A NOTE ON STATIONARY GAUSSIAN SEQUENCES

By Chandrakant M. Deo

University of Ottawa

Let $\{\xi_n\}$ be a stationary Gaussian sequence with $E(\xi_0) = 0$; $E(\xi_0 \xi_n) = r_n$. If $n^{\alpha}r_n \to 0$ for some $\alpha > 1$, then Strassen's functional law of iterated logarithm applies to $\{\xi_n\}$.

1. Main result. Let $\{\xi_n: -\infty < n < \infty\}$ be a stationary Gaussian sequence of random variables on a probability space (Ω, \mathcal{F}, P) . Let $E\xi_0 = 0$ and $S_n = \sum_{i=1}^n \xi_i$. For n > 3, $\omega \in \Omega$, let $g_n(\cdot, \omega)$ be the function on [0, 1] defined by

(1)
$$g_n(j/n, \omega) = (2n \log \log n)^{-\frac{1}{2}} S_j, \qquad j = 0, 1, \dots, n$$

and $g_n(\:\!\!\bullet\:\!\!, \omega)$ is linear on the subintervals [(j-1)/n, j/n], $j=1,2,\cdots,n$. For a nonnegative number σ let K_σ denote the set of absolutely continuous functions on [0,1] which vanish at zero and whose derivatives have L_2 -norms less than or equal to σ . We say that $\{\xi_n\}$ satisfies Strassen's law of iterated logarithm if there exists a $\sigma \geq 0$, and a set Ω_0 with $P(\Omega_0) = 1$ such that for each $\omega \in \Omega_0$ the sequence $\{g_n(\:\!\!\!\bullet\:\!\!\!, \omega)\}$ is precompact in the metric space C[0,1] and has K_σ as the set of its limit points.

For $n \ge 1$, let $r_n = (E\xi_0^2)^{-1}E(\xi_0\xi_n)$. The object of this note is to give a simple sufficient condition in terms of the correlation sequence $\{r_n\}$, for $\{\xi_n\}$ to obey Strassen's law.

The case of strong-mixing, stationary Gaussian sequences was considered in Deo (1973). For a positive integer n, let α_n denote the sup |P(AB) - P(A)P(B)| where the supremum is taken over all sets A, B such that A is in the σ -field generated by $\{\xi_j : j \leq 0\}$ and B in the σ -field generated by $\{\xi_j : j \geq n\}$. It is shown in [2] that if

(2)
$$\sum \alpha_n^p < \infty \qquad \text{for some } 0 < p < 2,$$

then Strassen's law applies to $\{\xi_n\}$. Furthermore, the condition (2) is satisfied whenever $\{\xi_n\}$ has a strictly positive spectral density which satisfies a Hölder condition of order greater than $\frac{1}{2}$.

In this note it is shown that another sufficient condition for Strassen's law to apply to $\{\xi_n\}$ is

$$\lim_{n\to\infty} n^{\alpha} r_n = 0 \qquad \text{for some } \alpha > 1.$$

Also we give examples to show that conditions (2) and (3) overlap but neither of them implies the other. It is also shown that (3) cannot be weakened to $\alpha > 0$ (at least not with the norming used in the definition of g_n 's and with

Received September 26, 1973; revised January 15, 1974.

AMS 1970 subject classifications. Primary 60F15, 60G15; Secondary 60G10.

Key words and phrases. Gaussian sequences, Strassen's law of iterated logarithm.

Strassen's set K_{σ} as the limit set). The main proposition here is derived as a consequence of a very general recent theorem of I. Berkes (1973).

Under (3), the series $\sum_{n=1}^{\infty} r_n$ converges absolutely. Let

(4)
$$\sigma^2 = E(\xi_0^2) \{ 1 + 2 \sum_{n=1}^{\infty} r_n \}.$$

PROPOSITION. Let (3) hold. Then the sequence $\{\xi_n\}$ obeys Strassen's law with σ defined in (4).

