RECURRENCE OF STATIONARY SEQUENCES¹

By Donald Geman, Joseph Horowitz, and Joel Zinn

University of Massachusetts

Let $\{X_n\}_{-\infty}^{+\infty}$ be a stationary sequence of random variables, with common distribution $\pi(dx)$. If the initial value X_0 is repeated with probability one (e.g. when $\pi(dx)$ is discrete), then the "shifted" sequence $\{X_{n+N}\}_{-\infty}^{\infty}$ is also stationary where $N=N(\omega)$ is the first n>0 for which $X_n(\omega)=X_0(\omega)$. Surprisingly, this may even occur when $\pi(dx)$ is continuous and $\{X_n\}$ is ergodic (although not when $\{X_n\}$ is ϕ -mixing). For Markov sequences, we also give other conditions which prohibit the a.s. recurrence of X_0 .

For recurrent sequences, we show that when X_0 is "conditionally discrete," the invariant σ -field for the $\{X_{n+N}\}$ process coincides (up to null sets) with $X_0 \vee \mathscr{L}$, the σ -field generated by X_0 and the invariant sets for $\{X_n\}$. Finally, we find an expression for $E(N|X_0 \vee \mathscr{L})$ which reduces to Kac's recurrence formula when X_0 is an indicator function.

0. Introduction. Suppose $\{X_n\}$, $u \in \mathbb{Z}$ (the integers), is a stationary random sequence, and let N be the first time $n \ge 1$ that $X_n = X_0$ or $N = \infty$ if there is no such n. If the sequence is independent and identically distributed (i.i.d.), then it is easy to see that the finiteness of N is completely determined by the common distribution π as follows: if $X_0 = x$ is an atom of π , then $N < \infty$; otherwise $N = \infty$ (all with the exception of a set of probability zero).

The purpose of this paper is to discuss the return time N for an arbitrary stationary sequence; specifically we allow π to be continuous. We begin with some more precise definitions. Let X be a random variable on a probability space (Ω, \mathcal{F}, P) , and $T: \Omega \to \Omega$ an automorphism, i.e. a bijective, bimeasurable, measure-preserving transformation. Our primary interest is in real-valued random variables, but we will allow X to take its values in a measurable state space (E, \mathcal{E}) , with \mathcal{E} separable (see Example 1 below). The distribution of X is denoted by $\pi: \pi(\Gamma) = P(X \in \Gamma)$, $\Gamma \in \mathcal{E}$. Now, for $n \in \mathbb{Z}$, let $X_n = X \circ T^n$ ($T^0 = \text{identity}$), noting that every stationary sequence may be realized in this manner. The return time N is defined by

(1)
$$N(\omega) = \min \{ n \ge 1 : X_n(\omega) = X_0(\omega) \}$$

with the usual convention that $N(\omega) = \infty$ if the set in (1) is empty. The transformation $T^N: \Omega \to \Omega$ is defined as $T^N(\omega) = T^{N(\omega)}(\omega)$ when $N(\omega) < \infty$, $T^N(\omega) = \omega$ otherwise. It follows from Neveu [6] (also see [3]) that, when $N < \infty$ a.s., T^N preserves P-measure. We note that the discreteness of π is sufficient to yield $N < \infty$ a.s., by the ergodic theorem, but it is not necessary.

Key words and phrases. Stationary sequence, recurrence, flow, ϕ -mixing, invariant set.

Received December 6, 1974.

¹ Geman and Horowitz are currently supported in part by NSF Grant GP-34485 A2. AMS 1970 subject classifications. Primary 60G10, 28A65.

Similar questions for (dependent) stationary sequences with π discrete were first studied by Kac [4] and by Ryll-Nardzewski [9] (for point processes) whereas Breiman [1] considers the first time the sequence returns to a Borel set B of positive π -measure given that it started in B—this amounts to taking the sequence $I_B(X_n)$.

When $N < \infty$ a.s. and T is ergodic, it is known [3] that

(2)
$$E(N | X) = 1/\pi(\{X\}).$$

An immediate consequence is that π is discrete iff $E(N|X) < \infty$ a.s.; another is Kac's formula for the mean return time to a set of positive measure. Next, since T^N preserves measure, one may study its ergodic structure. Because X itself is a T^N -invariant function, T^N is never ergodic, except in the trivial case when X is constant. Indeed, when $X(\text{or }\pi)$ is discrete, and T is ergodic, the T^N -invariant σ -field in Ω , denoted \mathscr{M}_N , coincides (up to null sets) with $\sigma(X)$, the σ -field generated by X.

