The Annals of Probability
1974, Vol. 2, No. 2, 328-332

AN ITERATED LOGARITHM RESULT FOR AUTOCORRELATIONS
OF A STATIONARY LINEAR PROCESS

By C. C. HEYDE

Stanford University and Australian National University

Let r(j) denote the jth autocorrelation based on a sample of N con-
secutive observations on a stationary linear stochastic process. Under mild
regularity conditions on the process, an iterated logarithm result is given
for the convergence of r(j) as N — co to the corresponding process auto-
correlation p(j).

1. Introduction. In this paper we shall be concerned with a stationary linear
stochastic process {x(n)} which may be represented in the form _

Xm) = p= i wa()e(n = j),  Ei-wa’()) < oo,
where the ¢(n) are independent and identically distributed with mean zero and

variance ¢”. Most of the standard inferential results for this process (e.g. Hannan
[2]) are based on the autocorrelations

2 (x(n) — E){x(n + ) — 5} izo,
ner {X(n) — %

x(1), x(2), - - -, x(N) being a sample of N consecutive observations on the process

{x(n)} and X denoting the sample mean. The prime result is that r(j) converges

almost surely (a.s.) to p(j) = 7(;)/r(0) where 7(j) is given by

1(J) = 0* Zie—w a(ma(n + j).
The most common application of this theory would be in the estimation of
parameters in an autoregressive or moving average model or a mixture of both
models.

It is our object here to give the following iterated logarithm result which
provides information on the rate of a.s. convergence of 7(j) to p(j).

r(j) =

THEOREM. Suppose that Ee'(n) < oo and Yo, [Zn2s @*(P)]t < oco. Then, for
any fixed j = 1,
() = e(j) + A (N)N~H2 log log N)}
where {;(N) has a.s. as its set of limit points the interval [—1, 1], in particular
lim sup,_, {;(N) = 1 a.s. and lim inf,_ (,(N) = —1 a.s., while

AD = UL+ 20°0)} B2 - £(9) + T2ow 0(s + flo(s — j) — 40(j)p(s)}]E -

This result provides a detailed supplement to those obtained in [4] for the
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linear combination of autocorrelations which arises in estimation of parameters
in an autoregressive model. Here we have an iterated logarithm result for each
individual component.

2. Proof of theorem. This rests on use of an invariance principle for the law
of the iterated logarithm for processes with stationary increments which was
established in [5].

Our setting is that of a probability space (Q, &7, P) with ergodic measure
preserving transformation T such that e¢(n){w} = ¢(T"0), w € Q (since the e(n)
are independent and identically distributed and hence stationary and ergodic).
Let %, denote the o-field generated by e(m), m < n. Then, &, = T-¥ )
and the framework of Theorem 2 of [5] is applicable.

We shall first establish the following lemma which is of independent interest.

LEMMA. Suppose that 37 [ 3,150 @*(r)]} < co. Then,
% = pt 4 {(n) D5 7()N~(2 log log N}
where {(N) has a.s. as its set of limit points the interval [—1, 1].
ProOOF. Put y(n) = x(n) — p. We have
N-'Varx = ¥t (1 — [iiN7*) Cov {x(0), x(i)}

— Var x(0) X7 _, p(i) = 252 7(0)
as N - co. Also,

E{y(0)| .7 _.} = e a(NEle(—r) | Z_,} = N, a(re(—r)

La= [EE(O) | )] = Zaa [T (0]} < oo

and

Similarly,
im=1 [E(Y(0) — E((0)| 7 )P] = R [ X (] < oo
The result of the lemma then follows immediately from Theorem 2 of [5].

We now resume the proof of the theorem. Put X, = y(n)y(n + j) — p(j)y*(n)
and note that {X,} is a stationary sequence with zero mean and finite variance
under the conditions of the theorem. Further, writing

c*(j) = N7 135 y(my(n + )
it is well known that (e.g. Hannan [1] page 40)
N Cov {e*(k), e*(k + )} > T2 {rO7r(s + ) + 7(s + j + (s — k)
+ ke (Kr(k + )
as N — oo where k, is the fourth cumulant of ¢(n). Thus,
N-'Var (¥, X,)
= NZE[N{c*(]) — Ec*(j) — p())(c*(0) — Ec*(0))}
+ Zaew-inn Y(my(n + j) — Ey(my(n + DI
= limy_., NE[{¢*(j) — Ec*())} — p(j){c*(0) — Ec*(0)}]*
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= lim,__, N Var ¢*(j) + p*j) lim,_., N Var c*(0)
— 2p(j) limy_,, N Cov (c*(}), ¢*(0))
= {1 4+ 20°()} Zoow 1°(5) + T 7(s + Nlr(s — ) — 4p(D7 ()}
= 1(0)4*()) s
using the fact that Var [3_y_;., y(n)y(n + j)] is independent of N.
In order to apply Theorem 2 of [S] we need to show that

