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ON THE APPROXIMATION OF STATIONARY MEASURES
BY PERIODIC AND ERGODIC MEASURES

By J. C. KIEFFER
University of Missouri-Rolla

Let (Q, %) be the measurable space consisting of Q, the set of
sequences (xi, Xz, +«-) from a finite set 4, and .=, the usual product sigma-
field. Let Xi, X, - - - be the usual coordinate random variables defined on
Q. Forn=1,2, ..., let &, be the sub sigma-field of & generated by
X1, Xz, - ++, Xn. We prove the following: if P is a probability measure on
& stationary with respect to the one-sided shift transformation on Q and
if N is a positive integer, then there is a periodic measure Q on % such that
Q = Pover . Thisisa stronger result than the known fact that the peri-
odic measures are dense in the set of stationary measures under the weak
topology. We also show that if P assigns positive measure to every non-
empty set in ., it is possible to find an ergodic measure Q such that P = Q
over % y. Weinvestigate the entropies of all such ergodic measures Q which
approximate P in this sense, and show that there is a unique ergodic measure
Q of maximal entropy such that P = Q over & n.

Let (Q, %) be the measurable space consisting of 2, the set of sequences
(%1, X,, -+ +) from a finite set 4, and %", the usual product sigma-field. We take
A to have a > 1 elements, which without loss of generality we take to be
1,2, ...,a. Let X, X,, ... be the usual coordinate random variables mapping
Q onto 4; i.e., Xy(x;, X - )=x,i=1,2,.... Forn=1,2,...,1let 5 be
the sub sigma-field of % generated by X, X;, - .-, X,,and let Y, = (X,, X,, - - -,
X,). If T is the one-sided shift transformation on Q, let & be the collection of
all probability measures on & which are stationary with respect to 7. A
measure P e Zis periodic if it is discrete and concentrated on a finite number
of points of Q.

It is known [3] that the periodic measures are dense in Z”under the weak
topology; i.e., for any positive integer n, Pec.%4 and ¢ > 0, there exists a
periodic measure Q such that |[P(E) — Q(E)| < ¢, Ee & ,. (In fact, in [3] the
statement of the density of periodic measures is proven in the more general
situation of a countable Cartesian product of a fixed complete separable metric
space. The complete separable metric space we are considering here is just the
finite set A4, with the discrete topology.) In this paper we prove the stronger
result:

THEOREM 1. Given P e S and n, there is a periodic measure Q such that Q = P
over F .
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For the proof of this theorem, we need the following two lemmas.

LemMMA 1. Let r, s be given positive integers; let M,, M,, - - -, M, and N,
N, - -+, N, be given nonnegative integers. Then there exists an r x s matrix [a;;]
such that

(la) The elements a,; are nonnegative integers.

(Iv) Yi,ae; <N, j=1,2,...,5

(ley Y0, =M, i=1,2,...,r.

(1d) X, ;a; =min[3i, M, Y5, N,].

Proor. A simple induction argument, which we omit, sufficies to prove this.

LEMMA 2. Let k be a positive integer. Let p be any probability measure on A*
satisfying the following properties:
(2a) There is a positive integer N such that Np is a measure with integral values.
(2b) If k> 1, 55, p(B, i) = S0y plis B), Be 4+,
Then there exists a probability measure q on A**' such that

(2¢) Ngq is an integral-valued measure.

(2d) X2 9(B, i) = 2t q(, B) = p(B), Be A"

Proor. We consider the equations (2d) as a system of 24* linear equations in
the a**! unknowns ¢(B), Be A**'. We seek nonnegative solutions for the g(B)’s
so that (2c) is satisfied. We may partition the system (2d) into subsystems, one
subsystem for each B e 4*', as follows:

(2¢) $3-190s B, j) = plis B); S3e qis Bo i) = p(Bri), i = 1,2, -+, a.
(If k =1, we adopt the convention that Be 4*~! means B is just the null
sequence, the sequence of length 0.) For each Be 4*~! we solve the above
subsystem of 2a equations in the a* unknowns p(j, B, i), i,j=1,2, ..., a. If
we solve (2e) we get an expression of 2a — 1 of the unknowns in terms of the
remaining (¢ — 1)’ unknowns:

