J(-, +) is the Kronecker delta.
The p-dimensional unit cube of points s = (s, ---,5), 0<s5, <1, v =
I, .-, p, is denoted by C. For a given se C and ie X, we put s' = J[?_, s,".
We write Ds for the vector whose components are all equal to s, 0 < s < 1. For
ease of notation we write 0 for DO and 1 for DI.

For our process we consider a Markov chain {Z,},., defined on A4 consisting
of a p-type Galton Watson process {Y, = (Y,;, - -+, ¥,,)}.s, (the offspring distri-
bution) augmented by an independent random p-dimensional immigration com-
ponent at each generation. For the offspring process, we assume given, an off-
spring vector of p-dimensional probability generating functions (pgf)

F(s) = Fy(s) = (Fy(9), - -+, F1,(9))
Flj(s) = Ziexfj(i)si 1 =j=sp.
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948 NORMAN KAPLAN

The f,(i) are interpreted as
fi)=PY,=i|Y,=¢}. ieX,1<j<p.

It is well known ([3] page 36) that the pgf vector of the nth géneration of an
ordinary p-type branching process is the nth functional iterate of F(s), F,(s) =

(Foi(8), Fos(8), =+, F,y(5)). It is consistent with this to define Fy(s) = s. For the
immigration component, we are given the pgf.
B(s) = 2liex b(D)s' seC.

It is assumed that B(0) < I, i.e. that some immigration occurs with positive
probability. Define:
oF,
my; = —— (1) = E{Y,;|Y, = ¢} .

(¥
0s;

Let M be the matrix (m,,)? It is obvious that M > 0. Throughout this paper,

1,7=1"
we make the following assumption.

ASSUMPTION 1. The elements of M are all finite and M is positive-regular, i.e.
there exists an integer n, such that M" > 0.

It is proven in [7] that if M is positive-regular then M has an eigenvalue p,
which is real, positive, simple and greater in modulus that any other eigenvalue.
Let # and v be the right and left eigenvectors of p respectively, normalized so
that (4, 1) = 1 and (v, 1) = 1. It is also proven in [7] that # > 0 and v > 0.

It has been shown in [3] that the value of p determines the asymptotic behavior
of the p-type Galton Watson process {Y,}. As is usual, we will call the {Z,}
process supercritical, critical or subcritical, depending on whether p > 1 = 1 or
< 1. When p = 1, we will always rule out the case F,(s) = Ms, se C. Define:

(1.1) P(i,8) = Xl;ex P{Z, = j| Z, = e} seC.
It has been shown in [8] that
(1.2) Po(i, 5) = Foi(s) - TI720 B(F(9)) -

Our main result gives necessary and sufficient conditions for when lim, ., P,(i, 5)
is nontrivial.

THEOREM 1. A necessary and sufficient condition for the {Z,} process to satisfy
foreach je X
lm, . P{Z, = j|Z, = e} =TI ())
independent of i ¢ X where 33, . T[] (j) = 1is

(1.3) L= B(Ds)

1= BDs) .
" (o, FDs)) —s 0 S

If p =1, condition (1.3) reduces exactly to the condition given in [2], [9].
Condition (1.3) is the same as for the univariant Galton Watson process with
immigration having offspring pgf (v, F,(Ds)) and immigration pgf B(Ds).
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We can obtain two interesting corollaries of Theorem 1.

CoROLLARY 1. Assume p < 1. Then the result of Theorem 1 is valid iff

Yiex—m b)) logljl < oo (Ij| = X)) -

Corollary 1 is a result proven by Quine [8]. Our second Corollary deals with
the p-type Galton Watson process {Y,}. Define:

T =inf{k: Y, = 0}
i.e., T is the time to extinction. Then:
COROLLARY 2.

E(T) = E{T|Y, = e} < oo forsome i iff g;st@x,,

in which case E,(T) < oo for all i.
Corollary 2 generalizes a result of Seneta [9] to p-dimensions.

