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A GENERAL POISSON APPROXIMATION THEOREM'

By R. J. SERFLING
The Florida State University

A sum of nonnegative integer-valued random variables may be treated
as a Poisson variable if the summands have sufficiently high probabilities
of taking 0 value and sufficiently weak mutual dependence. This paper
presents simple exact upper bounds for the error of such an approximation.
An application is made to obtain a new extension for dependent events of
the divergent part of the Borel-Cantelli lemma. The bounds are illustrated
for the case of Markov-dependent Bernoulli trials. The method of the paper
is to reduce the general problem to the special case of independent 0-1 sum-
mands and then make use of known bounds for this special case.

1. Introduction and theorem. A natural measure of disparity between the dis-
tributions of two nonnegative integer-valued random variables X and Y is

d(X,Y) = sup, |P(Xe A) — P(Y € 4)|,
where the sup is taken over all steps 4 of nonnegative integers. The alternative

expression
d(X,Y) =} Do |P(X = k) — P(Y = k)|

is easily verified. Another conventional disparity measure is
dy(X, Y) = sup,s, |P(X < k) — P(Y < k)| .

Clearly dy(X, Y) < d(X, Y).

The purpose of this paper is to provide simple exact upper bounds for dy(X, Y)
and for d(X, Y), for the case that X is a sum }}7 X, of (possibly dependent) non-
negative integer-valued random variables and Y is a Poisson variable suitably
chosen to approximate X in distribution.

Previous such approximation theorems have been restricted to independent
summands, or to 0-1 valued summands or both. As a frame of reference, we
state two such results which also will serve as lemmas in the present development.
The first is due to Le Cam (1960), the second due to Franken (1964).

LemMmA 1. Let X, - - -, X, be independent Bernoulli variables with respective suc-
cess probabilities p,, - - -, p, and let Y be Poisson with mean 3.} p,. Then

(1.1) AT X, V)< Tipl

LEMMA 2. Let X, ---, X, be independent nonnegative integer-valued random
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variables and let Y be Poisson with mean Y.t E(X,). Then
2
(1.2) (Tt X ¥) < 2 51 [B(X) + EX(X, — 1)].

In each of the cited papers may be found additional results giving alternative
bounds or dealing with alternative disparity measures. A result for possibly
dependent 0-1 valued summands is provided by Freedman (1974), but in the case
of independence it is cruder than (1.1).

The following theorem improves the bound stated in Lemma 2 and extends
both lemmas to the general case of possibly dependent nonnegative integer-
valued summands.

THEOREM 1. Let X,, .-, X, be (possibly depndent) nonnegative integer-valued
random variables and put p, = P(X, = 1) and

pi=PX, = 1|5, 2<i<n,

where 57 denotes the o-field generated by X,, - - -, X,. Let Y be Poisson with mean

2 v E(p;). Then
(1.3)  d(Xi X, Y) < Xt EXp) + L1 Elp: — E(p)| + St P(X, 2 2)

and
(14) (T X, ¥) <2 52 Ep) + Xt Elp — B(p)| + 5 P(X, 2 2).

The result is proved by first reducing the general problem to the special case
of independent 0-1 summands and then utilizing the implications of Lemmas 1
and 2 for this special case. The appropriate reduction lemma, which is of in-
dependent interest, and its application to obtain Theorem 1 are presented in
Section 2.

For the case of independent 0-1 summands the bounds (1.3) and (1.4) reduce
to (1.1) and (1.2) respectively. The bound (1.4) strictly improves (1.2) in the
case of independent summands with P(X; > 1) > 0 for at least one X,. Note
that the approximating Poisson variables in Lemma 2 and Theorem 1 differ
except in the case of 0-1 summands.

By a further application of the reduction lemma, a new extension of the
Borel-Cantelli lemma (divergent part) for dependent events is derived in Section
3. The result contains the extension given by Iosifescu and Theodorescu (1969)
for ¢-mixing dependent events.