9(1, B, 1) = 3%,209(, B, ) + p(B, 1) + p(1, B) — 35, p(i, B) ;
q(1, B, m) = — 3%, 9(i, B, m) + p(B, m) , m=2,3,..,a;
q(m’B’l)z'—Z‘il=2q(m’B’i)+P(m’B)’ m:2’3’""a'
From Lemma 1, it follows that we ma); choose the unknowns ¢(i, B, j), i, j =
2,3, ...,a, so that
(2f) the numbers Nq(i, B, j) are nonnegative integers.
(28) Ziiq(is B,m) < p(B,m), m=2,---,a.
(2h) X%, q(m, B,i) < p(m, B, m =2, -, a.
(21) 2242090, B, j) = min [ 35, p(B, m), 5o p(m, B)] = X5,y p(m, B) —
max [p(B, 1), p(1, B)].
With this choice of the unknowns ¢(i, B, j), i, j = 2, - - -, a, the other unknowns
are also nonnegative numbers which when multiplied by N give integers.
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PrOOF OF THEOREM 1. Let Pe . and the positive integer n be given. Let S
be the set of all probability measures ¢ on 4" such that if n > 1, > q(B, i) =
>e,49(, B), Be A*~'. S considered as a subset of the Euclidean space of all
real-valued functions on 4" is a compact convex set. There are a finite number
of extreme points of S, which we shall designate by p,, p,, - - -, p,.. These extreme
points are each rational-valued measures. Let p be the measure in S induced by
P; i.e., p(B) = P(Y, = B), Be A". Then there are nonnegative numbers a,,
@y, + -+, a,, which sum to one, such that p = a,p, + ayp, + -+ + a, p,. If
for each p;, i = 1,2, .., m, we can find a periodic Q, € & such that Q,(Y, =
B) = py(B), Be A", then Q = ¥, Q, is periodic, Q(Y, = B)= P(Y,= B),Be
A*, and the theorem is proved.

Consequently, let g, €S and suppose there is a positive integer N such that
Ng, is integral-valued. Using Lemma 2, we may construct a sequence {¢,}:,..
such that

(a) g, is a probability measure on 4, i =n 4 1,n 42, .- +;

(b) Z?:l ‘]i+1(B’ = Z?:l ‘]i+1(j’ B) = ‘]i(B), BeA,i=nn41, ...
(c) Ng, is integral-valued, i =n 4+ 1,n + 2, .. ..

There exists Q € &’such that Q(Y, = B) = q(B), Be A, i =n,n+ 1, ... (See
[1] page 5). NQ is integral-valued over .&". Therefore Q is discrete because if
Q had a nonzero continuous component, Q would have to assign an irrational
value to some set in .%". Q is concentrated on no more than N points of Q since
any point of Q with nonzero Q measure has measure at least N-1. Therefore Q
is periodic.

Approximation by ergodic measures. In the result from [3] mentioned earlier
in this paper, which states that stationary measures on a countable Cartesian
product of a fixed complete separable metric space can be approximated arbitra-
rily closely by periodic measures, the approximating periodic measures can be
chosen to be ergodic. It is natural then to inquire whether in Theorem 1 the
measure Q can be chosen to be ergodic as well as periodic. This, however, is
not possible in general since periodic ergodic measures on (Q, &) take rational
values. However, if we eliminate the requirement that Q be periodic, the
following theorem is true.

THEOREM 2. Let n > 0, and P e . be given. If the numbers P(Y, = B), Be
A", are all positive then there exists an ergodic Q € 7 such that Q = P over 7.

Proor. This theorem is implied by Theorem 4.

The entropies of approximating ergodic measures Q. We investigate now the
possible entropies of measures Q e F”approximating P in the sense of Theorem
2. First, we present some notation. If Y is a discrete measurable function de-
fined on Q and P is a measure on .&, let P(Y) denote the discrete measurable
function defined on Q as follows: P(Y)(w) = P[Y = Y(w)], e Q. If Z is also
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a discrete measurable function on Q let P(Y| Z) denote the discrete measurable
function defined on Q as follows: For each weQ, P(Y|Z)(w)= P[Y =
Y(w)| Z = Z(w)] = P[Y = Y(w), Z = Z(0)]/P[Z = Z(w)), if P[Z = Z(w)] > 0;
otherwise P(Y|Z)(w) =0. For n >0, Pe & let H,(P) = —{ylog P(Y,)dP.
Let H(P) = 0. If Pe & the sequence H,(P) — H,_,(P),n = 1,2, ..., is non-
negative and non-increasing. Let H(P) = lim,_, [H,(P) — H,_,(P)]. H(P) is
called the entropy of P. The mapping P — H(P) is a linear functional on .Z°[4].