In view of formula (2), the question was raised in [3] of whether it was even possible to have T ergodic, N a.s. finite, and π continuous. We begin Section 1 with some examples answering this affirmatively, and then show that for processes satisfying certain mixing conditions, and for various types of Markov processes, it is impossible to have N a.s. finite and π continuous. Section 2 contains some generalizations of the results discussed above. Specifically, equation (2) is extended to the case in which T need not be ergodic nor π discrete. Finally, we discuss the structure of \mathscr{N}_N with no restriction on T; for stationary Markov processes, there are no further requirements on X either, but in general we must still assume that X is "conditionally discrete" as explained below.

1. Recurrence, mixing, and the Markov case. First, we give two examples which show the possibility of having T ergodic, $N < \infty$ a.s., and π continuous. If the ergodicity requirement is dropped, it is trivial to construct examples, e.g., using a rational rotation on the circle; on the other hand, if the σ -field $\mathscr E$ in the state space is not separable, one may easily give pathological examples satisfying all three conditions. (We would like to thank John Walsh for the remark on separability and for a conversation concerning Theorem 5(b) below.) The state space in our example will be the unit circle with its usual Borel σ -field. Notice that (2) necessitates $E(N \mid X) = \infty$ a.s.

EXAMPLE 1. Let X_0 be uniformly distributed on the unit circle, and θ be a number such that $\theta/2\pi$ is irrational. Next let $\{Y_n\}$ be an i.i.d. sequence with $P\{Y_n=+\theta\}=P\{Y_n=-\theta\}=\frac{1}{2}, \text{ and } S_n=Y_1+Y_2+\cdots+Y_n(S_0\equiv 0)$ the corresponding random walk. Now define $X_n=X_0e^{iS_n}$ for $n\geq 0$. This is a stationary Markov process having transition function $P(e^{ix},\Gamma)=\frac{1}{2}I_{\Gamma}(e^{i(x+\theta)})+\frac{1}{2}I_{\Gamma}(e^{i(x-\theta)})$, where Γ is a circular Borel set. Using the customary function space representation, one may construct an automorphism T as described in Section 0, but we shall not pursue this point. Clearly π is continuous and, because the

random walk S_n is recurrent, N is a.s. finite. We defer the proof of ergodicity for the moment—see below.

Example 2. Let $\Omega = \{0, 1, 2\}^{\mathbb{N}}$, where $\mathbb{N} = \{1, 2, 3, \cdots\}$ and let P be the product measure on Ω , each coordinate measure being uniform over $\{0, 1, 2\}$. Let $\Omega_0 \subseteq \Omega$ be the set of sequences which contain infinitely many zeros, ones and twos; clearly $P(\Omega_0) = 1$. Define T on Ω_0 as follows:

$$T(\omega_1, \omega_2, \dots, \omega_k, \omega_{k+1}, \dots) = (0, 0, \dots, 0, \omega_k + 1, \omega_{k+1}, \dots),$$

where k is the first integer for which $\omega_k \neq 2$. The transformation T (called the "adding machine" and well-known to ergodic theorists) is measure-preserving and ergodic.

Finally, let $X(\omega) = \sum_{k=1}^{\infty} \delta(0, \omega_k) 2^{-k}$, where δ is the Kronecker symbol. This clearly has a continuous distribution and one checks that $N < \infty$ on Ω_0 .

(We learned of this example through an associate editor of this Annals.)

We will now show that, in various situations, it is impossible to have N a.s. finite and π continuous. Recall that a stationary sequence $\{X_n\}$ is ϕ -mixing if, for $A \in \mathscr{F}_n$ and $B \in \mathscr{F}'_{n+k}$,

$$|P(B \cap A) - P(A)P(B)| \le \phi(k)P(A)$$

where $\phi(k) \to 0$ as $k \to \infty$; here \mathscr{F}_n is the σ -field generated by all X_m , $m \le n$, and \mathscr{F}'_{n+k} is that generated by all X_m , $m \ge n + k + 1$.

(3) THEOREM. If $\{X_n\}$ is ϕ -mixing and X_0 has a continuous distribution, then $P\{N < \infty\} < 1$.

