ON THE MINIMUM NUMBER OF FIXED LENGTH SEQUENCES WITH FIXED TOTAL PROBABILITY

By John C. Kieffer

University of Missouri at Rolla

Let X_1, X_2, \cdots be a stationary sequence of *B*-valued random variables, where *B* is a finite set. For each positive integer *n*, and number λ such that $0 < \lambda < 1$, let $N(n, \lambda)$ be the cardinality of the smallest set $E \subset B^n$ such that $P[(X_1, X_2, \cdots, X_n) \in E] > 1 - \lambda$. An example is given to show that $\lim_{n \to \infty} n^{-1} \log N(n, \lambda)$ may not exist for some λ , thereby settling in the negative a conjecture of Parthasarathy.

Let $B=\{0,1\}$. Let Ω be the space of all sequences (x_1,x_2,\cdots) from B. Let X_1,X_2,\cdots be the coordinate mappings from Ω to B; that is $X_i(x_1,x_2,\cdots)=x_i,$ $i=1,2,\cdots$. Let $\mathscr F$ be the smallest sigma-field of subsets of Ω with respect to which X_1,X_2,\cdots are measurable. For each n, let $\mathscr F_n$ be the sub-sigmafield of $\mathscr F$ generated by X_1,X_2,\cdots,X_n . Let $T:\Omega\to\Omega$ be the measurable map which is the one-sided shift on Ω ; that is, $T(x_1,x_2,\cdots)=(x_2,x_3,\cdots)$. Let $\mathscr F$ be the collection of all probability measures P on $\mathscr F$ which are stationary with respect to T and such that $P[(X_1,X_2,\cdots,X_n)=b]>0$ for every block $b\in B^n$, n=1, $2,\cdots$.

If $P \in \mathscr{T}$, n is a positive integer, and $0 < \lambda < 1$, let $N(n, \lambda, P)$ be the minimum cardinality of those sets $E \subset B^n$ such that $P[(X_1, X_2, \dots, X_n) \in E] > 1 - \lambda$. Parthasarathy [2] has shown that for each $P \in \mathscr{T}$, $\lim_{n \to \infty} n^{-1} \log N(n, \lambda, P)$ exists except for at most a countable number of λ , $0 < \lambda < 1$. It has been conjectured ([2], page 81) that if $P \in \mathscr{T}$, then $\lim_{n \to \infty} n^{-1} \log N(n, \lambda, P)$ exists for every λ , $0 < \lambda < 1$. It is the purpose of this paper to provide a counterexample to this conjecture. We construct after Lemma 3 a $P \in \mathscr{T}$ such that $\lim_{n \to \infty} n^{-1} \log N(n, \frac{1}{2}, P)$ does not exist.

If $P \in \mathscr{S}$, let $P(X_1, X_2, \dots, X_n)$ be the random variable with domain Ω such that $P(X_1, X_2, \dots, X_n)(\omega) = P[X_1 = X_1(\omega), X_2 = X_2(\omega), \dots, X_n = X_n(\omega)], \ \omega \in \Omega$. In [2] the following strong version of the Shannon-McMillan theorem is developed: There exists a T-invariant measurable function $h: \Omega \to [0, 1]$ such that $\lim_{n\to\infty} -n^{-1}\log P(X_1, X_2, \dots, X_n) = h$ in $L^1(P)$ for every $P \in \mathscr{S}$, where the logarithm is to base 2. If $P \in \mathscr{S}$, let P^* be the Borel probability measure on [0, 1] which is the distribution of h relative to P; that is, $P^*(E) = P[h \in E]$, E a Borel set in [0, 1]. The mapping $P \to P^*$ is linear on the convex set \mathscr{S} . If $0 \le p \le 1$, let $\delta(p)$ be the Borel probability measure on [0, 1] with support $\{p\}$. If $P \in \mathscr{S}$, let $H(P) = \int h \, dP$, the entropy of P. If P is ergodic with respect to the shift T, then $P^* = \delta(H(P))$.

Received December 26, 1974.

AMS 1970 subject classifications. Primary 60B05, 28A65, 28A35; Secondary 94A15.

Key words and phrases. Stationary measures, Shannon-McMillan theorem, shift transformation on a product space.

LEMMA 1. If $P \in \mathcal{P}$, and $0 < H \le H(P)$, and n is a positive integer, there exists $Q \in \mathcal{P}$ such that P = Q over \mathcal{F}_n and $Q^* = \delta(H)$.

