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Suppose that the k-dimensional lattice points are displaced independent-
ly of each other with the same probability distribution. Denote by Var N(4)
the variance of the number of displaced points contained in the set 4. The
asymptotic behaviour of Var N(d) is determined for large convex 4’s.

Suppose that the k-dimensional lattice points are displaced independently of
each other with the same probability distribution. Denote by Var N(A) the vari-
ance of the number of displaced points contained in the set 4. The asymptotic
behaviour of Var N(A) is determined for large convex bounded A’s in the sense
that, when the generic displacement random variable 7 has finite first moment,
we show that
0) w(cA) = (& Var N(cA — s)A(ds) ~ Kc¥=' = K'S(cA) (¢ — o)
for some constants K and K’ depending on 7 and the shape of 4, where I* is the
unit cube in R*, 2 denotes Lebesgue measure in R*, and S(A) is the surface area
of A. We discuss the behaviour of w(A) for large S(A4) under certain conditions
on A, and show the weaker property Var N(cA4) < K"c*~* (¢ — oo) for some
constant K” similar to before. The behaviour of w(A4) in the case of 7 having
E|y| = oo but E|y|*~? < oo for some 0 < § < 1 is also discussed.

1. Introduction. At the Stochastic Point Processes Conference in August 1971,
D. R. Cox posed the following problem under the title Controlled Variability
Processes in Two or More Dimensions:

Consider a regular network of points in R? e.g., the set
of lattice points, or the vertices of regular hexagons. Let
each point be displaced by a random vector, displacements
of different points being independent and identically distri-
buted. Let 4 be a convex set, and let N(4) denote the
number of displaced points contained in the set 4. Is it
true that as the diameter of 4 tends to infinity,

*) Var N(A)/(circumference of A)

(i) is bounded above, (ii) is bounded away from 0, (iii) tends
to a limit? Generalize to more than 2 dimensions.
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We shall discuss the k-dimensional setting of this problem, denoting by Z*
the set of (rectangular) lattice points n = (n, - - -, n,), n, € {0, +1, ...}, in R".
Let {n, |n € Z*} be a family of independently distributed R*-valued random vari-
ables (rv’s) with common distribution Q(+), and define

N(4) = Card {ne Z*|n + 7, € A}

for bounded sets 4 — R*. If we replace the lattice points Z* by a Poisson-
distributed family of points with unit rate parameter, then Var N(4) = EN(4) =
volume of A for all bounded measurable 4. So the point of Cox’s question is
whether starting from the deterministically distributed set reduces the order of
growth of Var N(cA) (¢ — co) from c* to ¢*~'. In one dimension, when E|y,| <
oo, (i) holds for (*) but not necessarily either of (ii) or (iii) (see Lewis and Govier
(1964) who coined the term “controlled variability,” and Corollary 1 and Ex-
ample 7 of Daley (1971)).
The question becomes more tractable on replacing Var N(4) by its value

(1.1) w(A) = ;= Var N(A — s)A(ds)

averaged over the unit cube /* C R* with respect to Lebesgue measure A(+). In
Section 6 we show what can be said without such averaging. The results are
then not as elegant because displacements of 4 may cause N(A) to oscillate.
There is a brief resumée of related results in Kendall (1948) where the R? case
(and in Kendall and Rankin (1953) the R* case) of the present problem is dis-
cussed using averaging as at (1.1) in the special case of no displacement (5, = 0
a.s.). It should also be noted that by introducing a rv { independent of {,}
uniformly distributed over 7*, the point process N* defined by

N*(4) = N(4 + 0)

is stationary, and its variance V(4) = Var N*(4), like w(A), is translation in-
variant, the two functions being related by

V(A) = w(A) + E[E(N(A + §)|0) — AAT.

We do not propose discussing ¥ here; the one-dimensional case is the function
discussed in the work of Lewis and Govier referenced above.
Denote by

(1.2) a=7n—7"

the difference of two independent rv's »" and %" with common distribution Q,
and for nonzero u € R¥, let m(u) = m,(u) denote the (k — 1)-dimensional volume
of the projection A* of A4 onto the hyperplane H* orthogonal to u. Then the
character of our results appears most clearly in the following:

THEOREM 1. When E|a| < co, and A is any convex bounded closed set — R¥,
(1.3) lim,_,, w(cA)[c*' = E(|a|m(a)) .