THEOREM 3. Let N > 0, Pe & Let = {QeF Q = P over & }.

(3a) The image of & under H is the closed interval [0, Hy(P) — H,_,(P)];
(3b) H attains its maximum value over &/, namely H,(P) — Hy_,(P), at a unique
Qe S

Proor. Let Q be the measure on . such that

(30) Q(Xl’ Xz, ] XN) = P(Xl, Xz, R} XN);
(3d) Q(Xl’ Xz, ] Xn) = P(Xv Xz’ tt XN—l) H?=N P(‘Yi | Xi—N+1’ Xi—-N+2’ ]
Xia)yn=N+1,N+4+2,....

It can be verified that Q € & and that for n = N, H,(Q) — H,_,(Q) =
Hy(P) — Hy_,(P). Therefore H(Q) = H,(P) — Hy_,(P), and if Q’'e . then
H(Q") < H(Q). Let 7 = {Q' e & H(Q') = H(Q)}. .7 is a convex set and if
Q' e .7 then for n = N, H,(Q') — H,_,(Q") = H(Q). Suppose that there is a
Q'€ .7 such that Q' = Q. Let M be the least integer n such that n > N and
Q' # Q over & ,. Since the function H, is strictly concave, if Q" = ;0 + 1Q’
then H,(Q") > $H,(Q) + $H(Q'). But H, (Q") = Hy_(Q') = Hy,(Q), 50

Hy(Q") — Hy(Q") > $[H\(Q) — Hy(Q)] + $[H(Q') — Hy-1(Q")] -

However, since Q, Q’, Q" € .77, we have then that H(Q) > ${H(Q) + 1H(Q), a
contradiction. This proves (3b). (3a)is true because there is a periodic measure
in &~ Periodic measures have zero entropy. The linearity of H on .5”is then
used.

REMARK. The measure Q constructed in the proof of Theorem 3 was also
used by Krieger ([2] page 458) in the proof of his Theorem 3.4.

THEOREM 4. Let N > 0. Let P e S be such that P assigns positive measure to
every nonempty setin % . Then if H'is any number such that 0 < H < Hy(P) —
H, _,(P), there is an ergodic Q € F such that Q = P over & ,, and H(Q) = H. If
H = Hy(P) — Hy_,(P), Q is unique.

Proor. First of all, Hy(P) — H,_,(P) > 0, so this theorem is not a vacuous
statement. There are measures Q, Q' €.%” such that H(Q) =0, H,(Q') —
H, (Q") = Hy(P) — Hy_,(P), n = N. Choose M > N so large that H,(Q) —
H,_(Q) < H. Arargument using the intermediate value theorem for continuous
functions will show that there is a number 4, 0 < 4 < 1, such that if Q" =
2Q + (1 — )Q', H(Q") — Hy ,(Q") = H. Now Q' is the unique measure



534 J. C. KIEFFER

constructed in the proof of Theorem 3; an examination of that proof will show
that Q" assigns positive measure to every nonempty set in & ,.. Therefore, so
does Q. There is a unique P’e Zsuch that P = Q" over ., and H(P') =
H,(Q") — H,_,(Q") = H. Again appealing to the proof of Theorem 3 we see
that P is Markovian with respect to the shift 7%-, and since Q" is positive on
nonempty subsets of &, P’ must therefore be ergodic. Finally, P’ = P over
Gy

Final remarks. Given N > 0, and P as in Theorem 4, we have determined
the entropies of those ergodic measures Q which approximate P in the sense
that P = Q over &, with one possible exception: there may be such an ergodic
measure Q with entropy zero. The construction of such a Q appears to be dif-
ficult. It may also be possible to relax the condition on P in Theorem 4.
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