PROOF. One can check that there is no loss of generality in assuming X_0 is uniformly distributed on [0, 1]. Let

$$A_k = \{X_n = X_0 \text{ for some } n, n_k < n \le n_{k+1} \},$$

where the sequence n_k is chosen so that $\sum \phi(n_k) < \infty$. If $P(N < \infty) = 1$, it follows (from the fact that T^N preserves measure) that $P(A_k \text{ i.o.}) = 1$ ("i.o." means "infinitely often").

Let $\Gamma_i = [(i-1)/m, i/m), 1 \le i \le m$. We have, for m fixed,

$$\begin{split} P(A_k) & \leq \sum_{j=1}^m P\{X_0 \in \Gamma_j, \ X_n \in \Gamma_j \ \text{ for some } \ n, \ n_k < n \leq n_{k+1}\} \\ & \leq \sum_{j=1}^m \left[P\{X_0 \in \Gamma_j\} P\{X_n \in \Gamma_j \ \text{ for some } \ n, \ n_k < n \leq n_{k+1}\} \right. \\ & + \phi(n_k) P\{X_0 \in \Gamma_j\} \right] \\ & \leq \frac{1}{m} \sum_{j=1}^m \frac{n_{k+1} - n_k}{m} + \phi(n_k) = \frac{n_{k+1} - n_k}{m} + \phi(n_k) \; . \end{split}$$

Letting $m \to \infty$, we find $P(A_k) \le \phi(n_k)$, hence (Borel-Cantelli) $P(A_k \text{ i.o.}) = 0$, which contradicts $P(N < \infty) = 1$. \square

In light of (3) it is interesting that the process of Example 1 satisfies the following mixing condition:

(4)
$$\sup_{A \in \mathscr{T}'_n, B \in \mathscr{T}} |P(A \cap B) - P(A)P(B)| \to 0 \quad \text{as } n \to \infty.$$

It is shown in [7] that (4) is equivalent to the triviality of \mathcal{T} , the tail σ -field of the process, i.e. P(A) = 0 or 1 for every $A \in \mathcal{T}$, and so implies ergodicity. We will prove that \mathcal{T} is trivial in the appendix to Section 1.

If $\{X_n\}$ is an i.i.d. sequence with a continuous common distribution, the return time N is a.s. infinite. In contrast, a ϕ -mixing sequence may have $N<\infty$ on a set of probability arbitrarily close to 1. For example, let $0<\alpha<1$, and let μ be a continuous distribution on [0,1]. Define a transition function of [0,1] by $P(x,\Gamma)=\alpha I_{\Gamma}(x)+(1-\alpha)\mu(\Gamma)$. The measure μ is invariant for this transition function, and one may verify that the corresponding stationary Markov process $\{X_n\}$ is ϕ -mixing, with $\phi(k)=\alpha^k$, and $P\{N<\infty\}=P\{N=1\}=\alpha$.

Suppose now that $\{X_n\}$ is a stationary Markov process with state space (E, \mathcal{E}) . We denote the transition function by $P(x, \Gamma)$, $x \in E$, $\Gamma \in \mathcal{E}$, and the initial (stationary) distribution by π . Our terminology for Markov process follows [7].

- (5) THEOREM. Under any of the conditions below, if $P_{\pi}(N < \infty) = 1$, then π is purely discrete:
 - (a) the Harris recurrence condition;
 - (b) the state space is indecomposable;
 - (c) the process is π -nonsingular [7];
 - (d) $|P^n(x, \Gamma) \pi(\Gamma)| \leq a_n$, where $\sum a_n < \infty$.

PROOF. (a) First note that $P_{\pi}(N < \infty) = 1$ implies $P_{\pi}(X_n = X_0 \text{ i.o.}) = 1$ which implies $P_{\pi}\{X_n = x \text{ i.o.}\} = 1$ for π -a.e. x. Fix such an x, and define $f(y) = P_y\{X_n = x \text{ i.o.}\}$. This function is harmonic, hence ([7], page 22) constant by Harris recurrence. Since f(x) = 1, we have $f(y) \equiv 1$, and so conclude $P_{\pi}\{X_n = x \text{ i.o.}\} = 1$ for π -a.e. x. But then $\infty = \sum_{n=1}^{\infty} P_{\pi}\{X_n = x\} = \sum_{n=1}^{\infty} \pi(\{x\})$ for such x, and so $\pi(\{x\}) > 0$ for π -a.e. x, i.e. π is purely discrete.

