A MARTINGALE INEQUALITY FOR THE EMPIRICAL PROCESS

By Jon A. Wellner

University of Washington

A martingale inequality for the ρ_q distance from the uniform empirical process to zero is proved, compared with other inequalities for the process, and used to establish a law of the iterated logarithm.

1. Introduction. For $n \ge 1$ let ξ_1, \dots, ξ_n be i.i.d. uniform (0, 1) rv's and let Γ_n denote their empirical df. The uniform empirical process U_n is the process on [0, 1] defined by $U_n = n^{\frac{1}{2}}(\Gamma_n - I)$ where I denotes the identity function I(t) = t. If q is a nonnegative function approaching zero at the endpoints of the interval [0, 1] and x, y are functions on [0, 1], the ρ_q -metric is defined by

$$\rho_q(x, y) = \rho(x/q, y/q) = \sup_{0 < t < 1} |x(t) - y(t)|/q(t)$$

where ρ denotes the usual supremum metric. The convergence of U_n with respect to certain of these ρ_q -metrics has become an important tool in the study of linear rank statistics [11], linear combinations of order statistics [12], and sample quantiles [15].

Our main object here is to prove a martingale type inequality for the ρ_q distance from U_n to zero and show how it may be combined with a Berry-Esseen theorem of Katz [7] to prove a law of the iterated logarithm for U_n . Theorem 1 presents the new inequality; Corollaries 1 and 2 relate it to inequalities for U_n due to Pyke and Shorack [11], and Dvoretzky, Kiefer and Wolfowitz [3]. Finally, the power of the new inequality is illustrated in the proof of Theorem 2. This theorem is in the spirit of Chover's proof [2] of Strassen's law of the iterated logarithm [14] which requires $2 + \delta$ moments with $\delta > 0$ as opposed to Strassen's proof which requires only second moments. While the approach taken in the proof of Theorem 2 yields a result which is weaker than a theorem of James [6], it has the virtue of simplicity. In [15] we use the inequality of Theorem 1 to establish a different type of strong limit theorem for U_n .

2. The inequality. Our proof of Theorem 1 will rely upon the fact that the process $U_n(t)/(1-t)$, $0 \le t < 1$ is a martingale (cf. [8]) in conjunction with the following lemmas. Lemma 1 is a special case of Lemma 1 of [13]; Lemma 2 is a consequence of Doob's martingale inequality.

Let $\{X_j, j=1, \dots, m\}$ be arbitrary rv's and let $\{r_j, j=1, \dots, m\}$ be positive and nondecreasing real numbers; for $k=1, \dots, m$ set

$$S_k = \sum_{j=1}^k X_j$$
, $D_k = \sum_{j=1}^k (X_j/r_j)$.

Received May 13, 1976.

AMS 1970 subject classifications. Primary 62E10, 60G45; Secondary 60F15.

Key words and phrases. Inequalities, empirical process, martingale, law of the iterated logarithm.

The Annals of Probability.

www.jstor.org

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

LEMMA 1. $\max_{1 \le k \le m} |S_k|/r_k \le 2 \max_{1 \le k \le m} |D_k|$.

PROOF. Let $\Delta r_j = r_j - r_{j-1}$, $\Delta D_j = D_j - D_{j-1}$, $j = 2, \dots, m$, $\Delta r_1 = r_1$, $\Delta D_1 = D_1$. Then, by writing $X_j = r_j \Delta D_j = \sum_{i=1}^j \Delta r_i \Delta D_j$ and interchanging the order of summation, one obtains $S_k = \sum_{i=1}^k \Delta r_i (D_k - D_{i-1})$. Hence $|S_k|/r_k \leq \max_{1 \leq i \leq k} |D_k - D_{i-1}|$ and this implies the statement of the lemma. \square

REMARK 1. If $\{X_j, j = 1, \dots, m\}$ is a martingale-difference sequence then $\{D_k, k = 1, \dots, m\}$ is a martingale transform and under the present conditions is itself a martingale (confer [1]).

To state the second lemma, let $\{T_k, \mathcal{E}_k, k = 1, \dots, m\}$ be a positive submartingale.

LEMMA 2. For all $\lambda > 0$

$$P(\max_{1 \le k \le m} T_k \ge 2\lambda) \le \lambda^{-1} E(T_m 1_{[T_m \ge \lambda]}).$$

PROOF. Let $M_m = \max_{1 \le k \le m} T_k$. From Doob's martingale inequality,

$$\begin{split} 2\lambda P(M_m &\geq 2\lambda) \leq E(T_m \, \mathbf{1}_{\lfloor M_m \geq 2\lambda, T_m \geq \lambda \rfloor}) \\ &= E(T_m \, \mathbf{1}_{\lfloor M_m \geq 2\lambda, T_m \geq \lambda \rfloor}) + E(T_m \, \mathbf{1}_{\lfloor M_m \geq 2\lambda, T_m < \lambda \rfloor}) \\ &\leq E(T_m \, \mathbf{1}_{\lfloor T_m \geq \lambda \rfloor}) + \lambda P(M_m \geq 2\lambda) \; . \end{split}$$

Let $\mathscr Q$ denote the set of positive continuous functions on [0,1] which are nondecreasing on $[0,\frac{1}{2}]$, symmetric about $\frac{1}{2}$, and have $\int_0^1 q^{-2} dI < \infty$. The functions $q(t) = [t(1-t)]^{\frac{1}{2}-\delta}$ with $0 < \delta \leq \frac{1}{2}$ are all in $\mathscr Q$; so are the functions $q(t) = [t(1-t)]^{\frac{1}{2}}[-\log[t(1-t)]]^{\frac{1}{2}+\delta}$ with $\delta > 0$.