PROOF. Assume first $\sigma > 0$; with this assumption there is no loss of generality in taking $\sigma = 1$. Let $\delta_n = \sup_{j \ge n} |r_j|$. Then (3) is equivalent to

(5)
$$\lim_{n\to\infty} n^{\alpha} \delta_n = 0 \qquad \text{for some } \alpha > 1.$$

Clearly we can assume $1 < \alpha < 2$. We first show that there exists a constant C (depending only on the sequence $\{\xi_n\}$) such that for all positive integers m, n, p we have

(6)
$$|E\{(mn)^{-\frac{1}{2}} \sum_{i=1}^{m} \xi_i \sum_{j=m+p}^{m+p+n-1} \xi_j\}| \leq C[\min(m,n)]^{1-\alpha}$$

and

(7)
$$|E\{n^{-\frac{1}{2}} \sum_{i=1}^{n} \xi_i\}^2 - 1| \leq C n^{1-\alpha}.$$

To prove (6) assume for the sake of definiteness $m \le n$. The left side of (6) is \le

$$\begin{split} (mn)^{-\frac{1}{2}}E(\xi_0^{\,2}) \, \sum_{i=1}^m \, \sum_{j=m_1+p}^{m_1+p+n-1} |r_{j-i}| & \leq E(\xi_0^{\,2})m^{-1} \{ \sum_{j=1}^m j\delta_j + m \, \sum_{j=m+1}^\infty \delta_j \} \\ & \leq E(\xi_0^{\,2})m^{-1} \{ C_1 \, \sum_{j=1}^m j^{1-\alpha} + C_2 \, m m^{1-\alpha} \} \\ & \leq E(\xi_0^{\,2})m^{-1} \{ C_3 m^{2-\alpha} + C_2 m^{2-\alpha} \} \\ & \leq C_4 m^{1-\alpha} \, . \end{split}$$

Here, C_1 , C_2 , C_3 , C_4 , are positive constants which do not depend on m, n, p. Similarly, the left side of (7) is equal to

$$\begin{split} |E(\xi_0^{\,2}) \,+\, 2E(\xi_0^{\,2}) \, & \textstyle \sum_{j=1}^{n-1} (1-j/n) r_j - 1| \\ & = |E(\xi_0^{\,2}) \,+\, 2E(\xi_0^{\,2}) \, \textstyle \sum_{n=1}^{j-1} (1-j/n) r_j - \sigma^2| \\ & \leq 2E(\xi_0^{\,2}) \, \Big\{ \frac{1}{n} \, \textstyle \sum_{j=1}^{n-1} j \delta_j + \, \textstyle \sum_{j=n}^{\infty} \delta_j \Big\} \, \, \leq C_5 \, n^{1-\alpha} \,. \end{split}$$

Thus (6) and (7) hold with $C = \max(C_4, C_5)$.

Now to prove the proposition let us apply Theorem 2 of Berkes (1973); and toward this end verify conditions A and B_3 in that paper. Verification of condition A is straightforward in view of the easily-checked fact that for all choices of positive integer n and numbers a_1, a_2, \dots, a_n the random variable $(\sum a_i^2)^{-\frac{1}{2}} \sum_{i=1}^n a_i \xi_i$ has normal distribution with mean zero and variance at most equal to $\{E(\xi_0^2) + DE(\xi_0^2) \sum_{k=1}^\infty k^{-\alpha}\}$ where $D = \sup_k k^{\alpha} \delta_k$.

It remains to verify the condition B_3 of [1]. In the notation there the left side of (2.6) is equal to

(8)
$$\left| \exp\left(-\frac{1}{2} \sum_{i=1}^{r} \lambda_i^2 \rho(i, i) - \frac{1}{2} \sum_{i \neq j} \lambda_i \lambda_j \rho(i, j) \right) - \exp\left(-\frac{1}{2} \sum_{i=1}^{r} \lambda_i^2 \right) \right|$$

where we have written, for $1 \le i \le r$ and $1 \le j \le r$;

$$\rho(i,j) = E \{ n[(t_i{'} - t_i)(t_j{'} - t_j)]^{-\frac{1}{2}} \sum_{\substack{k = [nt_i]+1}}^{[nt_i{'}]} \xi_k \sum_{\substack{l = [nt_j]+1}}^{[nt_j{'}]} \xi_l \} \cdot$$

By (6) and (7),

$$|\rho(i,j)| \leq C(nt)^{1-\alpha} \qquad 1 \leq i \neq j \leq r,$$

and

$$(10) |\rho(i,i)-1| \leq C(nt)^{1-\alpha} 1 \leq i \leq r$$

where $t = \min_{1 \le i \le r} (t_i' - t_i)$.