PROOF. A probability measure Q on \mathcal{F} , stationary and ergodic with respect to T, exists such that P = Q over \mathcal{F}_n and H(Q) = H ([1], Theorem 4). An examination of the proof of Theorem 4 of [1] will show in addition that the Q constructed there is in \mathcal{F} . Since Q is ergodic, $Q^* = \delta(H(Q))$.

For the following lemma, see [2], Theorem 3.1.

LEMMA 2. If $0 < \lambda < 1$ and $P \in \mathcal{P}$, then

$$\lim \inf_{n\to\infty} n^{-1} \log N(n, \lambda, P) \ge \sup \{\alpha : P^*[0, \alpha] < 1 - \lambda\},\,$$

and

$$\limsup_{n\to\infty} n^{-1}\log N(n,\lambda,P) \leq \inf \left\{\alpha: P^*[0,\alpha] > 1-\lambda\right\}.$$

LEMMA 3. Let the numbers p_1 , p_2 , ε satisfy

(3a)
$$\frac{1}{4} < p_1 < \frac{3}{8}$$
; $\frac{3}{4} < p_2 < 1$; $0 < \varepsilon < \frac{1}{6}$;

(3b)
$$\frac{1}{4} < (1-2\varepsilon)p_1 + \varepsilon < \frac{3}{8}; \frac{3}{4} < (1-6\varepsilon)p_2 + 3\varepsilon < 1.$$

Let $P_1, P_2 \in \mathscr{S}$ satisfy $(P_i)^* = \delta(p_i)$, i = 1, 2. Let $P = (\frac{1}{2} + \varepsilon)P_1 + (\frac{1}{2} - \varepsilon)P_2$. Then for any positive integer n, there exist integers $n_2 > n_1 > n$, measures $P_1', P_2' \in \mathscr{S}$, and numbers p_1', p_2', ε' such that:

- (3c) p_1' , p_2' , ε' satisfy (3a) and (3b) with p_1 , p_2 , ε replaced by p_1' , p_2' , ε' ;
- (3d) $(P_i)^* = \delta(p_i), i = 1, 2;$
- (3e) If $P' = (\frac{1}{2} + \varepsilon')P_1' + (\frac{1}{2} \varepsilon')P_2'$, then P = P' over \mathscr{F}_n , $n_1^{-1} \log N(n_1, \frac{1}{2}, P') < \frac{3}{8}$, $n_2^{-1} \log N(n_2, \frac{1}{2}, P') > \frac{2}{5}$.

