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A MARTINGALE INEQUALITY FOR THE
EMPIRICAL PROCESS

By JoN A. WELLNER
University of Washington

A martingale inequality for the pq distance from the uniform empirical
process to zero is proved, compared with other inequalities for the process,
and used to establish a law of the iterated logarithm.

1. Introduction. Forn > 11let§,, ..., &, be i.i.d. uniform (0, 1) rv’s and let
T, denote their empirical df. The uniform empirical process U, is the process on
[0, 1] defined by U, = n¥(T', — I) where I denotes the identity function /(¢) = 1.
If g is a nonnegative function approaching zero at the endpoints of the interval
[0, 1] and x, y are functions on [0, 1], the p,-metric is defined by

Po(x,¥) = p(x/q, y[q) = sUPrc,ar [X(1) — Y(O/q(2)
where p denotes the usual supremum metric. The convergence of U, with re-
spect to certain of these p,-metrics has become an important tool in the study
of linear rank statistics [11], linear combinations of order statistics [12], and
sample quantiles [15].

Our main object here is to prove a martingale type inequality for the p, dis-
tance from U, to zero and show how it may be combined with a Berry-Esseen
theorem of Katz [7] to prove a law of the iterated logarithm for U,. Theorem 1
presents the new inequality; Corollaries 1 and 2 relate it to inequalities for U,
due to Pyke and Shorack [11], and Dvoretzky, Kiefer and Wolfowitz [3]. Fi-
nally, the power of the new inequality is illustrated in the proof of Theorem 2.
This theorem is in the spirit of Chover’s proof [2] of Strassen’s law of the iter-
ated logarithm [14] which requires 2 + § moments with § > 0 as opposed to
Strassen’s proof which requires only second moments. While the approach
taken in the proof of Theorem 2 yields a result which is weaker than a theorem
of James [6], it has the virtue of simplicity. In [15] we use the inequality of
Theorem 1 to establish a different type of strong limit theorem for U,.

2. The inequality. Our proof of Theorem 1 will rely upon the fact that the
process U,(1)/(1 — 1),0 < t < 1 is a martingale (cf. [8]) in conjunction with the
following lemmas. Lemma 1 is a special case of Lemma 1 of [13]; Lemma 2 is
a consequence of Doob’s martingale inequality.

Let {X;, j =1, ..., m} be arbitrary rv’s and let {r;, j = 1, - - -, m} be positive
and nondecreasing real numbers; for k =1, - .., m set

Sk = Z?=1 Xj ’ Dk = Z'§=1 (Xj/rj) .
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LEMMA 1. max,cicm [Sel/re < 2 max,cigm |Dil-

Proor. Let Ar;=r;—r;,_,, AD;=D;—D;,, j= 2, .-.,m, Ar,=r,
AD, = D,. Then, by writing X; = r,AD, = Y,{., Ar;AD; and interchanging
the order of summation, one obtains S, = Y., Ar(D, — D,_,). Hence |S;|/r, <
max, <, | D, — D;_,| and this implies the statement of the lemma. g

RemARK 1. If {X;, j=1, ..., m} is a martingale-difference sequence then
{Dy, k = 1, - - -, m}is a martingale transform and under the present conditions is
itself a martingale (confer [1]).

To state the second lemma, let {T,, &, k = 1, - - -, m} be a positive submar-
tingale.

LEMMA 2. Forall 2 >0

P(max, e, Ty = 22) < A7 E(Ty, 117,20 -
ProoF. Let M, = maX, <. I%- From Doob’s martingale inequality,
22P(M,,, = 22) < E(Tp 1y,200)
= KT, ltumzzz,rmzzl) + E(T,, ltumzzz,rmal)
< E(Twlipyan) + AP(M,y = 23) . 0
Let & denote the set of positive continuous functions on [0, 1] which are

nondecreasing on [0, 4], symmetric about %, and have {j¢=?dI < co. The
functions ¢(f) = [#(1 — £)]i~? with 0 < § < } are all in &; so are the functions

q(t) = [t(1 — 0)]f[—log[1«(1 — )]+ with § > 0.
THEOREM 1. Let gc & and § € (0,%]. Then forall 2 > 0

U,
(1) P<SuPo<zso L&%“ = 41) = X_IE(lTnll[lrnlzll)
where T, = n=% 3.7, Y,, the sum of the i.i.d. rv’s
i = ——“1 — {6 —‘—"l dI
94(5:) (1 —I)g,

i=1,...,n with 1/g, = q*1,4. Furthermore, the Ys have E(Y;) =0 and
Var (Y,) = (¢ ¢*dl.

