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HAUSDORFF DIMENSION AND GAUSSIAN FIELDS

By ROBERT J. ADLER
University of New South Wales

Let X(#) be a Gaussian process taking values in R¢ and with its pa-
rameter in R¥, Then if X; has stationary increments and the function
o¥(t) = E{|X(s + t) — X(s)[?} behaves like |¢f|?« as [#] | 0, 0 < &« < 1, the graph
of X has Hausdorff dimension min {N/a, N + d(1 — a)} with probability
one. If X is also ergodic and stationary, and if N — da = 0, then the
dimension of the level sets of X is a.s. N — da.

1. Introduction. In previous papers (e.g. [1], [2]) we have studied excursion
and level sets of N-dimensional Gaussian fields possessing “smooth” sample paths
(i.e., almost surely (a.s.) continuous, continuously differentiable, etc.). When
some of these smoothness conditions are relaxed it is clear by analogy with the
well-researched one-dimensional case that the topological properties of these sets
that we have been studying are no longer appropriate concepts, as the sample
paths become wildly erratic. However, in these situations it becomes interesting
to somehow measure the “size” of the sample paths and level sets. The appropri-
ate concept in this regard is that of Hausdor(f dimension. A set E C R” is said to
have Hausdorff dimension « if

o = infp {ﬁ: lim infe_,o Z di'g = 0}

where the infimum within the brackets is taken over all collections of closed
balls in R?, each with radius d; < ¢, whose union covers E.

In this paper we shall be concerned with random processes X(r) that we shall
call (N, d) Gaussian fields, i.e.,

X(t, w) = (Xy(t, w), - -+, Xy(t, 0)) € R*, where ¢ =(t, ---,ty) €RY,

and the coordinate functions X; are mutually independent, separable, Gaussian
fields with mean zero and identical covariance function R(s, 1) = E{X;(s)X;(1)}.
In the following section we shall obtain the dimension of the graph of such a
process, and in Section 3 we shall consider the main results of this paper, the
dimension of the level sets. The results of Section 2 are obtained by a relatively
straightforward application to the Gaussian case of techniques used by Yoder
[13] for (N, d) Brownian motion, and contain the corresponding result for (1, 1)
Gaussian fields (Orey [9], Theorem 1). In Section 3 we apply, in a more direct
fashion, a technique used initially by Kahane [5]. The results of this section
generalize to (N, d) fields similar results for the (1, 1) case due to Berman [3].
A referee has pointed out that results for the (1, 1) case are also due to Marcus
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[7], but at the time of writing I have not seen this paper. The paper concludes
with a sequence of remarks.

2. Dimension of the graph. In this section we shall assume that each coordi-
nate function X; of X has stationary increments. Thus there exists a function
o(f): RY — R for which for all j and s

@1 E{|X(s + 1) — X9} = 0(1) -

We shall throughout this paper use |+| to denote the Euclidean norm in whatever
dimension is appropriate at each use. Following [9] we introduce the notations:

a* = sup {a: o(t) = o(|t|*), || | O}, a, = inf {a: |t|* = o(c;(t)), HEEUR

Then 0 £ a, < a* < co: When a* = a, = a we shall say that o(f) has index
a. We shall be interested in the case in which ¢ has index lying (strictly) between '
zero and one. : '

Let I, denote the unit cube in R*. Then, without any loss of generality, we
shall now consider the Hausdorff dimension of the graph of an (N, d) Gaussian
field X(7) as ¢ varies over I, (i.e., {(t, X()): t € I;} ¢ R"*%) which we write as
dim (gr X). (It is easy to see that in what follows I, may be replaced by any
compact subset of RY). We shall establish ‘

THEOREM 1. Suppose a(t), as defined by (2.1), has index a, 0 < a < 1. Then
with probability one,

(2.2) dim (gr X) = min {Nja, N + d(1 — a)} .

Proor. The proof is not very different than that used by Yoder [13] to es-
tablish the same result for (N, d) Brownian motion (@ = }), so that we shall not
give it in full detail. The proof falls into three parts. First we note that from
Corollary 4 of Theorem 2 of Yadrenko [12] it easily follows that X(f) is a.s.
Lipschitz of order a, so that by statement I in the proof in [13] we have

(2.3) dim (gr (X)) < min {N/a; N + d(1 — a)} a.s.

