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RECURRENCE OF STATIONARY SEQUENCES!

By DoNALD GEMAN, JosepH HOrROWITZ,
AND JOEL ZINN

University of Massachusetts

Let {X,,}T % be a stationary sequence of random variables, with common
distribution z(dx). If the initial value X; is repeated with probability one
(e.g. when =n(dx) is discrete), then the ‘‘shifted’’ sequence {X»+n}Z,, is also
stationary where N = N(w) is the first n > 0 for which Xu(0) = Xo(w).
Surprisingly, this may even occur when z(dx) is continuous and {X,} is
ergodic (although not when { X} is ¢-mixing). For Markov sequences, we
also give other conditions which prohibit the a.s. recurrence of Xo.

For recurrent sequences, we show that when X, is ‘‘conditionally dis-
crete,” the invariant g-field for the {X,.;n} process coincides (up to null sets)
with X, v o7 the o-field generated by X, and the invariant sets for {Xx}.
Finally, we find an expression for E(N| X, v %) which reduces to Kac’s
recurrence formula when Xj is an indicator function.

0. Introduction. Suppose {X,}, u € Z (the integers), is a stationary random
sequence, and let N be the first time n > 1 that X, = X, or N = co if there is
no such n. If the sequence is independent and identically distributed (i.i.d.),
then it is easy to see that the finiteness of N is completely determined by the
common distribution 7 as follows: if X, = x is an atom of =, then N < oo;
otherwise N = oo (all with the exception of a set of probability zero).

The purpose of this paper is to discuss the return time N for an arbitrary
stationary sequence; specifically we allow = to be continuous. We begin with
some more precise definitions. Let X be a random variable on a probability
space (Q, &, P), and T: Q — Q an automorphism, i.e. a bijective, bimeasurable,
measure-preserving transformation. Our primary interest is in real-valued ran-
dom variables, but we will allow X to take its values in a measurable state space
(E, &), with & separable (see Example 1 below). The distribution of X is denoted
byr:a(I') = P(XeT), T'e&. Now, forne Z, let X, = X o T" (T° = identity),
noting that every stationary sequence may be realized in this manner. The return
time N is defined by

(1) N(@) = min {n = 1: X,(0) = X,())

with the usual convention that N(w) ='co if the set in (1) is empty. The trans-
formation 7%: Q — Q is defined as T%(w) = TV (w) when N(w) < oo, T¥(0) =
o otherwise. It follows from Neveu [6] (also see [3]) that, when N < o a.s.,
T¥ preserves P-measure. We note that the discreteness of = is sufficient to yield
N < oo a.s., by the ergodic theorem, but it is not necessary.
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Similar questions for (dependent) stationary sequences with = discrete were
first studied by Kac [4] and by Ryll-Nardzewski [9] (for point processes) whereas
Breiman [1] considers the first time the sequence returns to a Borel set B of
positive 7-measure given that it started in B—this amounts to taking the sequence
I(X,).

When N < co a.s. and T is ergodic, it is known [3] that

@) EWN|X) = 1/z({X}) .

An immediate consequence is that = is discrete iff E(N|X) < oo a.s.; another is
Kac’s formula for the mean return time to a set of positive measure. Next,
since T? preserves measure, one may study its ergodic structure. Because X
itself is a T¥-invariant function, T is never ergodic, except in the trivial case
when X is constant. Indeed, when X(or =) is discrete, and T is ergodic, the T7-
invariant o-field in Q, denoted .9, coincides (up to null sets) with ¢(X), the
o-field generated by X.

In view of formula (2), the question was raised in [3] of whether it was even
possible to have T ergodic, N a.s. finite, and = continuous. We begin Section 1
with some examples answering this affirmatively, and then show that for processes
satisfying certain mixing conditions, and for various types of Markov processes,
it is impossible to have N a.s. finite and 7 continuous. Section 2 contains some
generalizations of the results discussed above. Specifically, equation (2) is
extended to the case in which T need not be ergodic nor z discrete. Finally,
we discuss the structure of .9, with no restriction on T’ for stationary Markov
processes, there are no further requirements on X either, but in general we must
still assume that X is “conditionally discrete” as explained below.

