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A NOTE ON STATIONARY GAUSSIAN SEQUENCES

By CHANDRAKANT M. DEo
University of Ottawa

Let {£,) be a stationary Gaussian sequence with E(&o) = 0; E(€0&n) = Fa.
If n#r, — 0 for some « > 1, then Strassen’s functional law of iterated log-
arithm applies to {£x}.

1. Main result. Let {{,: —oo < n < oo} be a stationary Gaussian sequence
of random variables on a probability space (Q, &, P). Let E§, =0 and S, =
2, é;. Forn>3, weQ,let g,(+, w) be the function on [0, 1] defined by

(1 - 9.(j/n, w) = (2n log log n)~1S; , j=0,1,---,n

and g,(+, w) is linear on the subintervals [(j — 1)/n, j/n], j= 1,2, ---, n. For
a nonnegative number ¢ let K, denote the set of absolutely continuous functions
on [0, 1] which vanish at zero and whose derivatives have L,-norms less than
or equal to o. We say that {£,} satisfies Strassen’s law of iterated logarithm if
there exists a ¢ = 0, and a set Q, with P(Q;) = 1 such that for each w € Q, the
sequence {g,(+, ®)} is precompact in the metric space C[0, 1] and has K, as the
set of its limit points.

For n = 1, let r, = (E§)'E(,€,). The object of this note is to give a simple
sufficient condition in terms of the correlation sequence {r,}, for {{,} to obey
Strassen’s law. '

The case of strong-mixing, stationary Gaussian sequences was considered in
Deo (1973). For a positive integer n, let a, denote the sup |P(AB) — P(A)P(B)|
where the supremum is taken over all sets 4, B such that A4 is in the o-field
generated by {£;: j < 0} and B in the o-field generated by {§;:j=n}. It is
shown in [2] that if

(2) Sa,? < oo for some 0 < p <2,

then Strassen’s law applies to {¢,}. Furthermore, the condition (2) is satisfied
whenever {£,} has a strictly positive spectral density which satisfies a Holder
condition of order greater than %.

In this note it is shown that another sufficient condition for Strassen’s law to

apply to {¢,} is
3) lim, . nér, =0 for some a > 1.

Also we give examples to show that conditions (2) and (3) overlap but neither
of them implies the other. It is also shown that (3) cannot be weakened to
a > 0 (at least not with the norming used in the definition of g,’s and with
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Strassen’s set K, as the limit set). The main proposition here is derived as a
consequence of a very general recent theorem of I. Berkes (1973).
Under (3), the series ), r, converges absolutely. Let

(4) ot = EG)L + 2 Lo n}-

PROPOSITION. Let (3) hold. Then the sequence {£,} obeys Strassen’s law with o
defined in (4).

ProOOF. Assume first ¢ > 0; with this assumption there is no loss of generality
in taking ¢ = 1. Let d, = sup;, |r;|. Then (3) is equivalent to
®) lim,_ n%, = 0 for some a > 1.
Clearly we can assume 1 < a < 2. We first show that there exists a constant

C (depending only on the sequence {£,}) such that for all positive integers m,
n, p we have

(6) |E{(mn)~% > ™ &, Ymbptn-i g3 < C[min (m, n)]=*
and
() |E{n= X7, £ — 1| < Crmi—e.

To prove (6) assume for the sake of definiteness m < n. The left side of (6) is <
(mn)EED) D Tpatetst ry] £ BEDM S5m0 4+ m oo 8;)
< E(E)m{C, D" + C, mmi=e)
é E(EOZ)m—l{C3m2—a _|_ szz—a}
< C,imi~e,
Here, C,, C,, C;, C,, are positive constants which do not depend on m, n, p.
Similarly, the left side of (7) is equal to

|E(ES) + 2E(E) 2521 (1 — j[m)r; — 1
= |E(&") + 2E(5") Zin (1 — jlmr; — o7

1 .
< 2BED |- D30 + D5 o, < Gone.