In Section 4 the bounds of Theorem 1 are exemplified for the case of Markov-
dependent Bernoulli trials. Section 5 provides a simple proof of Lemma 1.

2. Reduction lJemma. Note that
2.1 dX,Y) < P(X+7Y)

when X and Y are defined on a common probability space. Also, for arbitrary
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nonnegative integer-valued X, Y and Z,

(2.2) dX,Y) <dX, Z2) + d(Y, Z)
and
2.3) dy(X, Y) < dy(X, Z) + d(Y, Z) < d(X, Z) + d(Y, Z).

We now establish

LEMMA 3. Let X,, ---, X, be (possibly dependent) nonnegative integer-valued
random variables and put p, = P(X, = 1) and

p=PX, =117, 2gisn,
where & denotes the o-field generated by X,, ---, X,. Write X! = I(X; = 1),
1 <i<n,andput p/ = P(X! =1) = p, and

pl =PX/ =177, 2gign,
where & denotes the o-field generated by X', ..., X;!. Finally, let X;*, ..., X, *

be independent Bernoulli variables with respective success probabilities p,*, - .-, p,*.
Then

(2.42) dX X, 21 X)) < XL P(X, =z 2)
and

(2.4b)  d(Xp X/, X XX) £ XY EIpS — pX| = Lt Elp— pitl-
Hence also
(2.4¢) dxt X, D X)) = DY Elp — pr + L P 2 2)
Proor. (2.4c) follows from (2.2), (2.4a) and (2.4b). Using (2.1), we have
(2.4a) by
AT X, X1 X)) = DT PX, #+ X)) = 1 PX, =2 2).

The second inequality of (2.4b) follows immediately from the relations p,’ = p,
and p,/ = E(p;| % /1), 2 < i < n. It remains to establish the first inequality of
(2.4b).

We proceed by constructing X;’ and X;*, 1 < i < n, on a common probability
space. Explicitly, we must construct a sequence X,*, ..., X, * of independent
Bernoulli variables having the given respective success probabilities p,*, - - ., p,*
and a sequence X/, - -, X,’ of possibly dependent Bernoulli variables having
the joint probability distribution which is determined by the set of quantities
pl' = P(Xl' = 1) and

pi'(xys oy xin) = PX) = 1| X =x/, -, Xi_, = x{_),
for x/; =0 or 1, 1 <j<i— 1, and for 2 <i < n. Introduce a sequence
U,, - -+, U, of independent random variables uniformly distributed on the inter-
val [0,1]. Set X;* =I(U; < p*), 1 £i<n. Set X =I(U, < p/) and, for
2<isn, X/ =1U, < p/(X/, - -+, Xj_,))). Itisreadily seen that {X,*} and {X}
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fulfill the requirements. Further,
P(X! # X*) = E(P(X; # X*| F L)) = Elp/ — p¥|, 1<i=n.

Therefore, by (2.1) again, the first inequality of (2.4b) follows. []
Proor oF THEOREM 1. By (2.2), write
2-3) Az X, Y) = d(Zi X Xt X¥) + d(Xr X5, Y)
where X, ..., X, X;*, ..., X,* and Y are as given in Theorem 1 and Lemma
3. Choose p,* = E(p;), 1 < i < n. Then, using (2.4c) and (1.1) respectively to

bound the first and second terms on the righthand side of (2.5), we obtain (1.3).
Similarly, the use of (2.3) with (2.4c) and (1.2) yields (1.4). [I

REMARK. Note that the p,* may be chosen arbitrarily in Lemma 3. For ex-
ample, if we seek to minimize E|p, — p,*|, we may choose p,* to be a median
of p, instead of E(p,).