1. Recurrence, mixing, and the Markov case. First, we give two examples
which show the possibility of having T ergodic, N < oo a.s., and = continuous.
If the ergodicity requirement is dropped, it is trivial to construct examples, e.g.,
using a rational rotation on the circle; on the other hand, if the o-field & in the
state space is not separable, one may easily give pathological examples satisfying
all three conditions. (We would like to thank John Walsh for the remark on
separability and for a conversation concerning Theorem 5(b) below.) The state
space in our example will be the unit circle with its usual Borel g-field. Notice
that (2) necessitates E(N|X) = oo a.s.

ExaMPLE 1. Let X, be uniformly distributed on the unit circle, and 4 be a
number such that #/2z is irrational. Next let {Y,} be an i.i.d. sequence with
PlY, = +60} = PlY, = -0}y =14, and S, =Y, + Y, + - 4+ Y, (S = 0) the
corresponding random walk. Now define X, = X,¢*» for n = 0. This is a
stationary Markov process having transition function P(e’, I') = 3Ir(e"**?) +
31 (e"*="), where T is a circular Borel set. Using the customary function space
representation, one may construct an automorphism 7' as described in Section
0, but we shall not pursue this point. Clearly = is continuous and, because the
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random walk S, is recurrent, N is a.s. finite. We defer the proof of ergodicity
for the moment—see below.

ExampLE 2. Let Q = {0, 1,2}, where N = {1,2,3, ---} and let P be the
product measure on Q, each coordinate measure being uniform over {0, 1, 2}.
Let Q, < Q be the set of sequences which contain infinitely many zeros, ones
and twos; clearly P(Q,) = 1. Define T on Q, as follows:

T(@ys @y =+ vy Opy Oppyyy ++*) = 0,0, -++,0, 0, + 1, @4y, -+ ),
where k is the first integer for which w, # 2. The transformation T (called the
“adding machine” and well-known to ergodic theorists) is measure-preserving
and ergodic.

Finally, let X(0) = ¥ 7., 0(0, 0,)27*, where § is the Kronecker symbol. This
clearly has a continuous distribution and one checks that N < co on Q,.

(We learned of this example through an associate editor of this Annals.)

We will now show that, in various situations, it is impossible to have N a.s.
finite and = continuous. Recall that a stationary sequence {X,} is ¢-mixing if,
for Ae & ,and Be & /,,,

|P(B 1 A) — P(AP(B)| < $(k)P(A)
where ¢(k) — 0 as k — oo; here &, is the g-field generated by all X, m < n,
and &/, is that generated by all X,,, m = n + k + 1.

3) THEOREM. If {X,} is ¢-mzxmg and X, has a continuous distribution, then
P{N < o0} < 1.
PROOF. One can check that there is no loss of generality in assuming X, is
uniformly distributed on [0, 1]. Let
A, ={X, =X, forsome n, n, < n<n,,},
where the sequence n, is chosen so that )] ¢(n,) < co. If P(N < o0) = 1, it
follows (from the fact that T¥ preserves measure) that P(4,i.0.) =1 (“i.0.”
means “infinitely often”).
Let I', = [(i — 1)/m, i/m), 1 < i < m. We have, for m fixed,
P(A4) < N, PX,eT;, X,eT'; forsome n,n, < n < n,,)
< X, [PX,eT,}P{X, eT’; for some n,n, < n< n,}
+ ¢(n)P{X e I';}]
1 — —
S - R MR f(n) = B g(ny)
m m m
Letting m — oo, we find P(4,) < ¢(n,), hence (Borel-Cantelli) P(Akl 0.) =0,
which contradicts P(N < o) = 1. []

In light of (3) it is interesting that the process of Example 1 satisfies the
following mixing condition:

(4) SUP4e 1 per [P(A N B) — P(A)P(B)| — O as n—co.
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It is shown in [7] that (4) is equivalent to the triviality of .77, the tail o-field of
the process, i.e. P(4) = 0 or 1 for every 4 € .7, and so implies ergodicity. We
will prove that .7 is trivial in the appendix to Section 1.