It remins to establish the opposite inequality, which is proven in two stages.

Consider first the case N < da. We shall show that in this case dim (gr(X)) =
Nja a.s. Let 8 < N/a. Then since the dimension of the graph of X must be at
least that of its range it follows that it is sufficient to show that the g-capacity
of the range, Cy(ra (X)), is a.s. positive. For this it sufficient to show that

(2.4) © 0 Sigxay |X(s) — X(t)|~*dsdt < oo a.s.

(cf. Theorem B, Taylor [11]). By the independence and identical distribution
of the X; we have

2.5 E{lX() — X))

B _ _ xiz + oo + X, 2
= [270%(t — $)]7% §pa |x|~* exp (‘ 2%t — 5) ‘ )dx '
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By changing to spherical coordinates and then letting » = o(t — s5)x this becomes
K,(o(t — $)* |7 x4-1-7 exp(— ") dx .
The i"ntegral is finite since 8 < d, so that

E{|X(1) — X(5)|*} < Ky(o(t — 5))~".
Thus

E{SIN;IN |X(r) — X(s)|*drds} < S,NXIN Ky(o(t — s))~Fdtds.

Since ¢ has index a the last integral is finite when a8 < N, and then (2.4) must
hold by Fubini’s theorem. This suffices to establish the appropriate result for
N £ da. , '
When N > da we can follow III of [13] to show dim (gr (X)) = N + d(1 — «)
a.s. Combining this with the previous case and (2.3) establishes the theorem.

3. Dimension of the level sets. In this section we make the further assump-
tion that the coordinate functions X; are also stationary, so that their common
covariance function R is a function of + — sonly. Furthermore, for the sake of
simplicity, we set R(0) = 1. We define X-'(u) to be the u-level set of X over
I, i.e.,

3.1) XYu) = {tel,: X(1) =u}.
We are interested in the dimension of X~!(#), and shall prove

THEOREM 2. If the conditions of Theorem 1 hold, X is stationary, and N —
da = 0, then for almost every u

(3.2) dim X' (u) = N — da
with positive probability. ‘

PRrOOF. Our proof of this result will be based on a technique used by Kahane
[5] to prove a similar result for Gaussian Fourier series. However we require
firstly some results from potential theory, which can all be found in the fiist
two chapters of Landkof [6].

Let ¢ be a measure with compact support in RY. We say that z has finite j-
energy if '

I(#) = Savscaw |t — 87 du(?) du(s) < oo .
A compact set E C RY has positive -capacity C,(E) if it carries a nonzero
positive measure of finite S-energy. WEe shall use this fact to show that the -
capacity of X ~'(u) is positive for all 3 < N — dea, so that dim X~*(u) > N — da.
This is Lemma 2. Combining this with the following lemma then establishes
Theorem 2.

LemMMA 1. Let F: I, — R? be a continuous function that is Lipschitz of order a
only. Thenif N — da = 0, dim F~%(u) < N — da for almost every u in R*.

Proor. This lemma generalizes a known result in the case where N = 1 ([5],
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page 142) and we follow the original proof. Forgivenk > Oletn = (n,, - - -, ny)
be a lattice point for which the n; are one of the numbers 0, 1, .- -, [#~], and
let J, be the rectangle {re R¥:n;h < t; < (n; + )b, j =1, ---, N}. Let G(h)
be the union of the rectangles J, X F(J,) C R¥*%. Then the graph of F is con-
tained in G(h) for any &, and the Lebesgue measure of G(h) in RV*¢ is O(h%*).
Given u ¢ R?, let E(u, k) denote the union of rectangles J, for which u e F(J,,).
This set clearly contains F~*(u). Let us now write 4, for Lebesgue measure in
Rr. Then
Avsa(G(R)) = §pa Ay(E(u, b)) du .
Now let &, = 2-*. Then given ¢ > 0 we have

S b0 pa Ay(E(u, b)) du < oo,
implying '
D b Ay (E(u, b)) < oo
for (1) almost every u. Thus
Ay(E(u, b)) = o(h**~*)
for almost every u. Thus, using the fact that N — da > 0, it follows that F~*()
has measure zero in the dimension N — da -+ ¢ for almost every #, which proves
the lemma.