2. Proofs of results. Without loss of generality, we can assume that p < 1.
If p > 1, then it is a simple matter to show that Z — oo w.p.1. To prove
Theorem 1, we must show that P(s) = lim,_., P,(i, 5) is nonzero. Since we are
assuming that p < 1, lim,_, F,,(s) = 1, [5]. Therefore, from (1.2)

(2.1) P(s) = lim,__ P,(i, s) = lim,__ [[[*=2 B(F,(5))] -
(2.1) shows that P(s) is indeed independent of the choice of Z,. Since 0 <
B(F,(s)) < 1 for all r = 0, a necessary and sufficient condition for
lim, .. [T[253 B(F,(s))] > 0
is 312, 1 — B(F,(s)) < co. This last sum converges if and only if
(2.2) Dol — BF(0) < oo .

This is a consequence of the fact that there exists an integer [ = I(s) such that
s £ F(0), i £ i < pand hence F,(0) < F,(s) < F,,(0), r = 1.
The next series of lemmas will prove that (2.2) holds iff (1.3) is valid. Define:

1 — B(Ds)
h($) = — 2777 Se O, 1).
® (v, Fi(Ds)) — s 9.1
LemMA 2.1. A(s) is a positive increasing function for s € [0, 1).

Proor. Since (v, 1) = 1, (v, F|(Ds)) is a legitimate 1-dimensional pgf. Fur-
thermore,

4 (v, F(Ds))| = (vM, 1)
dS 8=1—

=p(,1)=p.
Since p is assumed to be less than or equal to one, we can appeal to the argument
given in [2] to prove the result. []
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Define:
9(9) = (v, Fy(s) — 3) seC.
LEMMA 2.2. g(s) is decreasing in s, (s€ C) i.e. if s, < s, then g(s,) = 9(s,).

Proor. Joffe and Spitzer [6] showed that if Assumption 1 holds then there
exists a matrix E(s) such that

(2.3) 1 — Fy(s) = (M — E(s))(1 — s) seC.
The matrix E(s) has the properties that
(@) 0K E(s)y s Mifs>0,and
(b) E(s) is “monotone”, i.e. t = s = E(f) < E(s).
Therefore:
9(s) = (v, Fy(s) — 5) = (v, 1 = 8) — (v, 1 = F\(9))
= 1—35) — (v, M — E(s))(1 — 5))
= (1= )0, 1 = 3) + (v, E$)(1 = 9)) .

However, both of the final terms on the right are decreasing in 5. []
Define:

a, = min,,, F,.(0) and 8. = max,g,g, F,(0) .

LEMMA 2.3. There exist constants Ny, K, and K, such that for all n > N,

(2.4) §ant1h(s) ds < Ky(1 — B(F,4(0)))
and
(2.5) §i+1h(s) ds = Ky(1 — B(F,(0))) .

- Proor. It follows from the properties of F,(0) that the {a,} and {3,} are in-
creasing sequences of real numbers. Also, since p < 1, lim,_,, F,(0) = 1, [6].
Therefore,

lim,_,a, 11 and lim,_ .8,11.
We will first establish (2.4).
By Lemma 2.1
(2‘6) Sz:-H h(S) dS é h(an+l)(an+l - an) .
By Lemma 2.2
(2.7) (v, F(Da,,) — Da,.,) = (v, Fy(F,4(0)) — F,,(0))
= (’1), Fu+z(0) - n+l(0)) .
Also:
(2.8) 1 — B(Dan+1) < 1 — B(DtBn+1) < 1 — B(Fn+1(0)) A
1 — A, - 1 — 181»+1 h 1 — :Bn+1

From (2.6), (2.7) and (2.8), we obtain

1l —a

Sl Fov e sk

§age1 () ds = [1 — B(F,(0)] |
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To prove (2.4) we need to show that for some N,.