If {X,} is ani.i.d. sequence with a continuous common distribution, the return
time N is a.s. infinite. In contrast, a ¢-mixing sequence may have N < co on
a set of probability arbitrarily close to 1. For example, let 0 < « < 1, and let
¢ be a continuous distribution on [0, 1]. Define a transition function of [0, 1]
by P(x,I') = al(x) + (1 — a)u(T'). The measure g is invariant for this tran-
sition function, and one may verify that the corresponding stationary Markov
process {X,} is #-mixing, with ¢(k) = a*, and P{N < oo} = P{N = 1} = a.

Suppose now that {X,} is a stationary Markov process with state space (E, &).
We denote the transition function by P(x,T'), xe E, T'e &, and the initial
(stationary) distribution by #. Our terminology for Markov process follows [7].

3) THEOREM. Under any of the conditions below, if P (N < oo) = 1, then =
is purely discrete:

(a) the Harris recurrence condition;

(b) the state space is indecomposable;

(c) the process is m-nonsingular [7];

@) |Px,T) — =(I)| < a,, where ¥, a, < co.

ProOF. (a) First note that P, (N < oo) = 1implies P (X, = X,i.0.) = 1 which
implies P{X, = xi.0.} =1 for m-a.e. x. Fix such an x, and define f(y) =
P{X, = xi.0.}. This function is harmonic, hence ([7], page 22) constant by
Harris recurrence. Since f(x) = 1, we have f(y) = 1, and so conclude P,{X, =
xi.0.} =1 for z-a.e. x. Butthen oo = ¥, P{X, = x} = Y7 n({x}) for such
x, and so 7({x}) > O for z-a.e. x, i.e. 7 is purely discrete.

(b) Asin(a), P,{X, = xi.0.} = 1 z-a.e. Forany such x, P,{X, = x for some
n = 1} > 0 for every y € E by ([7], page 36), and so P {X, = xi.0.} > 0. One
now shows z({x}) > 0 as in the proof of (a).

(¢) Fix xand let f{y) be as in the proof of (a), so f(x) = 1. By nonsingularity
there is an n such that P*(x, dy) is not purely singular. Since f(x) = P"f(x) = 1,
it follows that f(y) > 0 on a set of positive m-measure, whence P {X, =
xi.0.} > 0. The proof is now completed as above. Notice that we only need
the nonsingularity condition to hold for almost every x (cf. [7], page 42).

(d) Let A be the complement of the set of atoms of z. Then

P(X, = Xp, X, € 8) = {, P,{X, = x}n(dx)
= {4 P(x, {xhn(dx)
= {4 (z({x}) + a)7(dx) < a, .
By Borel-Cantelli, P{X, = X, i.0., X,e A} = 0; if P.{N < co} = 1, we must
have P {X,e A} = n(A) = 0. [

From (5) it follows that the Markov process in Example 1 cannot satisfy
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Harris recurrence, indecomposability, or the exponential convergence condition.
One verifies the first two of these directly by considering the orbits {ei=+%0 :
k € Z}. The last is more difficult in view of the mixing condition (4).

Appendix. Let {X,}, n = 0, be a Markov process with state space (E, &),
initial distribution 7, and transition function P(x, T'). The usual operator on
bounded, #-measurable functions f is given by

Pf(x) = § P(x, dy)f(y) -

A sequence of functions g, is called space-time harmonic if Pg,,, = g, for
every n. An easy adaptation of an argument in [7] proves: a necessary and
sufficient condition for the tail o-field .7 to be trivial relative to P, is that every
uniformly bounded space-time harmonic sequence g,(x) be constant z-a.e., i.e.
for some constant ¢, g,(x) = ¢ for every n and 7-a.e. x.

Suppose g,(e*) is a uniformly bounded space-time harmonic sequence for the
process {X,} of Example 1; the defining relation becomes

©) 9u(e”) = $[gnsr(€“*?) + Gura(¢77)] .

