A GENERAL POISSON APPROXIMATION THEOREM¹

By R. J. SERFLING

The Florida State University

A sum of nonnegative integer-valued random variables may be treated as a Poisson variable if the summands have sufficiently high probabilities of taking 0 value and sufficiently weak mutual dependence. This paper presents simple exact upper bounds for the error of such an approximation. An application is made to obtain a new extension for dependent events of the divergent part of the Borel-Cantelli lemma. The bounds are illustrated for the case of Markov-dependent Bernoulli trials. The method of the paper is to reduce the general problem to the special case of independent 0-1 summands and then make use of known bounds for this special case.

1. Introduction and theorem. A natural measure of disparity between the distributions of two nonnegative integer-valued random variables X and Y is

$$d(X, Y) = \sup_{A} |P(X \in A) - P(Y \in A)|,$$

where the sup is taken over all steps A of nonnegative integers. The alternative expression

$$d(X, Y) = \frac{1}{2} \sum_{k=0}^{\infty} |P(X = k) - P(Y = k)|$$

is easily verified. Another conventional disparity measure is

$$d_0(X, Y) = \sup_{k \ge 0} |P(X \le k) - P(Y \le k)|.$$

Clearly $d_0(X, Y) \leq d(X, Y)$.

The purpose of this paper is to provide simple exact upper bounds for $d_0(X, Y)$ and for d(X, Y), for the case that X is a sum $\sum_{i=1}^{n} X_i$ of (possibly dependent) nonnegative integer-valued random variables and Y is a Poisson variable suitably chosen to approximate X in distribution.

Previous such approximation theorems have been restricted to independent summands, or to 0-1 valued summands or both. As a frame of reference, we state two such results which also will serve as lemmas in the present development. The first is due to Le Cam (1960), the second due to Franken (1964).

LEMMA 1. Let X_1, \dots, X_n be independent Bernoulli variables with respective success probabilities p_1, \dots, p_n and let Y be Poisson with mean $\sum_{i=1}^{n} p_i$. Then

$$d(\sum_{i=1}^{n} X_i, Y) \leq \sum_{i=1}^{n} p_i^2.$$

LEMMA 2. Let X_1, \dots, X_n be independent nonnegative integer-valued random

www.jstor.org

Received July 29, 1974; revised December 2, 1974.

¹ Research supported by the Army, Navy and Air Force under Office of Naval Research Contract No. N00014-67-A-0235-0006.

AMS 1970 subject classification. Primary 60F05.

Key words and phrases. Poisson approximation, dependent summands, Borel-Cantelli lemma, Markov-dependent Bernoulli trials.

variables and let Y be Poisson with mean $\sum_{i=1}^{n} E(X_i)$. Then

(1.2)
$$d_0(\sum_{i=1}^n X_i, Y) \leq \frac{2}{\pi} \sum_{i=1}^n \left[E^2(X_i) + EX_i(X_i - 1) \right].$$

In each of the cited papers may be found additional results giving alternative bounds or dealing with alternative disparity measures. A result for *possibly dependent* 0-1 valued summands is provided by Freedman (1974), but in the case of independence it is cruder than (1.1).

The following theorem improves the bound stated in Lemma 2 and extends both lemmas to the general case of possibly dependent nonnegative integervalued summands.

THEOREM 1. Let X_1, \dots, X_n be (possibly dependent) nonnegative integer-valued random variables and put $p_1 = P(X_1 = 1)$ and

$$p_i = P(X_i = 1 \mid \mathcal{F}_{i-1}), \qquad 2 \le i \le n,$$

where \mathcal{F}_i denotes the σ -field generated by X_1, \dots, X_i . Let Y be Poisson with mean $\sum_{i=1}^{n} E(p_i)$. Then

(1.3)
$$d(\sum_{i=1}^{n} X_i, Y) \leq \sum_{i=1}^{n} E^2(p_i) + \sum_{i=1}^{n} E|p_i - E(p_i)| + \sum_{i=1}^{n} P(X_i \geq 2)$$
 and

$$(1.4) d_0(\sum_{i=1}^n X_i, Y) \leq \frac{2}{\pi} \sum_{i=1}^n E^2(p_i) + \sum_{i=1}^n E|p_i - E(p_i)| + \sum_{i=1}^n P(X_i \geq 2).$$

The result is proved by first reducing the general problem to the special case of independent 0-1 summands and then utilizing the implications of Lemmas 1 and 2 for this special case. The appropriate reduction lemma, which is of independent interest, and its application to obtain Theorem 1 are presented in Section 2.