Proof. Let W, (1) = U,(t)/(1 — t); W, is a martingale in ¢ for each fixed n (cf.
[8]or [10], page 42) with covariance s/(1 — s), s < t. Also let r(1) = q()/(1 — ).
Form = 2*, h > l aninteger,and 1 < k < m, define X, = W,(k/m) — W,((k —
1)/m) and r, = r(k/m). Note that the r,’s are nondecreasing for 1 < k < [mf].
Then, using Lemmas 1 and 2

P <SuPo<zso 1001 > 41) = lim,_, P <max15k5[m0] W (kfm)] > 43)
q(2) T
(2 = lim,_, P (maxlskg[mel w > 41)

3
< lim, ., P(Max,gigimoy | 55 (X;/7;)| > 24)
< lim,_, A7 E( 51 (X/r))| lllzg’””](xj/rjnnl)
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where the first inequality follows from Lemma 1 and the second inequality fol-
lows from Lemma 2 since, by Remark 1, {25 (X/r), k=1, ... [mf]}is a
martingale. We now show that

3) T, = lim, .. 41 (X, /r;)

exists for each w e Q and equals T, of the statement of the theorem. Write
W =n=4 317, Q; with Qy(r) = (1, 4(&) — /(1 — ©). Using this together with
the definition of X in (3) and interchanging the order of summation one obtains

ro s stm . o) - 0 ()

Since the Q, are i.i.d. processes, it suffices to show that this last limit exists for
i = 1 and equals Y, of the statement of the theorem. For s <t

_ 1 (t—s)
Oi(1) — Qu(s) = (—1—_7) Loa(6) — m L u(6)

and hence, taking ¢ = j/m, s = (j — 1)/m and using the monotone convergence
theorem

z{a(2) - o (15 ,
= EE Rl — L e

R L L S
90(£1) (1 —1)g,
~v,.

Now the first assertion of the theorem follows if the limit on 4 and integration
with respect to P in the last line of (2) may be interchanged; this follows easily
from standard theorems (e.g., [9], page 52) since the sequence {341 (X T
m = 1} is bounded in L, and hence uniformly integrable.

That E(Y,) = 0 and Var (Y,) = (¢ q~*dl is easily verified by straightforward
computation. []

REMARK 2. The process {B,(f) = (1 + NUL(t[(1 4 1)), 0 < t < oo} is also a
martingale and has the same covariance as Brownian motion, E(B,(s)B,(t)) =
s A t. Note that the random variable 7, may be written in terms of the process
B, as

T,=\{fdB,
where f(r) = [(1 + H)q(t/(1 4 1)]*, 6% = 0/(1 — 6), and the integral is to be
interpreted as an improper (since Jf is unbounded near zero) Riemann-Stieltjes

integral. In analogy with stochastic integrals (of deterministic L, functions) with
respect to Brownian motion ([5], page 21) it is not surprising that

E(T,)y =" f*dl = \{ q~*dI .
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REMARK 3. Forge &, (§g~*dl — 0 as # — 0 and hence Var (Y;) can be made
arbitrarily small by choosing ¢ small.

ReEMARK 4. If §} g=*-? dI < oo for some 0 > 0, then the C, and Jensen in-
equalities may be used to show that E|Y,|*** < C(9) {§ ¢=*~° dI < oo with C(3) =
3.2t49,

By use of the Birnbaum-Marshall inequality it may be shown that (confer
[10], page 41 and Lemma 2.2 of [11])

) P<Supo<t§0 LA = Z) <20 qtdl.

q(t)
When ¢ = 1, § = 1 Dvoretzky, Kiefer and Wolfowitz [3] proved that
(5) };’(Suposé1 |U”(t)[ > ,{) < Ce-242

for some absolute constant C > 0. The following corollaries of Theorem 1
shows that (1) implies versions of the inequalities (4) and (5) which differ from
them by constant factors.