- (b) As in (a), $P_x\{X_n = x \text{ i.o.}\} = 1 \pi\text{-a.e.}$ For any such x, $P_y\{X_n = x \text{ for some } n \ge 1\} > 0$ for every $y \in E$ by ([7], page 36), and so $P_x\{X_n = x \text{ i.o.}\} > 0$. One now shows $\pi(\{x\}) > 0$ as in the proof of (a).
- (c) Fix x and let f(y) be as in the proof of (a), so f(x) = 1. By nonsingularity there is an n such that $P^n(x, dy)$ is not purely singular. Since $f(x) = P^n f(x) = 1$, it follows that f(y) > 0 on a set of positive π -measure, whence $P_{\pi}\{X_n = x \text{ i.o.}\} > 0$. The proof is now completed as above. Notice that we only need the nonsingularity condition to hold for almost every x (cf. [7], page 42).
 - (d) Let Δ be the complement of the set of atoms of π . Then

$$\begin{split} P_{\pi}(X_n = X_0, \, X_0 \in \Delta) &= \int_{\Delta} P_x \{X_n = x\} \pi(dx) \\ &= \int_{\Delta} P^n(x, \, \{x\}) \pi(dx) \\ &= \int_{\Delta} \left(\pi(\{x\}) + a_n \right) \pi(dx) \leq a_n \;. \end{split}$$

By Borel-Cantelli, $P_{\pi}\{X_n=X_0 \text{ i.o., } X_0\in\Delta\}=0; \text{ if } P_{\pi}\{N<\infty\}=1, \text{ we must have } P_{\pi}\{X_0\in\Delta\}=\pi(\Delta)=0.$

From (5) it follows that the Markov process in Example 1 cannot satisfy

Harris recurrence, indecomposability, or the exponential convergence condition. One verifies the first two of these directly by considering the orbits $\{e^{i(x+k\theta)}: k \in \mathbb{Z}\}$. The last is more difficult in view of the mixing condition (4).

Appendix. Let $\{X_n\}$, $n \ge 0$, be a Markov process with state space (E, \mathcal{E}) , initial distribution π , and transition function $P(x, \Gamma)$. The usual operator on bounded, \mathcal{E} -measurable functions f is given by

$$Pf(x) = \int P(x, dy)f(y)$$
.

A sequence of functions g_n is called *space-time harmonic* if $Pg_{n+1} = g_n$ for every n. An easy adaptation of an argument in [7] proves: a necessary and sufficient condition for the tail σ -field $\mathcal T$ to be trivial relative to P_π is that every uniformly bounded space-time harmonic sequence $g_n(x)$ be constant π -a.e., i.e. for some constant c, $g_n(x) = c$ for every n and π -a.e. x.

Suppose $g_n(e^{ix})$ is a uniformly bounded space-time harmonic sequence for the process $\{X_n\}$ of Example 1; the defining relation becomes

(6)
$$g_n(e^{ix}) = \frac{1}{2} [g_{n+1}(e^{i(x+\theta)}) + g_{n+1}(e^{i(x-\theta)})].$$

Write c_m^n for the *m*th Fourier coefficient of g_n . Expanding (6) in Fourier series and equating coefficients (all of which is easily justified) we find $c_m^n = c_m^{n+1} \cos{(m\theta)}$ or $c_m^n = c_m/(\cos{(m\theta)})^{n-1}$, where $c_m = c_m^1$. Note, since $\theta/2\pi$ is irrational, $0 < |\cos{(m\theta)}| < 1$, for all $m \neq 0$. Thus, if $c_m \neq 0$, we have $|c_m^n| \to \infty$ $(n \to \infty)$.

Now g_n is real-valued, so $c_{-m}^n = c_m^n$. Let M > 0 be the first integer for which $c_m \neq 0$, if one exists. The Mth partial sum of the Fourier series for g_n is then $c_0 + 2c_M \cos{(Mx)}/(\cos{(M\theta)})^{n-1}$, and the Cesaro average of the first M+1 partial sums equals $c_0 + 2c_M \cos{(Mx)}/(M+1)(\cos{(M\theta)})^{m-1}$. It is well known that if a function is bounded in modulus by a constant, each of the corresponding Cesaro averages is bounded by the same constant. This is clearly impossible in the present situation unless $c_m = 0$ for every $m \neq 0$, i.e. $g_n(x) = c_0$ for every $n \neq 0$, and $n \neq 0$.