Thus, the expression in (8) is dominated by

(11)
$$\left| \exp\left(-\frac{1}{2}\sum_{i=1}^{r}\lambda_{i}^{2}(\rho(i,i)-1)-\frac{1}{2}\sum_{i\neq j}\lambda_{i}\lambda_{j}\rho(i,j)\right)-1\right|.$$

For any real u, $|e^{-u} - 1| \le |u|e^{|u|}$. Using this and (9) and (10) we see that the expression (11) is at most Le^L where L stands for

$$\frac{1}{2}C(nt)^{1-\alpha}\sum_{i=1}^{r}\lambda_{i}^{2}+\frac{1}{2}C(nt)^{1-\alpha}\sum_{i\neq j}|\lambda_{i}||\lambda_{j}|.$$

Write $||\lambda||^2 = \sum_{i=1}^{r} \lambda_i^2$. Then L itself is dominated by

$$C(nt)^{1-\alpha}||\lambda||^2(1+r^2).$$

Thus we have shown that the left side of (2.6) in [1] is at most

(12)
$$C(nt)^{1-\alpha}(1+r^2)||\lambda||^2 \exp\left\{C(nt)^{1-\alpha}(1+r^2)||\lambda||^2\right\}.$$

For $||\lambda||^2 \le C^{-1}(1+r^2)^{-1}(nt)^{(\alpha-1)/2}$, and nt > 1, (12) is at most $(nt)^{(\alpha-1)/2}$. Thus the left side of (2.6) in [1] is at most max $(2, (nt)^{(1-\alpha)/2})$ whenever $||\lambda||^2 \le C^{-1}(1+r^2)^{-1}(nt)^{(\alpha-1)/2}$. This verifies the condition B_3 of [1] and the proof of the proposition is complete when $\sigma > 0$. The degenerate case $\sigma = 0$ for which we need to show that g_n converges uniformly to zero for almost all ω can be handled along the lines of Lemma 9 in [2]. We omit the details.

2. Examples.

EXAMPLE 1. Let $\{\xi_n\}$ have spectral density

$$h(\lambda) = M + 2 \sum_{n=1}^{\infty} 2^{-3n/4} \cos 2^n \lambda , \qquad -\pi < \lambda < \pi ;$$

where M is chosen to make h strictly positive. It is known that this Weirstrass function satisfies Hölder condition of order $\frac{3}{4}$; see e.g. page 47 of Zygmund (1968). In this case therefore the condition (2) is satisfied but not (3).

EXAMPLE 2. If the spectral density of $\{\xi_n\}$ vanishes on a subinterval of $(-\pi, \pi)$ and has two bounded derivatives then the condition (3) is satisfied. However, such a process cannot be strong-mixing because it is not even purely non-deterministic.

Example 3. Let $\frac{1}{2} < \alpha < 1$, and $\{\eta_n : -\infty < n < \infty\}$ be an i.i.d. sequence of standard normal variables. Define

$$\xi_j = \sum_{k=j+1}^{\infty} \eta_k / (k-j)^{\alpha}, \qquad -\infty - j < \infty.$$

Then $E(\xi_0 \xi_n) = O(n^{-\alpha})$. However, the variance of $S_n = \sum_{j=1}^n \xi_j$ is easily seen to be of the order of magnitude $n^{3-2\alpha}$ and thus Strassen's law clearly cannot apply with the norming used in the definition of g_n functions. In this case, the proper norming would be to divide by $[2 \operatorname{Var}(S_n) \log \log n]^{\frac{1}{2}}$ rather than by $[2n \log \log n]^{\frac{1}{2}}$. However, even with this different norming, it is unlikely that Strassen's set K_σ will appear as the limit set. This is because the finite-dimensional distributions of the sequence $\{(\operatorname{Var} S_n)^{-\frac{1}{2}} S_{[nt]} : 0 \le t \le 1\}$ converge, not to those of the Brownian motion, but to those of the Gaussian process $\{\zeta(t) : 0 \le t \le 1\}$ with the covariance function

$$E(\zeta(s)\zeta(t)) = \text{const.} [s^{3-2\alpha} + t^{3-2\alpha} - |t - s|^{3-2\alpha}], \quad 0 \le s, t \le 1.$$

REFERENCES

- [1] Berkes, I. (1973). The functional law of the iterated logarithm for dependent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 245-258.
- [2] Deo, C. (1973). On Strassen's law of iterated logarithm for stationary Gaussian sequences.

 To appear in Sankhyā.
- [3] ZYGMUND, A. (1968). Trigonometric Series 1. Cambridge Univ. Press.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OTTAWA OTTAWA, ONT. KIN6N5