COROLLARY 1. For qe & and A > 0

1UL()] o g
() P (supoceso o 2 1) < 1627 {§ gl

Proor. This follows immediately from (1) and E(T,?) = §{ ¢~*dl. []
COROLLARY 2. Forall 2 >0
™ P(SUpyg,<, |UL(F)] = 2) < 8(2m)-ta-te~ 2"/

Proor. For ¢ = 1 the inequality (1) holds for any 0 < 6 < 1 since r(f) =
(1 — r)~'is increasing on [0, 1). Letting 6 — 1 the Y, of Theorem 1 become

Y,=1—(i(1l =I)*dl=1+4log(l — &)= —(exp(l) — 1)
where exp(1) denotes an exponential rv with scale parameter one. Therefore

T, = —n~¥G, — n) where G, denotes a gamma (n, 1) rv and the right side of
(1) may be computed exactly:

E(lTnllur,,lgu) =

nrt

i'e—n {(1 _ xn)nenln + (1 + Xn)”e‘“n}
n.

where 2, = in~t. Use of Stirling’s formula and the elementary inequalities
log(l —x) £ —x — 4x* and log(1+ x) < x — &x*, 0 < x < 1 (recall that
SUPy<i1 |Un(#)] < nt and hence we need only consider 42 < nt or 2, < 1) to
bound this last expression yields

P(supyg,<; |U,(0)] = 42) < (2/m)ta-le- ™22
which implies (7). [J

The inequalities (6) and (7) are not as sharp as the inequalities (4) and (5) es-
sentially because of the two factors of two which enter through Lemmas 1 and
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2. However, (1) holds for all g € & and is more powerful than (4). In the fol-
lowing we use (1) to establish a law of the iterated logarithm for U,.

3. A law of the iterated logarithm for U,. Let b, = (2 loglog n) and let
B ={feC[0,1]: f(0) = 0 = f(1), f = §5 f"dI, S (f)"dl < 1}.

Finkelstein [4] has shown that with probability one the sequence {U,/b,, n = 1}
is relatively compact with respect to the supremum metric p and has limit set B.
James [6] extended this conclusion to the metrics p, for a class of functions ¢
which is slightly larger than &7; he shows that finiteness of the integral

§6 g*{log log (I(1 — I))~'}-'dI
is both necessary and sufficient for this convergence.

Here we use Theorem 1 in conjunction with the Berry-Esseen estimate of
Katz [7] to establish the relative compactness of U, /b, with respect to p, for a
class of functions ¢ which is slightly smaller than €. The proof is in the spirit
of Chover’s [2] proof of Strassen’s law of the iterated logarithm under the as-
sumption of a finite 2 4 ¢ moment, > 0, and is considerably simpler than the
proofs of [6]. In [16] we use the convergence given by Theorem 2 or [6] to
prove a law of the iterated logarithm for linear combinations of order statistics;
in[15] Theorem 1 is used to prove a different type of strong limit theorem for U,,.

For 6 > 0 let &, denote the subset of & having {} ¢~*~% dI < oo.

THEOREM 2. Let g € &; for some 6 > 0. Then with probability one the sequence
{U,/b,, n = 1} is relatively compact with respect to p, with limit set B.

Proor. Suppose ge &,. In view of Finkelstein’s [4] proof of the relative
compactness with respect to the supremum metric p and symmetry of the pro-
cess about ¢ = %, it suffices to show that with probability one

8 lim,_, lim sup,,_,., su M:O.
(8) 00 Pr—o SUPo<tso (05,

Let ¢ > 0 and take 42 = ¢b,/4 in (1). Application of the Cauchy-Schwarz
inequality to (1) yields a bound involving {P(|T,| = ¢b,/4)}!. Since qe &,
Remark 4 implies that a 2 4 d version of the Berry-Esseen theorem [7] may be
used to bound this probability.

Let ¢, = Var (Y;) = {{ ¢*dl, C, = E|(Y/o,)**’, and denote the standard
normal density by ¢. Using the Berry-Esseen bound, Mill’s ratio, and
(a + b)* < a* + b? one obtains, for n = 3,

om0 )2 () (50 (2) -}

= ¢ exp <—% <Z¢€7—>2 log log n> + c,ﬁ-"/‘*

[4

where ¢,, ¢, are constants depending on ¢ and 6 but not on n. By Remark 3, ¢
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may be chosen so small that }(¢/40,)* > 1; with this choice of # the above in-
equality implies, via Borel-Cantelli, that with probability one the lim sup in (7)
is less than ¢ for a subsequence of the form n, = [@*] with @ > 1. This is easily
extended to the full sequence in the usual way using (the Banach space version
of) Skorohod’s inequality, and since ¢ is arbitrary (8) holds. []
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dissertation prepared at the University of Washington under the direction of
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