To discuss Var N(A) and its averaged form w(A4) we use the simple equations
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of Lemma 1 in which v(A4) denotes the number of lattice points contained in the
set 4, 7’ and »'* are as in (1.2), and

(1.4) gu(u) = (A 0 (A — u)).

Lemma 1.
(1.5) Var N(A) = Ex((4 — 7') n (4° — ")),
(1.6) - w(A) = Eg,(a) = EX(A — 7) 0 (4 — 1) .

Proor. Let &, = y,(n + 7,), where y, is the characteristic function of 4, and
observe that for different n the rv’s &, are independent Bernouilli rv’s with
Ef, = Q(4A — n). So

Var N(4) = Zinezt QA — mQ(A° — 1) = E 3, c b Ya-n(7 )0 ac-u(7")
= Ev((4 —7) 0 (£ = 7")),
proving (1.5). (1.6) follows because
§ 1 v(B — $)A(ds) = A(B) .

In the next section we collect together some simple results needed later, and
in Section 3 present a proof of (1.3). The work of Section 4 indicates how the
shape of 4 may affect w(A4)/S(A), and leads on to Section 5 where E|a| = co can
lead to orders of growth for w(cA4) intermediate between c¢*~* and c*.

2. Elementary results. We assume throughout that k¥ = 2, and that 4 is a
convex bounded closed set in R* with positive k-dimensional volume. Write

D=D,=A—A={x—y|x,yed}.

The following geometrical facts are simply demonstrated and stated without
proof.

(F1) D, is convex, central-symmetric with respect to the origin 0. If A is central-
symmetric with respect to 0, D = 24 = {2x|x e A}.

For fixed u € R*, u + 0, and real ¢, define

@.1) F(4) = ry(8) = SUP.yep leu] ,

2.2) P = p, = inf, ),

and let e, denote the unit vector in the direction of u (u =+ 0).
(F2) rau) = r4(e,) = sup{c[4 N (4 —ce,) # D},

pu=inf{lul[An(4—u)=g).

(F3) 04 is the inner radius of D ,, and also the width of A (i.e., the minimum of
the orthogonal projections of A onto all possible lines in R*). The width of D, is 2p,.

Denote by (u, v) the scalar product of elements u, v € R.
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F4) There exists a unit vector e, € R* such that r,(e,) = p,, and for any other
unit vector e, (e,, e,)r (e,) =< r(e,).
We note that

(2.3) 04 = SUp,,or4(%)
is the diameter of A, 2p ' is the diameter of D,.

Denote by V;(A4) the sum of the (¥) projections of 4 onto the various i-dimen-
sional coordinate subspaces obtained by setting k — i of the coordinates equal
to zero. Then Davenport (1951) showed

(F5) For any convex set A,
2.4 4(A) —v(A)] = 1 + T V(A) = T(4) .
3. Proof of Theorem 1. In view of Lemma 1, we examine g(z) defined at
(1.4) whence it follows that
(3.1) g(u) < A(A)

with equality for all |u| = r(). To obtain a lower bound on g(x), denote the
projection of 4 N (4 — u) = A, onto H* by A4,*, and let m'(u) = m,}(u) be its
(k — 1)-dimensional volume. Then geometrical considerations lead us easily to
the two inequalities

(3.2) lulm(w) < g(u) < [ulm(u) .
We proceed to show that for u such that |u| < r(u),
(3-3) mi(u) = m(u)(1 — [u|/r(u))*=* .