2. Structure of the σ -field \mathscr{A}_N . In this section, we extend equation (2) and also indicate the structure of \mathscr{A}_N , the σ -field in \mathscr{F} which is invariant under T^N . (These topics turn out to be closely related). In addition to the assumptions of Section 0, we now take $N < \infty$ a.s.

Let $\mathscr G$ be a sub σ -field of $\mathscr F$ and recall that a regular conditional probability (r.c.p.) given $\mathscr G$ is a Markov kernel $Q(\omega,A)$ which is a version of $P(A|\mathscr G)$, i.e. $Q(\bullet,A)$ is $\mathscr G$ -measurable for each $A\in\mathscr F$, $Q(\omega,\bullet)$ is a probability measure on $\mathscr F$ for each $\omega\in\Omega$, and $\int_{\mathscr G}Q(\omega,A)P(d\omega)=P(AG)$ for each $A\in\mathscr F$, $G\in\mathscr G$. Since we will need the existence of r.c.p.'s for various sub σ -fields, we now impose the requirements that $\mathscr F$ be separable (i.e. generated by a countable subfamily) and that there is a compact subfamily C of $\mathscr F$ relative to which P has the "inner approximation property"

$$(7) P(A) = \sup \{ P(B) : A \supset B \in C \}, A \in \mathcal{F}.$$

This implies the existence of an r.c.p. for any sub σ -field \mathcal{G} of \mathcal{F} , as is fully explained in [5]; we will make no other use of (7).

Next we must lay the groundwork for the ergodic decomposition of T which will be used in reducing all problems to the ergodic case. An atom of a σ -field $\mathcal G$ is defined as an equivalence class for the relation $\omega \sim \omega'$ on Ω determined by $I_A(\omega) = I_A(\omega')$ for every $A \in \mathcal G$. It is well known that (i) every $\mathcal G$ -measurable function is constant on the atoms of $\mathcal G$, and (ii) if $\mathcal G$ is separable, then its atoms are $\mathcal G$ -measurable.

- (8) Lemma. Let $Q(\omega, A)$ be an r.c.p. given a separable sub σ -field G of F. Then:
 - (a) for almost every $\omega \in \Omega$, $Q(\omega, A) = I_A(\omega)$ for all $A \in \mathcal{G}$;
- (b) if f is a G-measurable function, then, for almost every $\omega \in \Omega$, f is equal to the constant $f(\omega)$ $Q(\omega, \cdot)$ -a.s.
- PROOF. (a) Let \mathscr{H} be a countable field which generates \mathscr{G} . Then there exists a P-null set N such that $Q(\omega, H) = I_H(\omega)$ for every $H \in \mathscr{H}$, $\omega \notin N$; this relation extends immediately to \mathscr{G} since two measures agreeing on \mathscr{H} must also agree on \mathscr{G} .
- (b) Immediate, since $Q(\omega, \cdot)$ is concentrated on that atom of \mathscr{G} which contains ω (by (a)), for almost every ω . \square

Now we may discuss the ergodic decomposition of T. Proofs may be found in [8]. We write \mathscr{A} for the σ -field in \mathscr{F} of sets A which are strictly invariant under $T: T^{-1}A = A$. Finally, \mathscr{F} will denote the P-completion of \mathscr{F} while \mathscr{F} is the augmentation of \mathscr{A} in \mathscr{F} , i.e. \mathscr{A} is the σ -field generated by \mathscr{A} and P-null sets in \mathscr{F} (similar notation will be used for other sub σ -fields of \mathscr{F}).

- (9) THEOREM. There exists a separable σ -field $\mathscr{A}' \subseteq \mathscr{A}$ such that
 - (a) $\bar{\mathscr{A}}' = \bar{\mathscr{A}};$
- (b) $Q(\omega, A) = I_A(\omega)$ for all $A \in \mathcal{A}'$, and P-a.e. $\omega \in \Omega$, where Q is an r.c.p. given \mathcal{A}' :
- (c) If $\mathscr C$ is any separable sub σ -field of $\mathscr A$ satisfying (a) and (b), and Q' an r.c.p. given $\mathscr C$, then, except for ω on a P-null set
 - (i) $Q'(\omega, \cdot)$ is preserved by T
 - (ii) $Q'(\omega, \bullet)$ is ergodic relative to T, i.e. $Q'(\omega, A) = 0$ or 1 for every $A \in \mathcal{A}$.

Notice that Q, Q' above are also r.c.p.'s given \mathcal{A} .