LeEMMA 2. If the conditions of Theorem 2 hold and f < N — da then
(3.3) C,(Xw) > 0
with positive probability.
Proor. As we noted earlier, it is sufficient to show that with positive prob-

ability X~'(u) carries a nonzero positive measure of finite S-energy. For the
moment, let us consider only the case # = 0. For each ¢ > 0 define

T{1) = (2r[e)™ exp(—|X(1)[/2¢)
= {paexp(—3elul® + iu - X(¢)) du .

Then T, is the density of a (positive) measure, y, say, on R¥. Note T, may be
written as T, = J,(X), where as ¢ tends to zero the measure corresponding to
d, tends to the Dirac measure in R¢. (In [1] and [2] such a measure was used in
obtaining expressions for the mean values of the excursion characteristics of
(N, 1) Gaussian fields.)

Now it is known that the set of positive measures of finite S-energy form a
complete metric space within the larger Hilbert space of signed measures of
finite S-energy with the inner product

(1 v) = Spumn [t — 5|77 dp(t) du(s)
([6], page 90). We shall now show that under the conditions of ‘the lemma a
particular sequence of measures y, is a.s. Cauchy with respect to the derived
metric.
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The expected value of the squared norm of the difference p, — L, is

E(llete — 1,I1") = S1yury Sraxne E{[exp(—felul® + iuX(r))
(3-4) — exp(—#lul* + iuX(t))] X [exp(—4eld]* + iuX(s))
— exp(—4y|d* + iX(s))]}t — s|~* dudidt ds .
Consider the expectation in this expression. This equals
3.5) E{exp (iuX(t) + idX(s))
X [exp(—gelul’) — exp(—37|u’)][exp(—feld*) — exp(—47|a’)]} .

Only the first expression here is random. Consider it:
(3.6) E{exp (iuX(t) + 4X(s))} = exp(—4(|u]* + |@* + 2R(t — s)u - 4)).
Here (3.6) is a simple consequence of the fact that the components X, of X are
all independent Gaussian variates with covariance function R. On comparing

(3.4)—(3.6) it is clear from dominated convergence that lim, , , E(||z,— ) =0
if the following integral is bounded:

Viyxry Vrxns €Xp(—F([u]’ + |4 + 2R(t — s)u - &))|t — s|=° du dir dt ds .

However, a little careful manipulation of multivariate normal integrals gives us
that except for a constant factor this integral is equal to

(BT Siyway [ — (1 — d*(t — 9))*17¥*t — s|~Pdtds
< Sigry |t — 8|7P07%(t — s)dtds .

Since ¢ has index a« and 8 < N — da this integral is finite. Thus we have es-
tablished that

lim, o E(||zze — ,|I) = 0.

Now choose a sequence ¢, tending to zero so that E(|| Pepyy — e |I') < 27" Then
it can be readily seen that

Sl — ]l < oo as.

so that for this sequence of ¢, the measures form a Cauchy sequence, and there
exists a limit. As in [5], page 148, it is now easy to show that this limit measure
is carried by X ~*(u), and is nonzero with positive probability. This completes
the proof of the lemma for the case u = 0.

For more general « the same proof goes through, except that in the definition
of T(¢) we replace |X(t)| by |X(f) — u|. This change makes no essential difference
to the remainder of the argument.

Thus we have now succeeded in establishing Theorem 2 and know that (3.2)
holds with positive probability, o say, which from the form of the proof clearly
does not depend on either u or the fact that we are considering level sets of X
over I, rather than any other compact subset of R¥. It is of interest to know
conditions under which this probability will be one, and to study this it is neces-
sary to introduce the concept of ergodicity for multidimensional parameter
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spaces. To do this we introduce N commuting shift transformations z?,
j=1,---,N on the probability space of functions F: R¥ — R¢, given by
TDF(ty, vy tyy ooy ty)=F(ty, -+, t; +7,---,ty). Then an (N, d) random
field is said to be ergodic if the o-field of measurable sets which are invariant
under these transformations contains only sets of probability zero or one. With
this definition it is easy to extend the one-dimensional arguments of [4] or [8]
to obtain the following result (cf. Rosenblatt [10], Lemma 3.1, where a corre-
sponding result is presented for fields defined on a lattice).

LemMA 3. In order that a stationary (N, d) Gaussian field with a continuous
covariance function be ergodic, it is necessary and sufficient that its spectral distri-
bution function be continuous.