For the case of independent 0-1 summands the bounds (1.3) and (1.4) reduce to (1.1) and (1.2) respectively. The bound (1.4) strictly improves (1.2) in the case of independent summands with $P(X_i > 1) > 0$ for at least one X_i . Note that the approximating Poisson variables in Lemma 2 and Theorem 1 differ except in the case of 0-1 summands.

By a further application of the reduction lemma, a new extension of the Borel-Cantelli lemma (divergent part) for dependent events is derived in Section 3. The result contains the extension given by Iosifescu and Theodorescu (1969) for ϕ -mixing dependent events.

In Section 4 the bounds of Theorem 1 are exemplified for the case of Markov-dependent Bernoulli trials. Section 5 provides a simple proof of Lemma 1.

2. Reduction lemma. Note that

$$(2.1) d(X, Y) \le P(X \ne Y)$$

when X and Y are defined on a common probability space. Also, for arbitrary

R. J. SERFLING

nonnegative integer-valued X, Y and Z,

$$(2.2) d(X, Y) \le d(X, Z) + d(Y, Z)$$

and

$$(2.3) d_0(X, Y) \leq d_0(X, Z) + d_0(Y, Z) \leq d(X, Z) + d_0(Y, Z).$$

We now establish

LEMMA 3. Let X_1, \dots, X_n be (possibly dependent) nonnegative integer-valued random variables and put $p_1 = P(X_1 = 1)$ and

$$p_i = P(X_i = 1 \mid \mathcal{F}_{i-1}), \qquad 2 \le i \le n,$$

where \mathcal{F}_i denotes the σ -field generated by X_1, \dots, X_i . Write $X_i' = I(X_i = 1)$, $1 \le i \le n$, and put $p_1' = P(X_1' = 1) = p_1$ and

$$p_i' = P(X_i' = 1 \mid \mathcal{F}_{i-1}'), \qquad 2 \leq i \leq n,$$

where \mathcal{F}_i denotes the σ -field generated by X_1', \dots, X_i' . Finally, let X_1^*, \dots, X_n^* be independent Bernoulli variables with respective success probabilities p_1^*, \dots, p_n^* . Then

(2.4a)
$$d(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i') \leq \sum_{i=1}^{n} P(X_i \geq 2)$$

and

(2.4b)
$$d(\sum_{i=1}^{n} X_{i}', \sum_{i=1}^{n} X_{i}^{*}) \leq \sum_{i=1}^{n} E|p_{i}' - p_{i}^{*}| \leq \sum_{i=1}^{n} E|p_{i} - p_{i}^{*}|.$$

Hence also

$$(2.4c) d(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{*}) \leq \sum_{i=1}^{n} E[p_{i} - p_{i}^{*}] + \sum_{i=1}^{n} P(X_{i} \geq 2).$$

PROOF. (2.4c) follows from (2.2), (2.4a) and (2.4b). Using (2.1), we have (2.4a) by

$$d(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}') \leq \sum_{i=1}^{n} P(X_{i} \neq X_{i}') = \sum_{i=1}^{n} P(X_{i} \geq 2)$$
.

The second inequality of (2.4b) follows immediately from the relations $p_1' = p_1$ and $p_i' = E(p_i | \mathscr{F}'_{i-1})$, $2 \le i \le n$. It remains to establish the first inequality of (2.4b).

We proceed by constructing X_i and X_i^* , $1 \le i \le n$, on a common probability space. Explicitly, we must construct a sequence X_1^* , ..., X_n^* of independent Bernoulli variables having the given respective success probabilities p_1^* , ..., p_n^* and a sequence X_1' , ..., X_n' of possibly dependent Bernoulli variables having the joint probability distribution which is determined by the set of quantities $p_1' = P(X_1' = 1)$ and

$$p_i'(x_1', \dots, x_{i-1}') = P(X_i' = 1 | X_1' = x_1', \dots, X_{i-1}' = x_{i-1}'),$$