To see this, take some fixed xe A4 n (4 — r(u)e,), the latter being nonempty
since A is closed, and denote by x* its projection onto H*. Define

GA A= x4 (1= ulfr))(A* — x¥) = (ul/r)x* + (1 — [u|/r(@)4* .
Take y* e A,* as the projection of
y = (julfr@)x + (1 — |ul/r(u))z

where z € A, observing that y € 4 by convexity. Now x 4 r(u)e, € 4, and yf is
also the projection of

Y= (lulfr@)(x + r(we,) + (1 — |u|/r(u))z

s0y 4+ ue 4, and hence, ye 4 n (4 — u) and y* € 4,“. Thus 4,* C A,*, which
used in conjunction with (3.4) and the first of the relations

(3.5) m,,(u) = c*'m,(u), r,.) =cr(uw) (c>0).
proves (3.3). Substituting (3.3) into (3.2) and using (3.1) leads to
(3-6)  Eflap|m(a)(1 — lal/ry(a))~] = w(4) < E[|ay|m ()] + H(A)P(R\D)

where for any Borel set L C R*, a, = a if a € L, = 0 otherwise, and P(L)y =
pria e L}. If E|a| < co, then cP(R¥\¢D) — 0 for ¢ — oo, so using (3.5) in (3.6)
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we find that then
El|a|m (a)] = lim sup,_,., w(cA)/c**
= lim inf,_, E[|a, |m (a)(1 — |a|/cr (@) "]
= Ef|ajmy(a)] .
This completes our proof of Theorem 1.

Recalling that m(u)r(u) = m(e,)r(e,), substitution of (3.3) into (3.2) and maxi-
mizing over |u|/r(u) shows that k=1 — k=")*~'r(u)m(u) < g(u), so combining
with (3.1) and the fact that 4(1 — k7%)* = 1 for k = 2 leads to the elementary
geometrical

LEMMA 2. For any u, u' € R* different from 0 and k = 2,
3.7) 4k — &~ rr(wym(u) < A(A) < r(@)m(') .

We conclude this section with an expression for E|a|m(a) as an integral over
the surface F, of 4. Denote by s, the surface measure on F,, so that y(F,) =
S(A). Through every x € F, there is at least one supporting hyperplane of A.
We denote its (outward) normal by n,, noting that it is uniquely defined except
on a p-null set. Without loss we exclude x from this set, and define R, to be
the line {x + cn,| —co < ¢ < oo}, L, the half-line {x — ¢n,|c = 0}, and Q, the
projection of the measure Q onto R, (thus, Q. (B) = Q{y|», n,) € B} for one-
dimensional Borel sets B). Write w,(A4) = w(L,) for displacements having distri-
bution Q, in the one-dimensional space R,. From the proof of Lemma 1,

Wo(4) = (Za Qu(Ly + $)Qu(L," + 5) ds = (2. Q{(n, 1) < 5}Q{(n, n,) > s}ds .

LeMMA 3. Ela|m(a) = {5, w.(4)p(dx).

Proor. For a unit vector u we have m (u) = {,, (u, n,)*p(dx), so

Elajm(a) = {5, E(a, n,)*p(dx) .
E(a, n,)*t = E(n — 7", n,)* = Egp (7' n.) — (0”5 1)) = w,(A)
by Lemma 1, and that completes the proof.
4; Bounds for w(A)/S(A). For any Borel set L + R* define
0, = min (1/k, inf {|u|/r ,(u)|u e L)) .
Then since for any fixed u + 0, g(xe,) is monotonic nondecreasing in x > 0, it
follows by referring to (3.3), (3.7) and (3.2) that
(4.1) g(0) Z 0,(1 — 3, AA) (e L.
Suppose from now on that L — D. Then as a generalization of (3.6) there follow
the inequalities '
(4.2)  Eflag|my(a)(1 — |a|/r(a))*"] + 0,(1 — 0,)*2(A)P(L?)
< W(4) < Efla|my(@)] + A(A)PL) .
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Now it is clear that since 2(4) > 0,

4.3) m(u) < S(A)/2 (u + 0),
so taking ¥’ = e, in (3.7) and recalling (F3) yields
(4.4) AA) < p,S(A)]2 .