Yim=1 [E{E(X, |y—m)}2]* < oo and Y1 [E{ Xy — E(Xolﬁ'm)}ﬁ]i < oo.
We have
E(XO I y—m) = :°=—°° Zs——oo a(r)a(s)
X {E(e(=n)e(j — $)|-F _n) — P(NE(E(—n)e(—5)|-F _n)}
= Do Dkisra=mei A(Na(8)e(—1)e(j — 5)
+ Zim a(Na(r + j)e(—r) — 0%}
— 0()) Tiem Litris=m A(Na(s)e(—r)e(—5)
— 0()) Zrom @(D{E(=1) — o},
and after some further algebra
(1)  EEX|F_)f ={E0) — 30‘} rm @([a(r + j) — p(Ha(n]
+ 0t T, @Xr) Tia [a(s + ) — o(a®)]
+ 04[Zr=m a(rf{a(r + j) — p(Ha(ni]* -
It is then easily checked that Y}=_, [E{E(X,| & _,)}']} < co under the condition
e Nem () = 2 ra(ry < oo .
E(X, — E(X,| 7))} = EX;! — E[E(X,|.Z,)f

Next,

and a routine calculation gives

= {Ee(0) — 30} 7o a¥(N[a(r + ) — p(Ha(N] + 7*(0) — () »
so that using (1) (with —m replaced by m) and after some algebra,

E{X, — E(X,| )} = {E%(0) — 30'} ;22 a(D]a(r + j) — p(Da(n)])’
— [ Zrrs a(Dfa(r + J) — e(fa(n))
+ o'r(0) Zyrzs [a(r + ) — p(a(r))
+ 0" Z7rzs a¥(n{r(0)(1 — £*()))
— o s fals + ) — p(Das)I} -
Thus, Y. [E{(X, — E(X,| F )] < oo if the following four conditions hold:
() T [Zirms a¥(fa(r + j) — p(Ha(nF] < oo,
(i) T 1D a(rfa(r + /) — p(a())] < oo,

(i) T [Zrrmz{ar +)) — p(Ha(F] < oo,
(iv) Da=iX7r @] < oo.
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Furthermore, we readily find that (i) and (ii) are satisfied for 3 5_, 377772 a?(r) <
co. On the other hand, (iii) and (iv) are satisfied when Y 2_, [ X772 a®(r)]t < co.
Consequently, the conditions of Theorem 2 of [5] are satisfied and

(2N log log N)=* 520, {y(m)y(n + j) — p(j)y'(n)}
has a.s. as its set of limit points the interval [ —7(0)A()), 7(0)A4(j)]. But, the
sequence { y(n)y(n + j)}is stationary with finite variance so a simple application
of the Borel-Cantelli lemma gives

lim,, . (Nloglog Ny T2, y(my(n + j) =0 as.
and thus
N¥(2 log log N)~*c*(j) — p(j)c*(0)}
has a.s. as its set of limit points the interval [ —7(0)A(j), 7(0)A())]-
Now, if
c(j) = N7 205 {x(n) — x{{x(n + j) — %}, jz0,
we have
*()) —e() = & — ) = N y-jia x(n) + ZiZix(n) — j& + m}E — 1),
and with the aid of the lemma it is easily seen that for any fixed k > 0,
lim,_ Nt (loglog N)=¥c*(k) — c(k)} =0 a.s.
The result of the theorem then follows upon noting that, from the ergodic theo-
rem, ¢(0) —, ;. 7(0) as N — oco.
3. Remarks.

1. Since the result of the theorem does not explicitly involve Ee*(n) it seems
possible that it will continue to hold in the absence of Ee'(n) < co. This is
certainly the case with the corresponding central limit result.

2. It is easy to see that similar methods can be applied to investigate the rate
of convergence of ¢(j) to 7(j). In this case Theorem 2 of [5] would be applied
to the stationary ergodic sequence {Y,} where Y, = y(n)y(n + j) — 7(j). The
result that emerges is, again under Ee*(n) < oo and 33, [3],,12. @*(N]} < o0,

() = 1(J) + B(j)n;(N)N-}(2 log log N)} .
Here 7;(N) has a.s. as its set of limit points the interval [—1, 1], while B(j) is
given by
B(j) = [Z5- {1°(8) + 7(s + Dr(s — N} + kPP (D]
k, being the fourth cumulant of ¢(n). In this case we explicitly need the finite
fourth moment condition.

3. If a restriction is made to the case where the process {x(n)} is purely non-
deterministic (a(n) = 0, n < 0), the assumption that the ¢(n) are independent
and identically distributed can be replaced by a more general martingale con-
dition along the lines of [3] and [4]. However, it is then necessary to make
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certain unattractive assumptions on third and fourth moments and also to impose
slightly stronger series conditions on the a’s than that used here.

4. From an examination of the proof of the theorem it seems likely that, at
least in the purely nondeterministic case, the result will continue to hold under
only 3>, 3,2, @) = L _.|rla’(r) < oo. A convergence rate result for
X — p considerably weaker than that provided by the lemma is all that is re-
quired. For example, Ni(x — p) —, . 0 would suffice.
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