Write ¢, for the mth Fourier coefficient of g,. Expanding (6) in Fourier series
and equating coefficients (all of which is easily justified) we find ¢, = ¢,*!
cos (mb) or ¢, = c,/(cos (mf))"~*, where c,, = ¢,'. Note, since §/2x is irration-
al, 0 < [cos (mf)| < 1, for all m + 0. Thus, if ¢, % 0, we have |c,"| — oo
(n — oo)

Now g, is real-valued, so ¢*,, = c,". Let M > 0 be the first integer for which
¢, # 0, if one exists. The Mth partial sum of the Fourier series for g, is then
€y + 2¢, cos (Mx)/(cos (MB))~!, and the Cesaro average of the first M + 1
partial sums equals ¢, + 2c, cos (Mx)/(M + 1)(cos (M8))*~*. It is well known
that if a function is bounded in modulus by a constant, each of the correspond-
ing Cesaro averages is bounded by the same constant. This is clearly impossible
in the present situation unless ¢,, = 0 for every m # 0, i.e. g,(x) = ¢, for every
n and m-a.e. x.

2. Structure of the o-field .%7,. In this section, we extend equation (2) and
also indicate the structure of %, the o-field in %~ which is invariant under
T*. (These topics turn out to be closely related). Inaddition to the assumptions
of Section 0, we now take N < oo a.s.

Let & be a sub o-field of .5 and recall that a regular conditional probability
(r.c.p.) given & is a Markov kernel Q(w, 4) which is a version of P(4| ¥), i.e.
Q(+, A) is C-measurable for each 4e .5, Q(w, +) is a probability measure on
& for each v € Q, and {, Q(w, A)P(dw) = P(AG) foreach A ¢ &, Ge Z. Since
we will need the existence of r.c.p.’s for various sub g-fields, we now impose
the requirements that .5 be separable (i.e. generated by a countable subfamily)
and that there is a compact subfamily C of % relative to which P has the “inner
approximation property”

(7 P(A) = sup{P(B): A D BeC}, Ae 7.
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This implies the existence of an r.c.p. for any sub o-field & of &, as is fully
explained in [5]; we will make no other use of (7).

Next we must lay the groundwork for the ergodic decomposition of T which
will be used in reducing all problems to the ergodic case. An atom of a o-field
& is defined as an equivalence class for the relation @ ~ ' on Q determined by
I,(®) = I(o') for every Ae &. It is well known that (i) every “-measurable
function is constant on the atoms of ¥, and (ii) if & is separable, then its atoms
are “-measurable.

3) LeMMA. Let Q(w, A) be an r.c.p. given a separable sub o-field & of .
Then:

(@) for almost every w € Q, Q(w, A) = I,() for all Ae &
(b) if f is a F-measurable function, then, for almost every € Q, f is equal to
the constant f(w) Q(w, «)-a.s.

ProOF. (a) Let 57 be a countable field which generates &. Then there exists
a P-null set N such that Q(w, H) = I,() for every H e 27, w ¢ N; this relation
extends immediately to & since two measures agreeing on SZ must also agree
on Z. ‘

(b) Immediate, since Q(w, +) is concentrated on that atom of & which
contains @ (by (a)), for almost every w. []

Now we may discuss the ergodic decomposition of 7. Proofs may be found
in [8]. We write % for the o-field in .5 of sets A4 which are strictly ‘invariant
under T: T-'4 = A. Finally, % will denote the P-completion of % while
57 is the augmentation of % in .7, i.e. %7 is the o-field generated by %" and
P-null sets in . (similar notation will be used for other sub g-fields of &7).

9) THEOREM. There exists a separable o-field 7" & &7 such that

(a) V' =%}

(b) Q(w, A) = I,(w) forall Ac 7", and P-a.e. @ € Q, where Q isanrt.C.p. given
77,

(€) If & is any separable sub o-field of 7 satzsfymg (a) and (b), and Q' anr.c.p.
given &, then, except for w on a P-null set

(i) Q'(w, +) is preserved by T
(i) Q'(w, +) is ergodic relative to T, i.e. Q'(w, A) =0 or 1 for every
Ae 7.