PROOF. By Lemma 2, since $P^* = (\frac{1}{2} + \varepsilon)\delta(p_1) + (\frac{1}{2} - \varepsilon)\delta(p_2)$ and $p_1 < \frac{3}{8}$, there exists $n_1 > n$ such that $n_1^{-1} \log N(n_1, \frac{1}{2}, P) < \frac{3}{8}$. Now $P = (\frac{1}{2} - \varepsilon)P_1 + 4\varepsilon(\frac{1}{2}P_1 + \frac{1}{2})$ $\frac{1}{2}P_2$) + $(\frac{1}{2} - 3\varepsilon)P_2$. Since $H(\frac{1}{2}P_1 + \frac{1}{2}P_2) = \frac{1}{2}p_1 + \frac{1}{2}p_2 > \frac{1}{2}$ by (3a), there exists by Lemma 1 a measure $P_3 \in \mathscr{S}$ such that $P_3 = \frac{1}{2}P_1 + \frac{1}{2}P_2$ over \mathscr{F}_n , and $(P_3)^* = \delta(\frac{1}{2})$. Let $P_4 = (\frac{1}{2} - \varepsilon)P_1 + 4\varepsilon P_3 + (\frac{1}{2} - 3\varepsilon)P_2$. Then $P_4 = P$ over \mathscr{F}_{n_1} . By Lemma 2, there exists $n_2 > n_1$ such that $n_2^{-1} \log N(n_2, \frac{1}{2}, P_4) > \frac{2}{5}$. Let $p_1' = (\frac{1}{2} - \epsilon)(\frac{1}{2} + \epsilon)$ $\varepsilon')^{-1}p_1 + (\varepsilon + \varepsilon')(\frac{1}{2} + \varepsilon')^{-\frac{1}{2}} \text{ and } p_2' = (3\varepsilon - \varepsilon')(\frac{1}{2} - \varepsilon')^{-\frac{1}{2}} + (\frac{1}{2} - 3\varepsilon)(\frac{1}{2} - \varepsilon')^{-1}p_2,$ where the number ε' is chosen so that $0 < \varepsilon' < \min(\frac{1}{6}, 3\varepsilon), \frac{1}{4} < p_1' < \frac{3}{8}, \frac{3}{4} <$ $p_{2}' < 1, \frac{1}{4} < (1 - 2\varepsilon')p_{1}' + \varepsilon' < \frac{3}{8}, \frac{3}{4} < 3\varepsilon' + (\frac{1}{2} - 3\varepsilon')2p_{2}' < 1.$ It is possible to choose such an ε' because of condition (b). Thus p_1' , p_2' , ε' satisfy (a) and (b) with p_1 , p_2 , ε replaced by p_1' , p_2' , ε' . Now $P_4 = (\frac{1}{2} + \varepsilon')Q_1 + (\frac{1}{2} - \varepsilon')Q_2$, where $Q_1=(rac{1}{2}-arepsilon)(rac{1}{2}+arepsilon')^{-1}P_1+(arepsilon+arepsilon')(rac{1}{2}+arepsilon')^{-1}P_3$ and $Q_2=(3arepsilon-arepsilon')(rac{1}{2}-arepsilon')^{-1}P_3+$ $(\frac{1}{2}-3\varepsilon)(\frac{1}{2}-\varepsilon')^{-1}P_2$. For $i=1,2,Q_i\in\mathscr{P}$ and $H(Q_i)=p_i'>0$; thus by Lemma 1 there exist P_i' , $P_i' \in \mathscr{S}$ such that $P_i' = Q_i$ over \mathscr{F}_{n_2} and $(P_i')^* = \delta(p_i')$, i = 1, 2. Let $P' = (\frac{1}{2} + \varepsilon')P_1' + (\frac{1}{2} - \varepsilon')P_2'$. Then $P' = P_4$ over \mathscr{F}_{n_2} , so $N(n_2, \frac{1}{2}, P') =$ $N(n_2, \frac{1}{2}, P_4)$. Also $P' = P_4 = P$ over \mathscr{F}_{n_1} so $N(n_1, \frac{1}{2}, P') = N(n_1, \frac{1}{2}, P)$. Thus conditions (c)—(e) are satisfied.

THE COUNTEREXAMPLE. We can apply Lemma 3 to construct a sequence $\{P_i\}_{i=1}^{\infty}$ in $\mathscr P$ and a strictly increasing sequence $\{n_i\}_{i=1}^{\infty}$ of positive integers such that

 $\begin{array}{l} P_{i+1} = P_i \text{ over } \mathscr{F}_{n_{2i}}, \ (n_{2i-1})^{-1} \log N(n_{2i-1}, \frac{1}{2}, P_i) < \frac{3}{8}, \ (n_{2i})^{-1} \log N(n_{2i}, \frac{1}{2}, P_i) > \frac{2}{5}, \\ i = 1, 2, \cdots. \text{ It is easy to see, using the Kolmogorov extension theorem, that there exists a unique } P \in \mathscr{P} \text{ such that } P = P_i \text{ over } \mathscr{F}_{n_{2i}}, \ i = 1, 2, \cdots. \text{ Thus for each } i, \ N(n_{2i-1}, \frac{1}{2}, P) = N(n_{2i-1}, \frac{1}{2}, P_i) \text{ and } N(n_{2i}, \frac{1}{2}, P) = N(n_{2i}, \frac{1}{2}, P_i). \text{ Consequently, } \lim_{n \to \infty} n^{-1} \log N(n, \frac{1}{2}, P) \text{ does not exist.} \end{array}$

REFERENCES

- [1] Kieffer, J. C. (1974). On the approximation of stationary measures by periodic and ergodic measures. *Ann. Probability* 2 530-534.
- [2] Parthasarathy, K. R. (1963). Effective entropy rate and transmission through channels with additive random noise. Sankhyā Ser. A 25 75-84.

DEPARTMENT OF MATHEMATICS
326 MATHEMATICS-COMPUTER SCIENCE BUILDING
UNIVERSITY OF MISSOURI
ROLLA, MISSOURI 65401