for $x_j'=0$ or $1,\ 1\leq j\leq i-1$, and for $2\leq i\leq n$. Introduce a sequence $U_1,\ \cdots,\ U_n$ of independent random variables uniformly distributed on the interval [0,1]. Set $X_i^*=I(U_i\leq p_i^*),\ 1\leq i\leq n$. Set $X_1'=I(U_1\leq p_1')$ and, for $2\leq i\leq n,\ X_i'=I(U_i\leq p_i'(X_1',\ \cdots,\ X_{i-1}'))$. It is readily seen that $\{X_i^*\}$ and $\{X_i'\}$

fulfill the requirements. Further,

$$P(X_i' \neq X_i^*) = E\{P(X_i' \neq X_i^* | \mathcal{F}_{i-1}')\} = E[p_i' - p_i^*], \quad 1 \leq i \leq n.$$

Therefore, by (2.1) again, the first inequality of (2.4b) follows. \square

PROOF OF THEOREM 1. By (2.2), write

$$(2.5) d(\sum_{i=1}^{n} X_{i}, Y) \leq d(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{*}) + d(\sum_{i=1}^{n} X_{i}^{*}, Y),$$

where $X_1, \dots, X_n, X_1^*, \dots, X_n^*$ and Y are as given in Theorem 1 and Lemma 3. Choose $p_i^* = E(p_i)$, $1 \le i \le n$. Then, using (2.4c) and (1.1) respectively to bound the first and second terms on the righthand side of (2.5), we obtain (1.3). Similarly, the use of (2.3) with (2.4c) and (1.2) yields (1.4). \square

REMARK. Note that the p_i^* may be chosen arbitrarily in Lemma 3. For example, if we seek to minimize $E|p_i-p_i^*|$, we may choose p_i^* to be a median of p_i instead of $E(p_i)$.

3. Extended Borel-Cantelli lemma. For arbitrary events $\{E_n\}$,

$$\sum_{1}^{\infty} P(E_n) < \infty \Rightarrow P(E_n \text{ i.o.}) = 0.$$

That is the "convergence part" of the Borel-Cantelli lemma (see, e.g., Chung (1974)). A converse, or "divergent part," is: if the events $\{E_n\}$ are independent, then

Both parts of the lemma are relevant in connection with studies such as the law of the iterated logarithm, and it thus becomes of interest to relax the independence assumption of the divergent part. One such extension is given by Chung (1974): if the events $\{E_n\}$ are pairwise independent, then (3.2) holds. Another dependent extension is given by Iosifescu and Theodorescu (1969), page 2. Let $\phi_1 = 0$ and

$$\phi_n = \sup_{F \in \mathscr{T}_{n-1}} |P(E_n | F) - P(E_n)|, \qquad n \ge 2,$$

where \mathcal{T}_n denotes the σ -field generated by E_1, \dots, E_n . Their result is: if the events $\{E_n\}$ satisfy

$$\sum_{1}^{\infty} \phi_{n} < \infty ,$$

then (3.2) holds. We now show that (3.3) may be relaxed to

$$\sum_{1}^{\infty} E|p_n - P(E_n)| < \infty ,$$

where $p_1 = P(E_1)$ and, for $n \ge 2$, $p_n = P(E_n | \mathscr{F}_{n-1})$. (Clearly (3.3) implies (3.4) since $|p_n - P(E_n)| \le \phi_n$ with probability 1.)

THEOREM 2. If the events $\{E_n\}$ satisfy (3.4), then (3.2) holds.

PROOF. It suffices to show that (3.4) and $\sum_{i=1}^{\infty} P(E_n) = \infty$ imply

$$(3.5) P(\liminf_n E_n^c) = \lim_{m \to \infty} P(\bigcap_{n=m}^{\infty} E_n^c) = 0,$$

where E_n^c denotes the complement of E_n . Let $X_n = I(E_n) = 1$ or 0 according

as E_n or E_n^c occurs. Then $\mathscr{F}_1, \mathscr{F}_2, \cdots$ and p_1, p_2, \cdots as defined above also correspond to X_1, X_2, \cdots as in Lemma 3. Hence, by (2.4c),

$$P(\bigcap_{n=m}^{M} E_n^c) = P(\sum_{n=m}^{M} X_n = 0) \le P(\sum_{n=m}^{M} X_n^* = 0) + \sum_{n=m}^{M} E[p_n - P(E_n)],$$

where X_1^* , X_2^* , ... are *independent* Bernoulli variables with respective success probabilities $P(E_1)$, $P(E_2)$, Using the independence,

$$P(\sum_{n=m}^{M} X_n^* = 0) = \prod_{n=m}^{M} [1 - P(E_n)] \le \exp[-\sum_{n=m}^{M} P(E_n)].$$