To obtain a lower bound on A(A4)/S(A), recall that S(4) = S, Em,(s) where the
v ¢ is uniformly distributed on the unit sphere in R* and S, is the ratio of the
surface area of a unit sphere in R* to the volume of the unit sphere in R*-*.
This identity is known as Cauchy’s surface area formula (cf. Eggleston (1958))
and is a special case of our Lemma 3. So there must exist some #’ for which

(4.5) S(4) = S,ym, '),
and from (3.7) we then have
(4.6) Ak — DA(A) = r,@)ym W) = 0,4 S(A)/Ss -

Combining (4.2), (4.4), and (4.6) gives

THEOREM 2. For any Borel set L C D,
4.7)  E[la[{my(a)/S(AOHL — |a|/ry(x)}]

+ {021 — 6.) 0, /4(k — D)SIP(L)
= w(A4)/S(A4) = Effa|my(@)/S(A)] + (p4/2)P(L) -

Observe that using (F4) and (3.7) with (4.6) yields

LEMMA 4. m,(e,) = S(A)/4(k — 1)S,.

THEOREM 3. Suppose E|a| < co. Then
(4.8) [w(4) — Elalm (a)|/S(4) < f(k, Q; p.)
where for fixed k and Q, f(k, Q,r) — 0 (r — o).

Proor. Using first Lemma 1 and (3.2), and then (4.3), gives for any 4
(4.9) W(A)/S(A)  Elajm,(a)/S(4) < Elalf2 < oo,

so to prove (4.8) we need only to show that (E|a|m,(a) — w(A4))/S(A4) can be
made small. Consider the first term in (4.7): since (1 — x)*' =1 — (k — I)x
for x > 0 and k£ = 2, and the second term in (4.7) is nonnegative, we have

(4.10)  (Elag|my(a) — w(A)/S(4) = (k — DE[{la,[/r(a){mi()/S(D)}]
= Ela,’20, .

Write a, = ag,, for the sphere S(r) of diameter r and center at 0. Then since
|e,| < r and

i = la, — aalr + A < la — @l + Jaljr
setting L = S(p) = S(p,) in the right hand side of (4.10) gives
(4.11) 2E[|a,my(@)] — w(A))[S(4) = Ela — a,i| + Ela|/o* .
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Thus the right-hand side of (4.11) — 0 as p — co. Bounded convergence proves
that Ella — a,|m(@)|/S(A) — 0 (p — o), and coupling this with the convergence
to zero from (4.11) completes our proof.

THEOREM 4. Suppose that 0 < E|a| < co. Then for any finite constants a, > 0,
a, > 1, and any A such that

(4'12) P4 =0, odlos = ay,
there are finite positive constants by, b, such that
(4.13) b, < w(A)[S(A) £ b, .

Proor. The inequality at (4.9) shows that any b, > E|a|/2 satisfies (4.13)
without any restrictions on p, and p,’. For the other inequality, take any u = 0
and let #’ be as at (4.5). Then by (3.7),

m(u) > m(u) > r(u') > 0404
S(A) — Sym(u') — S, A4k — Dr(u) — 4k — 1)S,

For any positive d < d,, reference to (4.7) shows that
(4.13y w(A)[S(A) = dE[|a|[(1 — |a|/r(a))*~"]
+ 0.(1 — 0,)" 10, P(L)[4(k — 1)S,, .
Taking L = (1/2k)D so that (1 — 6,)*' = 1/4k and |a,|(1 — |a|/r(a))*~* =
lel/2,
(4.14) 2w(A)/S(A) = dE|a,| + a,P(L)
where a; = a,/16k(k — 1)S,. Since 0 < E|a|, there exists positive d; such that
7, = P{la| > d;} > 0, and thus
2w(A)/S(A) = dd, P{la| > d,, « € (1/2k)D} + a;P{|a| > d,, a ¢ (1/2k)D}
= m, min (dd,, a;) > 0.

d,, say.

Equation (4.14) shows immediately the result

CoroLLARY 4.1. If E|a| = co, then w(A4,)[S(A,) — oo as n— oo for any se-
quence {A,} satisfying (4.12) and having o, —> oco.

The following examples show that the condition p,’ < a,p, (or some similar
constraint on the “elongatedness” of A) is needed for (4.13) to hold.

ExampLE 1. Take 4, € R* to be the rectangle with sides of lengths 1 and n,
parallel to the axes, and let y = (1, 0) with probability .5, = (—1, 0) with
probability .5. Then |«| = 0 or 2 with probability .5 each, g, («) = 0 or 2 with
probability .5 each, and w(4,) = 1 (all n), whereas S(4,) = 2(n + 1).