3. Extended Borel-Cantelli lemma. For arbitrary events {E,},

(3.1) Yy P(E,) < oo — P(E, i.0.)=0.
That is the “convergence part” of the Borel-Cantelli lemma (see, e.g., Chung
(1974)). A converse, or “divergent part,” is: if the events {E,} are independent,
then
(3.2) 2w P(E,) = o= P(E, i0)=1.
Both parts o the lemma are relevant in connection with studies such as the law
of the iterated logarithm, and it thus becomes of interest to relax the independ-
ence assumption of the divergent part. One such extension is given by Chung
(1974): if the events {E,} are pairwise independent, then (3.2) holds. Another
dependent extension is given by Iosifescu and Theodorescu (1969), page 2. Let
¢, = 0 and

¢n = SuPFGj"'n_l |P(En|F) - P(E'n)l ’ n g 2 s

where .77, denotes the o-field generated by E,, ..., E,. Their result is: if the
events {E,} satisfy

(3.3) Zi Pn < 00,
then (3.2) holds. We now show that (3.3) may be relaxed to
34 27 Elpy — P(E,)| < o0,

where p, = P(E,) and, forn = 2, p, = P(E,| % ,_;). (Clearly (3.3) implies (3.4)
since |p, — P(E,)| < ¢, with probability 1.)

THEOREM 2. If the events {E,} satisfy (3.4), then (3.2) holds.
Proor. It suffices to show that (3.4) and };y P(E,) = oo imply
3.5) P(lim inf, E,°) = lim,,_., P(N3_n E,°) = 0,

where E,° denotes the complement of E,. Let X, = I(E,) = 1 or 0 according
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as E, or E,° occurs. Then &, ,, --- and p,, p,, - - - as defined above also

correspond to X;, X,, - - - as in Lemma 3. Hence, by (2.4c),

P(NIen E) = P(L0en X, = 0) = P(X0n X, = 0) + Zala Elpu — P(E)] 5
where X,*, X,*, ... are independent Bernoulli variables with respective success
probabilities P(E,), P(E,), - - -. Using the independence,

P(Tin X, = 0) = TIalw [1 — P(E,)] = exp[— Zaln P(E,)] -
Thus
P(Maom E27) < exp[— Xin P(E,)] + X E|pa — P(E,)] -
Letting M — oo, we have
P(Noew E2) < Z3m Elpn — P(E,)|
since )¢ P(E,) = oo. Now letting m — oo we obtain (3.5) by virtue of (3.4). ]

4. Example: Markov-dependent Bernoulli trials. Consider a sequence X,
X,, - - - of Markov-dependent Bernoulli variables with transition probabilities

p(H)=PX,=1|X;,,=1)=a, pi(0)=PX,=1|X,,,=0)=§8
fori=2. Assume 0 < a < 1,0 < 8 < 1and put
B
5: —_ N = —.
a—p P=1"3

Assume for convenience that P(X; = 1) = p, so that the X, are identically dis-
tributed with success probability p. In this case

E|p; — E(p;)| = E|p, — p| = 2J|p(1 — p), iz2.
Hence, for approximation of Y;# X; as a Poisson variable Y, with mean np,
Theorem 1 provides the error bound

At X, Y,) < np* 4 2(n — 1)]o|p(1 — p) -

The approximation is effective if p and |§| are both small relative to np.
Extension to the case P(X, = 1) = p is straightforward.

5. Simple proof of Lemma 1. Let Y, be Poisson with mean p,, let Z, = 0 with
probability (1 — p,) exp(p,) and 1 otherwise, and let Z, and Y, be independent.
Define

X, =1Y, = 1)+ (Y, =0)(Z, =1).

It is quickly checked that X; is a Bernoulli variable with success probability p,.
Also

PX, %= Y)=P(Y,=2) + P(Y,=0,X,=1) = p(l — e-75) < p?2.
Using (2.1) we thus have
Ay X, L1 Y) = D P(X#+ Y) S Dt pd

Introducing the assumption that Yy, - .., Y, are mutually independent, Lemma 1
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follows. [1 (A similar type of proof was given by Hodges and Le Cam (1960)
for a weaker version of Lemma 1.)
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Note added in proof. Theorem 2 may also be derived from Corollary 68 of
Lévy, P.(1937). Théorie de I’addition des variables aléatoires, Paris. 1am indebted
to D. L. McLeish for bringing to my attention this type of approach.