Thus (6) and (7) hold with C = max (C,, Cy).

Now to prove the proposition let us apply Theorem 2 of Berkes (1973); and
toward this end verify conditions 4 and B, in that paper. Verification of con-
dition A is straightforward in view of the easily-checked fact that for all
choices of positive integer n and numbers a,, a,, - - -, a, the random variable
(X a®)~* X, a,;¢; has normal distribution with mean zero and variance at most
equal to {E(§)) + DE(&)) X 7., k=°} where D = sup, k*0,.

"It remains to verify the condition B; of [1]. In the notation there the left
side of (2.6) is equal to

(8) lexp (=% Zia 4%0( ) — & 2iirs Ak 005 ))) — exp (—% L1 A7)
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where we have written, for | < i< rand1 <j < n;

o(i, J) = Efn[(t/ — t)(t;' — )] Tii i & Emtnlt]m i}
By (6) and (7),

©) lo(i, j)| < C(nty== l<izj<r,
and
(10) lo(i, iy — 1] £ C(nt)'~« 1<i<r

where ¢t = min,,, (¢, — t,)-
Thus, the expression in (8) is dominated by
(11) lexp (—% X1 4200, i) — 1) — % Diws 2ds0(5 ) — 1] -
For any real u, |e=* — 1| < |u|e™. Using this and (9) and (10) we see that the
expression (11) is at most Le” where L stands for
$C(n0)' = L1 A + $C(n1)' ™" Tiws Al |45 -

Write |||* = ;7 2. Then L itself is dominated by

Clnty==|l2|P (1 + 7).
Thus we have shown that the left side of (2.6) in [1] is at most
(12) Cnty=(1 + r*)||2][* exp {C(ney=*(1 + r)[|2]["] -
For |||? < CY(1 4 r*)~Y(nt) v, and nt > 1, (12) is at most (nf)=~V/2. Thus
the left side of (2.6) in [1] is at most max (2, (nf)'~*/*) whenever ||4|]’ =
CY(1 + r®~Y(nt)~v72, This verifies the condition B; of [1] and the proof of
the proposition is complete when ¢ > 0. The degenerate case ¢ = 0 for which

we need to show that g, converges uniformly to zero for almost all @ can be
handled along the lines of Lemma 9 in [2]. We omit the details.

2. Examples.
ExampLE 1. Let {§,} have spectral density
h(2) =M+ 2 37 2734 cos 2*4, —r <ALl n;

where M is chosen to make 4 strictly positive. It is known that this Weirstrass
function satisfies Holder condition of order §; see e.g. page 47 of Zygmund
(1968). In this case therefore the condition (2) is satisfied but not (3).

ExampLE 2. If the spectral density of {¢,} vanishes on a subinterval of
(—m, 7) and has two bounded derivatives then the condition (3) is satisfied.
However, such a process cannot be strong-mixing because it is not even purely
non-deterministic.

ExaMpLE 3. Let 4 < a < 1, and {5,: —oo < n < oo} be an i.i.d. sequence
of standard normal variables. Define

§; = Dvcinn /(K — )% —00 —j< oo,
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Then E(§,€,) = O(n~*). However, the variance of S, = >7_, &, is easily seen
to be of the order of magnitude »*~** and thus Strassen’s law clearly cannot
apply with the norming used in the definition of g, functions. In this case, the
proper norming would be to divide by [2 Var (S,) log log n]} rather than by
[2nlog log n]t. However, even with this different norming, it is unlikely that
Strassen’s set K, will appear as the limit set. This is because the finite-dimen-
sional distributions of the sequence {(Var S,)"%S;,,;: 0 < ¢ < 1} converge, not
to those of the Brownian motion, but to those of the Gaussian process {{(¢):
0 <t < 1} with the covariance function

E(L(s)C(t)) = const. [s72 372 — |t — sP7P], 0<s,t 1.
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