Thus

$$P(\bigcap_{n=m}^{M} E_n^c) \leq \exp\left[-\sum_{n=m}^{M} P(E_n)\right] + \sum_{n=m}^{M} E[p_n - P(E_n)].$$

Letting $M \to \infty$, we have

$$P(\bigcap_{n=m}^{\infty} E_n^c) \leq \sum_{n=m}^{\infty} E[p_n - P(E_n)]$$

since $\sum_{n=1}^{\infty} P(E_n) = \infty$. Now letting $m \to \infty$ we obtain (3.5) by virtue of (3.4). \square

4. Example: Markov-dependent Bernoulli trials. Consider a sequence X_1 , X_2 , ... of Markov-dependent Bernoulli variables with transition probabilities

$$p_i(1) = P(X_i = 1 | X_{i-1} = 1) = \alpha$$
, $p_i(0) = P(X_i = 1 | X_{i-1} = 0) = \beta$

for $i \ge 2$. Assume $0 < \alpha < 1$, $0 < \beta < 1$ and put

$$\delta = \alpha - \beta$$
, $p = \frac{\beta}{1 - \delta}$.

Assume for convenience that $P(X_1 = 1) = p$, so that the X_i are identically distributed with success probability p. In this case

$$E|p_i - E(p_i)| = E|p_i - p| = 2|\delta|p(1-p),$$
 $i \ge 2.$

Hence, for approximation of $\sum_{i=1}^{n} X_i$ as a Poisson variable Y_n with mean np, Theorem 1 provides the error bound

$$d(\sum_{i=1}^{n} X_{i}, Y_{n}) \leq np^{2} + 2(n-1)|\delta|p(1-p).$$

The approximation is effective if p and $|\delta|$ are both small relative to np. Extension to the case $P(X_1 = 1) \neq p$ is straightforward.

5. Simple proof of Lemma 1. Let Y_i be Poisson with mean p_i , let $Z_i = 0$ with probability $(1 - p_i) \exp(p_i)$ and 1 otherwise, and let Z_i and Y_i be independent. Define

$$X_i = I(Y_i \ge 1) + I(Y_i = 0)I(Z_i = 1)$$
.

It is quickly checked that X_i is a Bern'oulli variable with success probability p_i . Also

$$P(X_i \neq Y_i) = P(Y_i \ge 2) + P(Y_i = 0, X_i = 1) = p_i(1 - e^{-p_i}) \le p_i^2$$
.

Using (2.1) we thus have

$$d(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} Y_i) \leq \sum_{i=1}^{n} P(X_i \neq Y_i) \leq \sum_{i=1}^{n} p_i^2.$$

Introducing the assumption that Y_1, \dots, Y_n are mutually independent, Lemma 1

follows. [] (A similar type of proof was given by Hodges and Le Cam (1960) for a weaker version of Lemma 1.)

Acknowledgment. The author thanks the referee for helpful remarks.

REFERENCES

Chung, Kai Lai (1974). A Course in Probability Theory 2nd ed. Academic Press, New York. Franken, P. (1964). Approximation der Verteilungen von Summen unabhängiger nichtnegativer ganzzahler Zufallsgrossen durch Poissonsche Verteilungen. Math. Nachr. 27 303-340.

Freedman, David (1974). The Poisson approximation for dependent events. *Ann. Probability* 2 256-269.

HODGES, J. L. and LE CAM, L. (1960). The Poisson approximation to the Poisson binomial distribution. *Ann. Math. Statist.* 31 737-740.

Iosifescu, M. and Theodorescu, R. (1969). Random Processes and Learning. Springer-Verlag, New York.

Le Cam, L. (1960). An approximation theorem for the Poisson binomial distribution. *Pacific J. Math.* 10 1181-1197.

DEPARTMENT OF STATISTICS
THE FLORIDA STATE UNIVERSITY
TALLAHASEE, FLORIDA 32306

Note added in proof. Theorem 2 may also be derived from Corollary 68 of Lévy, P. (1937). *Théorie de l'addition des variables aléatoires*, Paris. I am indebted to D. L. McLeish for bringing to my attention this type of approach.