Notice that. Q, Q' above are also r.c.p.’s given %7,

Let now X be a random variable on (Q, %, P), and assume the return time
N is a.s. finite. Without loss of generality we may take Q(w, +) to be ergodic
for every w € Q where Q is as in (9). In what follows, we write F(w, dx) for the
conditional distribution of X given %", i.e. F(w, dx) = Q(w, {X edx}), and
X v &7 for the o-field generated by X and 7. :
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(10) THEOREM. E(N|X V ¥)(0) = 1/F(0, {X(v))}).

ProoF. When T is ergodic (% trivial), this result is Lemma (22) of [3],
which we apply to the system (Q, &, Q(«’, +), T) for a fixed o’ € Q, obtaining
for Q(o', +)-a.c. w,

E, (N|X)(0) = 1/F(o', {X(@)}) .

Here and below E,, indicates integration by the measure Q(«’, ). We will show
that, for o’ outside a P-null set,

1° F, X)) = Flo, {X(@)) Q, )a.s.
2° E,(N|X)(®) = E(N| XV ") (0) Q(«, +)-a.s.,
and these together provide the result.

For every x, F(o’, {x}) is an .%"'-measurable function of «’, hence F(', {x}) =
F(w, {x}) for every we A(«’), where A(w’) denotes the atom of %" which
contains ’. Hence F(«', {X(®)}) = F(w, {X(w)}) for every w € A(«'), and, since
Q(o', A(w')) = 1, we have 1°.

To prove 2°, it suffices to show that each member has the same E -integral over
sets of the form {X e I'} n 4, where I'e & and 4 e %". The left member gives

Sixerina Eo(N | X)(@)Q(¢', do) = 1,(o)E, (NI(X)) ,

while, on the right, we find I,(")E,(I(X)E(N|X v .&7")). Now, to see that
these are equal for almost all ', we note that both are .%/’-measurable and
have the same expectation for every 4e .. [J

ReEMARK. As for EN itself, it can be shown that for discrete X, EN =
Teer P(B,) < oo where B, = |J,.z {X, = x}. Call X “conditionally discrete”
if F(w, dx) is a discrete distribution for almost every w e Q. For such X, it
follows at once from the invariance of the B,’s that

EN = E(X.er 15,(®)

the mean cardinality of the “range” {X,(»)}. (Or take expectations of both sides
of (10).) Of course, the order of integration cannot, in general, be reversed.
In the ergodic case, EN is just the number of atoms of P(X € dx).

We now describe the o-field .97, of sets 4 € & such that (T%)~'4 = A.

(11) THEOREM. For any random variable X, the following are equivalent:
(a) ¥y = o(X);
(b) (P,, TY) is ergodic for m-a.e. x.
If, in addition, X is discrete, then (a) and (b) are equivalent to each of
() ¥ < o(X); ,
(d) (P(+|B), T) is ergodic for all x for which P(X = x) > 0.

Proor. To prove (a) = (b), apply Theorem (9c¢) to the system (Q, &, P, T").
Suppose (b) holds for 4 e .7y; let I' = {x: P,(4) = 1}, noting that P,(4) = 0
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for x ¢ I', except for a 7-null set. We then have, for Be &,
P(A n B) = § P,(A n B)n(dx) = \; P,(B)n(dx) = P(B, xeI"),

and hence 4 = (X eT') a.s., i.e. the symmetric difference has measure zero.

Now suppose that X is discrete. We will show that (¢) = (d) and (d) = (b);
since (a) = (C) is trivial, we will then be done. (¢) = (d). Choose 4 e ¥ and
x such that P(X = x) > 0. Since % < ¢(X), there exists a I' such that 4 =
(XeT) a.s. Now, if xel', B, 2 U,(X,el') = (Xel) as.; if x¢I', B, <
U.(X,eI") = (N.(X,eD))y = (Xel*) a.s. In either case, P(4|B,) = I(x)
and (d) is proven. (d)=(b). First, for any .5 -measurable Z > 0, if
P(X = x) > 0,

1 E,
E,N

x

St Zo TE,

*) E(Z|B,) =

To see this, write E(Z; B,) = Y2 E(Z; X_, =x, X_,.;, #x,i=1,...,n)and
apply T* in the nth term. The rest of the proof can be done along the lines
suggested by Ryll-Nardzewski for the “point process” case (i.e. X = Iy), that s,
using (*) and the characterization of ergodic measures as extreme points. We
omit the details, although some care must be taken since, in the point process
case, B, = B, = Q and the B,’s play no role.