Let now X be a random variable on (Ω, \mathcal{F}, P) , and assume the return time N is a.s. finite. Without loss of generality we may take $Q(\omega, \bullet)$ to be ergodic for every $\omega \in \Omega$ where Q is as in (9). In what follows, we write $F(\omega, dx)$ for the conditional distribution of X given \mathcal{A}' , i.e. $F(\omega, dx) = Q(\omega, \{X \in dx\})$, and $X \vee \mathcal{A}$ for the σ -field generated by X and \mathcal{A} .

(10) THEOREM. $E(N \mid X \vee \mathscr{A})(\omega) = 1/F(\omega, \{X(\omega)\}).$

PROOF. When T is ergodic ($\mathscr A$ trivial), this result is Lemma (22) of [3], which we apply to the system $(\Omega, \mathscr F, Q(\omega', \, \bullet), T)$ for a fixed $\omega' \in \Omega$, obtaining for $Q(\omega', \, \bullet)$ -a.e. ω ,

$$E_{\omega'}(N|X)(\omega) = 1/F(\omega', \{X(\omega)\}).$$

Here and below E_{ω} indicates integration by the measure $Q(\omega', \bullet)$. We will show that, for ω' outside a *P*-null set,

1°
$$F(\omega', \{X(\omega)\}) = F(\omega, \{X(\omega)\})$$
 $Q(\omega', \cdot)$ -a.s.

$$2^{\circ} \qquad E_{\omega'}(N|X)(\omega) = E(N|X \vee \mathscr{A}')(\omega) \quad Q(\omega', \bullet)\text{-a.s.},$$

and these together provide the result.

For every x, $F(\omega', \{x\})$ is an \mathscr{A}' -measurable function of ω' , hence $F(\omega', \{x\}) = F(\omega, \{x\})$ for every $\omega \in A(\omega')$, where $A(\omega')$ denotes the atom of \mathscr{A}' which contains ω' . Hence $F(\omega', \{X(\omega)\}) = F(\omega, \{X(\omega)\})$ for every $\omega \in A(\omega')$, and, since $Q(\omega', A(\omega')) = 1$, we have 1° .

To prove 2°, it suffices to show that each member has the same $E_{\omega'}$ -integral over sets of the form $\{X \in \Gamma\} \cap A$, where $\Gamma \in \mathscr{E}$ and $A \in \mathscr{A}'$. The left member gives

$$\int_{\{X \in \Gamma\} \cap A} E_{\omega'}(N \mid X)(\omega) Q(\omega', d\omega) = I_{A}(\omega') E_{\omega'}(N I_{\Gamma}(X)),$$

while, on the right, we find $I_A(\omega')E_{\omega'}(I_\Gamma(X)E(N\mid X\vee \mathscr{N}'))$. Now, to see that these are equal for almost all ω' , we note that both are \mathscr{N}' -measurable and have the same expectation for every $A\in \mathscr{N}'$. \square

REMARK. As for EN itself, it can be shown that for discrete X, $EN = \sum_{x \in \mathbb{R}} P(B_x) \le \infty$ where $B_x = \bigcup_{n \in \mathbb{Z}} \{X_n = x\}$. Call X "conditionally discrete" if $F(\omega, dx)$ is a discrete distribution for almost every $\omega \in \Omega$. For such X, it follows at once from the invariance of the B_x 's that

$$EN = E(\sum_{x \in \mathbb{R}} I_{B_x}(\omega))$$
,

the mean cardinality of the "range" $\{X_n(\omega)\}$. (Or take expectations of both sides of (10).) Of course, the order of integration cannot, in general, be reversed. In the ergodic case, EN is just the number of atoms of $P(X \in dx)$.

We now describe the σ -field \mathcal{M}_N of sets $A \in \mathcal{F}$ such that $(T^N)^{-1}A = A$.

- (11) THEOREM. For any random variable X, the following are equivalent:
 - (a) $\bar{\mathscr{A}}_N = \overline{\sigma(X)};$
 - (b) (P_x, T^N) is ergodic for π -a.e. x.

If, in addition, X is discrete, then (a) and (b) are equivalent to each of

- (c) $\mathscr{A} \subseteq \overline{\sigma(X)}$;
- (d) $(P(\cdot | B), T)$ is ergodic for all x for which P(X = x) > 0.