(2.9) SUP,.2 v, [i—:-—;:] < oo
and

2.10 - Apy1 — Xy

19 WP | oo Ry <

Since lim, ., F,(0) = 1, there exists an integer n, such that F, (0) > 0. Set
Ny = n, + nyand let n > N,. If we apply (2.3) to the pgf F, (s) we obtain the
existence of a matrix E, (s) such that

(2.11) 1 - F,(s5) = (M, — E,())(1 — 3 seC

where
M, = (1))
0 as 15i,jsp

Put s = F,_, (0). It follows from the properties of E, (s) that

(2’12) "‘o - '”o( nl(o)) = M'no - E'no( n—no(o)) = Mno nz No .

Due to Assumptions 1, our choice of n, and n,, and (2.12) we can assert that
there exists positive constants L, and L, such that

Ll é Mno - Eno(Fn—no(O)) é LZ n Z NO .
Using (2.11) it is not difficult to show that

l —a,
1—-8,7 L

2 L oo n>=N,.

This proves (2.9). To prove (2.10) we argue as follows. Assume a, = F,;(0)
where i depends on n. Then

7, = X1 — &y < Foiu(0) — F,.(0) n>=N,.
(¥, Frps(0) — F\iy(0)) = [F,15(0) — F,114(0)] N

The Mean Value Theorem for p-dimensions ([1], page 117) gives for each
1<i<p

8
Frosd®) = Fuf®) = 55 28 (S)(F oy 0) = Fo(0)

J

and

Fua®) = Fuis®) = T 20088 () 0) = Faca0) 12 N,
where v
Fog(0) = S0 To = Fo1a(0) -
It follows by monotonicity that

aFnz aFni
aso (S,) < max,, ;., s“ 1 =1L

J J
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and
aFn i : aFn i
—(T,) = MmNy g; <, 3 o (Fnl(O)) =L, nz=N,.

5 5

Due to Assumption 1 and our choices of nyand n,, 0 < L, < L, < co. Thus

neh 1 <o nz N,
L, min,_,_, v,
This proves (2.10). The proof of (2.5) is done in a similar way and the details

will be omitted. [J
We are now in a position to prove Theorem 1. Since the {«,} and the {8,}
are increasing,
§0h(s)ds < 0o = 317, §ant1h(s)ds < oo

= Sﬁzﬂ h(s)ds < oo .
However, by Lemma 2.3

Zna Sprrh(s)ds < oo — 30 {1 — B(F,(0))} < oo

Zaa{l = B(F(0))} < 00 = F7., §antr h(s) ds < oo .

All that remains to be proven is that 3;,.,J](j) =1 or equivalently
lim,,,_ P(s) = 1. To do this, one can proceed exactly as in [8]. The details
are omitted.

We now turn to the proofs of Corollary 1 and Corollary 2. Consider first
Corollary 1. It is easy to show that

1 — B(Ds)
(v, F(Ds)) — s -
w7, Tl Gl
1 —5

and

lim

Therefore, if p < 1,
L A(s)ds < oo iff s;l_Tﬂ)ﬁds< o .

— 5
But
1 — B(D . 1 — s
B L= B0 g — 3 hGy LT as
1 —=s 1 —=
= Xiex RN 1/i) .
Therefore: ‘

1 — B(D , Vo | i
S}J_l_—(ss)ds < oo iff 3 ex-06()) 10g|j] < oo .

This proves Corollary 1. To prove Corollary 2, we observe that
E(T)y= 2o, P[T=n|Y, = e}

= Zaall = F.u(0)].
Choose B(s) = s;. Then,

Zaal = BF(0)) = X5, 1 — Fou0).
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So by Theorem 1,

(1
(2]

(3]
[4]

(3]
[6]

[7]
(8]

9]
[10]

(t1]

. 1 —s
= 1 —F_ (06 ff \}-—u0u - ds.
Zn—l m( )< o 1 SO (1), FI(DS)) — s s N
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