ExampLE 2. Take 4, € R* to be the rectangle with sides of length n? and n,
parallel to the axes, and let » = (Y, 0) where Y is a Cauchy distributed random
variable with density 2/z(1 + 4)*). Then « has a standard Cauchy distribution,
94,(a) = nmin (n*, |a|), and zw(4,) = 2r® arctan (1/n%) + nlog (1 + n*), so that
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w(4,)[S(4,) — 0 and p, — oo, but, (cf. (4.12)) o) /o, — co. If alternatively
A, is a rectangle n X n® rather than n* X n, then w(4,)/S(4,) — oo.

It may be possible to replace the second condition at (4.12) by others. For
example, the conclusion (4.13) is true if P{(a, e,) == 0} > 0 for every unit vector
u. Alternatively, instead of conditions on &« we may average w(A) so as to make
it not merely translation invariant but also rotation invariant. Define

(4.15) W(A) = Ew(T A)

where T' is uniformly distributed over the group 77, of orthogonal transforma-
tions in R*.

THEOREM 5. If 0 < El|a| < oo, given any finite constant a, > 0 and A such that
04 = a,, there exist constants b, and b, such that

(416) 0 < by < W(A)[S(A) = b, < 0.
OuTLINE OF PrROOF. The existence of b, follows as in Theorem 4.

Consider e, as at (F4). By Lemma 2, (3.7) and (F4),

m(u) > m(u) > r(e,) > 2de,, e,)*
S(A4) — 4k — 1)S,m(e,) — 16(k — 1)3S,r(u) —

where 1/d, = 32(k — 1)25, and (e,, e,)* = max (0, (¢,, ¢,)). Proceeding much as
in Theorem 4, with L = (1/2k)D,

(4.17) w(A)/S(A) = dy E[|a,|(e,, €,)*] + a; P(L°) .

Since for any I'eZ), 0, =0r4=rral'e)) =rrg(€r), |ar|(ere, €)™ =
|[(T~'a),|(ess €r-1,)*, and P((I'L)) = P{I'"'a € L°}, the expression for Ew(I'A)
obtained from (4.17) can be bounded below.

5. Behaviour of w(A4)/S(A) when E|a| = co. We consider in this section the
behaviour of w(4,) for sequences {4,} of sets for which p, — co. In the last
section, we have seen (Theorem 4 and Example 2) that both w(4,) = 0(S(4,))
and S(4,) = O(w(4,)) are possible. What is always true, without any assump-
tions on either a or {4,}, is that

5.1) w(4,)/4(4,) — 0 for o, — oco.
To see this, refer to (4.2) and use (3.7), so that
WAYA(A) < 3,1 — 3, PLe) + Elag|j4(k — o, .
Take 4 = 4,, L = S(¢, 0,,), Where e, — 0 but ¢, p, — oo, and (5.1) follows.

THEOREM 6. Let {A,} be a sequence of sets for which p, = ',o 4, — o0 and
sup, 0} /0, < oo. Then for i (0, 1),

(5.2) M, = Elaf’ < oo
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implies
(5.3) sup, w(4,)/0,=S(4,) < o .
Conversely, when (5.3) holds, M, < oo forany 0 < r < 9.
COROLLARY 6.1.
sup {0 = 1[M; < oo} = sup{d < 1|sup, w(4,)/p,'*S(4,) < oo} .

Proor. The corollary is little more than a restatement of the theorem, which
will be proved from the observations that, as has been shown in the proof of
Theorem 4, there exist positive constants d and a such that

(5.4) dE|a,| + ap, P(L°) < 2w(A)/S(A) for = (1)2k)D, Ae{A,},
and that for general L and 4,

(5.5) 2w(A)[S(A) < Elay| + p, P(L) .

Writing a, = «a if |a| < r, = 0 otherwise, observe that

(5.6a) Ela,| £ r'?E|e,|’ < r' M, ,

(5.6b) rP{la| > r} £ P Ela — a,|° < M, .