PROOF. To prove (a) \Rightarrow (b), apply Theorem (9c) to the system $(\Omega, \mathcal{F}, P, T^N)$. Suppose (b) holds for $A \in \mathcal{N}_N$; let $\Gamma = \{x : P_x(A) = 1\}$, noting that $P_x(A) = 0$

for $x \notin \Gamma$, except for a π -null set. We then have, for $B \in \mathcal{F}$,

$$P(A \cap B) = \int P_x(A \cap B)\pi(dx) = \int_{\Gamma} P_x(B)\pi(dx) = P(B, x \in \Gamma)$$
,

and hence $A = (X \in \Gamma)$ a.s., i.e. the symmetric difference has measure zero.

Now suppose that X is discrete. We will show that $(c) \Rightarrow (d)$ and $(d) \Rightarrow (b)$; since $(a) \Rightarrow (c)$ is trivial, we will then be done. $(c) \Rightarrow (d)$. Choose $A \in \mathscr{A}$ and x such that P(X = x) > 0. Since $\mathscr{A} \subseteq \overline{\sigma(X)}$, there exists a Γ such that $A = (X \in \Gamma)$ a.s. Now, if $x \in \Gamma$, $B_x \subseteq \bigcup_n (X_n \in \Gamma) = (X \in \Gamma)$ a.s.; if $x \notin \Gamma$, $B_x \subseteq \bigcup_n (X_n \in \Gamma^c) = (\bigcap_n (X_n \in \Gamma))^c = (X \in \Gamma^c)$ a.s. In either case, $P(A \mid B_x) = I_{\Gamma}(x)$ and (d) is proven. $(d) \Rightarrow (b)$. First, for any \mathscr{F} -measurable $Z \ge 0$, if P(X = x) > 0,

(*)
$$E(Z | B_x) = \frac{1}{E_x N} E_x \sum_{k=0}^{n-1} Z \circ T^k.$$

To see this, write $E(Z; B_x) = \sum_{n=0}^{\infty} E(Z; X_{-n} = x, X_{-n+i} \neq x, i = 1, \dots, n)$ and apply T^n in the *n*th term. The rest of the proof can be done along the lines suggested by Ryll-Nardzewski for the "point process" case (i.e. $X = I_{\Gamma}$), that is, using (*) and the characterization of ergodic measures as extreme points. We omit the details, although some care must be taken since, in the point process case, $B_0 = B_1 = \Omega$ and the B_x 's play no role.

(12) THEOREM. If X is conditionally discrete, then
$$\overline{\mathscr{A}}_N = \overline{X \vee \mathscr{A}}$$
.

Note. We will give an example below in which the conclusion of (12) holds, but with X not conditionally discrete, and also one with X conditionally discrete but not discrete. A general proof of (12) without any condition on X still eludes us; the following shows that it would suffice to prove (12) for ergodic systems.

PROOF. In the ergodic case "conditionally discrete" is just "discrete," so use Theorem 11, (c) \Rightarrow (a). In general, for X conditionally discrete apply the result in the ergodic case to each system $(\Omega, \mathscr{F}, Q(\omega', \bullet), T)$: if Y is \mathscr{M}_N -measurable, it will be measurable in the $Q(\omega', \bullet)$ -completion of $\sigma(X)$ for each ω' , i.e., $Y = E_{\omega'}(Y|X), Q(\omega', \bullet)$ -a.s. Putting Y in place of N in 2° in the proof of (10), we conclude $Y = E(Y|X \vee \mathscr{M}') \ Q(\omega', \bullet)$ -a.s., and this for a.e. ω' . So Y is $\overline{X \vee \mathscr{M}'}$ -measurable. Since $X \vee \mathscr{M} \subseteq \mathscr{M}_N$, the proof is concluded.

(13) COROLLARY. If
$$E(N) < \infty$$
, $\overline{\mathscr{A}}_N = \overline{X \vee \mathscr{A}}$.

In fact, from the proof of (10) it is clear that if only the *conditional* expectation of N given X is finite, X is conditionally discrete, so that (12) applies.

REMARKS. (a) It can be shown that $X \vee \mathscr{A}$ and \mathscr{A}_N have the same atoms whenever "points" $\{\omega\}$ are in \mathscr{F} . If, for example, (Ω, \mathscr{F}) were a Blackwell space and these σ -fields were *separable*, one could then conclude they were equal, but \mathscr{A} and \mathscr{A}_N are typically *not* separable.