(12)  THEOREM. If X is conditionally discrete, then .57, = X V 7.

Note. We will give an example below in which the conclusion of (12) holds,
but with X not conditionally discrete, and also one with X conditionally discrete
but not discrete. A general proof of (12) without any condition on X still eludes
us; the following shows that it would suffice to prove (12) for ergodic systems.

Proor. In the ergodic case “conditionally discrete” is just “discrete,” so use
Theorem 11, (¢) = (a). In general, for X conditionally discrete apply the result
in the ergodic case to each system (Q, &, Q(o’, +), T): if Y is %, -measurable,
it will be measurable in the Q(’, «)-completion of ¢(X) for each o', i.e., ¥ =
E, (Y| X), Q(', +)-a.s. Putting Y in place of N in 2° in the proof of (10), we
conclude Y = E(Y|XV ") Q(o', +)-a.s., and this for a.e. o’. So Y is
XV &7"-measurable. Since X vV % C %, the proof is concluded.

(13) COROLLARY. If E(N) < oo, Llﬁz_/N =XV ..

In fact, from the proof of (10) it is clear that if only the conditional expectation
of N given X is finite, X is conditionally discrete, so that (12) applies.

REMARKS. (a) It can be shown that X v % and %, have the same atoms
whenever “points” {w} are in & If, for example, (Q, &) were a Blackwell
space and these o-fields were separable, one could then conclude they were
equal, but &7 and %7, are typically not separable.

(b) Theorem (11) allows us to prove that %7, = o(X) for any stationary
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Markov process with N < oo a.s., in particular the process in Example 1. To
see this, fix an x such that P,(X, = xi.0.) = 1. Writing z,* for the kth return
to x (s0 7,7 = (TY)* P,-a.s.), it is well known (see, e.g. [1], page 140) that the
random (R>-valued) vectors Z, = (X, 2, -+, Xz 1), k = 1, are i.i.d. under
P,. However, a moment’s reflection shows that any 7”-invariant random vari-

able (for the process) is measurable over the tail o-field of the {Z,} process, and
hence constant P,-a.s. Note that 57, = o(X) is equivalent to X V %7 = %7,
since we always have .o < o(X)—see [2], page 460.

ExAMPLE 3. We can “code” an integer-valued stationary sequence into one
with the same recurrence structure but with a continuous initial distribution.
For example, given independent, stationary sequences {Z,} and {Y,}, the former
Z-valued and the latter with P(Y, € dx) continuous, consider the “coded” station-
ary sequence {Y, ()}, which repeats its initial value a.s. and has the same
initial distribution as Y,.

To pursue such examples, it will be convenient to take Q@ = [[=., (R x Z)
with the usual product o-field. For @ = (- -, n_s; y;, fgy Yy» 15 + - -) € Q, define
Z(w) = ny, Y,(0) = y,, and X(0) = y,; moreover, define a bijective, bimeasur-
able transformation 7: Q — Q by T(®) = (- -+, ng Yo» Ny Y15 g, -+ +). In this
way, XoT" =Y, . for all nand N=min(n =2 1: Xo 7" = X) < min(n >
1: ZoT* = Z). For the probability P, we choose any one preserved by T and
for which each of the Y,’s is independent of Z and has a continuous law. In
particular, X then has a continuous law. (For instance, choose P = [, (¢ X v)
where p, v are probabilities on R, Z respectively and y is continuous.)

Now clearly N < oo a.s. and notice that X, though not discrete, is “condition-
ally discrete.” Indeed, F(w, B) = },,.z P(Z = n| ) (w)I4(Y (o)) is clearly a
probability measure on <Z for each w, .%7-measurable (since the Y,’s are) for
each Be <% and for any Ae ., Be Z: E(F(w, B); A) = },.z(Z=n,Y,¢
B, A) = P(Xe B, A). Thus X V % = .%7,. Such systems, of course, are never
ergodic due to the invariance of the Y,’s.
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