We are now in a position to state our final result.

THEOREM 3. If the conditions of Theorem 2 hold, and, moreover, X has a con-
tinuous spectral distribution function, then with probability one, for almost every u,
dim {te R¥: X(f) = u} = N — da.

Proor. Suppose (3.2) holds with probability 9, 0 < 6 < 1. Denoting the
direct sum of sets in R¥ by @, let I'’ = (j, j, - -+, J) D I, and ™ = |J2_, V.
Then for all j and n

(3.8) 0 = P{dim (re I': X(f) = u) = N — da}
= P{dim (€ S™ : X(t) = u) = N — da} .

Now let Y9 be the indicator variable for the event {dim (r € I'V: X(t) = u) =
N — da}. By Lemma 3 we have ergodicity, so that n=* 3}7_, Y9 — P{I'"} a.s.
as n — oo. But this means that, with probability one, for large enough n at
least one of the sets (¢ € I'”: X(¢) = u), 0 < j < n, must have dimension N — da,
which implies dim (re S™: X(f) = u) = N — da a.s., for large enough n. This
proves the theorem.

4. Remarks. (A) There seem two obvious directions in which our results
could be extended, both, however, requiring considerable awkward algebra.
The first direction would be to drop the requirement that the increments of the
component processes X; have identical ‘“variance function,” ¢*(f), and allow
each X; its own variance function ¢;. However, when this is done problems
arise at around equation (2.5), and these become rapidly compounded shortly
thereafter if we do not insist that the ¢, are of the same index. In this case it
is not at all clear what the correct analogues of our results become.

(B) The second condition which could possibly be dropped is that of station-
arity in Section 3. However, we then face problems at around (3.6), and the
statement of Theorems 2 and 3 would need to contain unpleasant assumptions
in relation to the covariance function R(s, f), sufficient to ensure convergence
in the new integrals that would replace those in (3.7).

(C) As we noted earlier, Theorem 1 contains the corresponding result for
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(N, d) Brownian motion (@ = ) obtained in [13]. There are no results for
Brownian motion corresponding to our results in Section 3 however, perhaps
because of the difficulties raised in (B) above.

(1
[2]
3]
(4]
(5]
(6]
7
(8]
9
(10]
(1]
(12]

[13]

REFERENCES

ADLER, R. J. (1976). Excursions above a fixed level by n-dimensional random fields. J.
Appl. Probability 13 276-289.

ADLER, R. J. and HAsOFER, A. M. (1976). Level crossings for random fields. Ann. Proba-
bility 4 1-12.

BERMAN, S. M. (1972). Gaussian sample functions: Uniform dimension and Holder con-
ditions nowhere. Nagoya Math. J. 46 68-86.

GRENANDER, U. (1950). Stochastic processes and statistical inference. Ark. Mat. 195-277.

KAHANE, J. P. (1968). Some Random Series of Functions. Heath, Lexington, Mass.

LANDKOF, N. S. (1972). Foundations of Modern Potential Theory. Springer-Verlag, Berlin.

Marcus, M. B. (1975). Capacity of level sets of certain stochastic processes. Preprint,
Dept. of Math., Northwestern Univ.

MARUYAMA, G. (1949). The harmonic analysis of stationary stochastic processes. Mem.
Fac. Sci. Kyusyu Univ. Ser. A, 4 45-106.

OREY, S. (1970). Gaussian sample functions and the Hausdorff dimension of level crossings.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 249-256.

ROSENBLATT, M. (1972). Central limit theorem for stationary processes. Proc. Sixth
Berkeley Symp. Math. Statist. Prob. 3 551-561.

TAYLOR, S. J. (1955). The a-dimensional measure of the graph and set of zeroes of a
Brownian path. Proc. Cambridge Philos. Soc. 51 Part II, 265-274.

YADRENKO, M. L. (1971). Local properties of sample functions of random fields. Selected
Trans. in Math. Statist. and Probability 10 233-245.

YopEr, L. (1975). The Hausdorff dimensions of the graph and range of N-parameter
Brownian motion in d-space. Ann. Probability 3 169-171.

C.S.I.LR.O.

DI1vISION OF MATHEMATICS AND STATISTICS
ALPHA HOUSE

60 KING STREET

NeEwTOWN, N.S.W.

AUSTRALIA