(b) Theorem (11) allows us to prove that $\overline{\mathscr{A}}_N = \overline{\sigma(X)}$ for any stationary

Markov process with $N < \infty$ a.s., in particular the process in Example 1. To see this, fix an x such that $P_x(X_n = x \text{ i.o.}) = 1$. Writing τ_k^x for the kth return to x (so $\tau_k^x = (T^N)^k P_x$ -a.s.), it is well known (see, e.g. [1], page 140) that the random (\mathbb{R}^∞ -valued) vectors $Z_k = (X_{\tau_k^x}, \cdots, X_{\tau_{k+1}^x-1}), k \ge 1$, are i.i.d. under P_x . However, a moment's reflection shows that any T^N -invariant random variable (for the process) is measurable over the tail σ -field of the $\{Z_k\}$ process, and hence constant P_x -a.s. Note that $\overline{\mathcal{M}}_N = \overline{\sigma(X)}$ is equivalent to $\overline{X \vee \mathcal{M}} = \overline{\mathcal{M}}_N$ since we always have $\mathcal{M} \subseteq \overline{\sigma(X)}$ —see [2], page 460.

EXAMPLE 3. We can "code" an integer-valued stationary sequence into one with the *same* recurrence structure but with a continuous initial distribution. For example, given independent, stationary sequences $\{Z_n\}$ and $\{Y_n\}$, the former \mathbb{Z} -valued and the latter with $P(Y_1 \in dx)$ continuous, consider the "coded" stationary sequence $\{Y_{Z_n(\omega)}(\omega)\}$, which repeats its initial value a.s. and has the same initial distribution as Y_0 .

To pursue such examples, it will be convenient to take $\Omega = \prod_{-\infty}^{\infty} (\mathbb{R} \times \mathbb{Z})$ with the usual product σ -field. For $\omega = (\cdots, n_{-1}; y_0, n_0, y_1, n_1, \cdots) \in \Omega$, define $Z(\omega) = n_0, Y_n(\omega) = y_n$, and $X(\omega) = y_{n_0}$; moreover, define a bijective, bimeasurable transformation $T: \Omega \to \Omega$ by $T(\omega) = (\cdots, n_0; y_0, n_1, y_1, n_2, \cdots)$. In this way, $X \circ T^n = Y_{Z \circ T^n}$ for all n and $N \equiv \min(n \ge 1 : X \circ T^n = X) \le \min(n \ge 1 : Z \circ T^n = Z)$. For the probability P, we choose any one preserved by T and for which each of the Y_n 's is independent of Z and has a continuous law. In particular, X then has a continuous law. (For instance, choose $P = \prod_{-\infty}^{\infty} (\mu \times \nu)$ where μ , ν are probabilities on \mathbb{R} , \mathbb{Z} respectively and μ is continuous.)

Now clearly $N < \infty$ a.s. and notice that X, though not discrete, is "conditionally discrete." Indeed, $F(\omega, B) \equiv \sum_{n \in \mathbb{Z}} P(Z = n | \mathscr{N})(\omega) I_B(Y_n(\omega))$ is clearly a probability measure on \mathscr{B} for each ω , \mathscr{M} -measurable (since the Y_n 's are) for each $B \in \mathscr{B}$ and for any $A \in \mathscr{M}$, $B \in \mathscr{B}$: $E(F(\omega, B); A) = \sum_{n \in \mathbb{Z}} (Z = n, Y_n \in B, A) = P(X \in B, A)$. Thus $\overline{X \vee \mathscr{M}} = \overline{\mathscr{M}}_N$. Such systems, of course, are never ergodic due to the invariance of the Y_n 's.

REFERENCES

- [1] Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.
- [2] DOOB, J. (1953). Stochastic Processes. Wiley, New York.
- [3] GEMAN, D. and HOROWITZ, J. (1974). Transformations of flows by discrete random measures. *Indiana Univ. Math. J.* 24 291-306.
- [4] KAC, M. (1947). On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc. 53 1002-1010.
- [5] Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.
- [6] NEVEU, J. (1969). Temps d'arrêt d'un système dynamique. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 81-94.
- [7] OREY, S. (1971). Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand-Reinhold, London.
- [8] ROZANOV, YU. A. (1967). Stationary Random Processes. Holden-Day, San Francisco.

[9] RYLL-NARDZEWSKI, C. (1961). Remarks on processes of calls. Proc. Fourth Berkeley Symp. Math. Statist. Prob 2 455-466. Univ. of California Press.

> DEPARTMENT OF MATHEMATICS AND STATISTICS GRADUATE RESEARCH CENTER UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS 01002