Applying (5.6) to (5.5) with L a sphere of radius o, and 4 = 4, shows that (5.2)
implies (5.3). For the partial converse, using the boundedness condition o/, /o,
in (5.4) shows that when (5.3) holds, p,°P{|a| > p,} is uniformly bounded in =,
hence x7'P{|la| > x} is integrable on (0, c0) for 0 < y < d, s0 M, < co as
asserted.

6. Bounds for Var N(A4). Our work to date has answered a modified version
of Cox’s problem to which we now return. Theorem 7 is an analogue of Theo-
rem 4, and gives affirmative answers to (i) and (under certain conditions) to (ii).
Example 3 shows that it is not possible to give any affirmative answer to (iii) in
general.

THEOREM 7. (a) If E|a| < oo, then Var N(A)/S(A) is bounded above.
(b) If /o4 < a, then for some positive constants ¢, = ¢,(a,, k) and By,
(6.1) Var N(4)/S(4) 2 c[Elayul + oP{lal > p/2k} — By
where p = p, and a, = a if |a| < r, = 0 otherwise.
Proor. Lemma 1 with (F5) yields
|w(A) — Var N(A)|
= |EA(A — 7) 0 (A = ")) — Ev((4 — 7') N (4" — 7))

(6.2) < |ENA — 7) — Ev(4 — 7')
+ |EA((4 — 7') 0 (4 — 7")) — Bv((4 — ') n (4 — 7"))
< 2T(A) .

Denote the largest of the (¥) components of V,(4) by U,. Observe that each
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component of V;(A4) (1 < i < k — 2) is the projection of a component of V,,,(A),
so that by using Lemma 2,

(6-3) Vi(4) = ()4iU;n/os < {4k — 4)/o} U,
We assert that
6.4) Vii(A) £ k1S(A4))2
to verify this assertion, we use the Holder inequality in
(6.5)  S(A) = Vp, 14(dx) = §p, [Dhes A@x)] = §p, k™ Thoy A(d)
= 2k~V,_(A).
Thus
(6.6) T(4) — 1 < (D (4, — Do}~ + k22)S(4)

and so T(A4)/S(A) has an upper bound B, depending only on the dimensionality
k. Combining this observation with (4.9) proves part (a) of the theorem.

To prove (b), we use (4.13)" with L = S(p,/2k) = S(0/2k) and the inequality
log(1 —x) = —x/(1 —x) (0 < x < 1)togive

W(A)|S(A) = d, e E|a, | + Plla| > pf2k}/{2ka,et - 4(k — 1)S,} .

Now use (6.6) again and (6.1) follows.
Observe that the bound in (6.1) need not be positive. However, setting
2B,Jc, = ¢, in (6.1) yields the

CorROLLARY 7.1. If p,'[0o, < a,, then there exists a positive constant ¢, = C,(ay, k)
such that when Ela| > ¢,,

liminf, __ Var N(4)/S(4) > 0.

The following examples illustrate the necessity of our conditions. Example
3, in addition to showing that (iii) need not hold, also shows that if we wish
(ii) to be satisfied, then E|a| cannot be very small. Example 4 shows that the
constant ¢, in Corollary 7.1 must depend on a,. Example 5 shows that the re-
quirement that E|a| be large without the requirement that p, also be large is
not enough to give a positive lower bound for Var N(4)/S(4).

ExAMPLE 3. Let A C R? be the square with center at the origin and vertices
at (+1, £1), and let » = (0.1, +0.1) with probability 0.25 each. Then
Var N(cA) = 2n — 0.25 whenever |n — ¢| < 0.1 for some positive integer n, = 0
otherwise.

ExAMPLE 4. Let 4 C R* be the parallelogram with vertices (0, %), (1], %),
(2nj,n + %), (nj,n + %), and let » = +(4j, ) with probability .5 each. For
large j, E|a| is large whereas Var N(A4) = 0 for every n and j.

ExaMPLE 5. Take any A, and let » be such that P{p =0} =1 —p < 1.
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Observe that we can simultaneously have E|a| arbitrarily large and p arbitrarily
small. It follows from (1.5) that

Var N(4) < p2 — p)sup,c k(A + x),

which when coupled with (2.4), (6.6), and (4.4), shows that Var N(A4)/S(4) may
be made arbitrarily small by choice of p.
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