THEOREM 1. Let $q \in \mathcal{Q}$ and $\theta \in (0, \frac{1}{2}]$. Then for all $\lambda > 0$

(1)
$$P\left(\sup_{0 < t \le \theta} \frac{|U_n(t)|}{q(t)} \ge 4\lambda\right) \le \lambda^{-1} E(|T_n| \mathbb{1}_{[|T_n| \ge \lambda]})$$

where $T_n = n^{-\frac{1}{2}} \sum_{i=1}^n Y_i$, the sum of the i.i.d. rv's

$$Y_i = rac{1}{q_{ heta}(\xi_i)} - \int_0^{\xi_i} rac{1}{(1-I)q_{ heta}} dI$$

 $i=1, \dots, n$ with $1/q_{\theta}=q^{-1}1_{(0,\theta)}$. Furthermore, the Y_i 's have $E(Y_i)=0$ and $Var(Y_i)=\int_0^{\theta}q^{-2}dI$.

PROOF. Let $W_n(t) = U_n(t)/(1-t)$; W_n is a martingale in t for each fixed n (cf. [8] or [10], page 42) with covariance s/(1-s), $s \le t$. Also let r(t) = q(t)/(1-t). For $m = 2^h$, $h \ge 1$ an integer, and $1 \le k \le m$, define $X_k = W_n(k/m) - W_n((k-1)/m)$ and $r_k = r(k/m)$. Note that the r_k 's are nondecreasing for $1 \le k \le [m\theta]$. Then, using Lemmas 1 and 2

$$P\left(\sup_{0< t \leq \theta} \frac{|U_n(t)|}{q(t)} > 4\lambda\right) = \lim_{h \to \infty} P\left(\max_{1 \leq k \leq \lfloor m\theta \rfloor} \frac{|W_n(k/m)|}{r_k} > 4\lambda\right)$$

$$= \lim_{h \to \infty} P\left(\max_{1 \leq k \leq \lfloor m\theta \rfloor} \frac{|\sum_{1}^{k} X_j|}{r_k} > 4\lambda\right)$$

$$\leq \lim_{h \to \infty} P(\max_{1 \leq k \leq \lfloor m\theta \rfloor} |\sum_{1}^{k} (X_j/r_j)| > 2\lambda)$$

$$\leq \lim_{h \to \infty} \lambda^{-1} E(|\sum_{1}^{m\theta} (X_j/r_j)| 1_{\left|\sum_{1}^{m\theta} (X_j/r_j)| > \lambda\right|})$$

where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 2 since, by Remark 1, $\{\sum_{j=1}^{k} (X_j/r_j), k=1, \cdots, [m\theta]\}$ is a martingale. We now show that

$$T_n \equiv \lim_{h \to \infty} \sum_{i=1}^{\lfloor m\theta \rfloor} (X_i/r_i)$$

exists for each $\omega \in \Omega$ and equals T_n of the statement of the theorem. Write $W_n = n^{-\frac{1}{2}} \sum_{i=1}^n Q_i$ with $Q_i(t) = (1_{(0,t]}(\xi_i) - t)/(1-t)$. Using this together with the definition of X_j in (3) and interchanging the order of summation one obtains

$$T_n = n^{-\frac{1}{2}} \sum_{i=1}^n \lim_{h \to \infty} \sum_{j=1}^{\lfloor m\theta \rfloor} \left\{ Q_i \left(\frac{j}{m} \right) - Q_i \left(\frac{j-1}{m} \right) \right\} / r_j.$$

Since the Q_i are i.i.d. processes, it suffices to show that this last limit exists for i = 1 and equals Y_1 of the statement of the theorem. For s < t

$$Q_1(t) - Q_1(s) = \frac{1}{(1-t)} 1_{(s,t]}(\xi_1) - \frac{(t-s)}{(1-s)(1-t)} 1_{(s,1]}(\xi_1)$$

and hence, taking t=j/m, s=(j-1)/m and using the monotone convergence theorem

$$\begin{split} & \sum_{j=1}^{\lfloor m\theta \rfloor} \left\{ Q_1 \left(\frac{j}{m} \right) - Q_1 \left(\frac{j-1}{m} \right) \right\} \middle/ r_j \\ & = \sum_{j=1}^{\lfloor m\theta \rfloor} \frac{1_{((j-1)/m,j/m]}(\xi_1)}{(1-(j/m))r_j} - \frac{1}{m} \sum_{j=1}^{\lfloor m\theta \rfloor} \frac{1_{((j-1)/m,1]}(\xi_1)}{(1-(j-1)/m)(1-j/m)r_j} \\ & \to \frac{1}{q_{\theta}(\xi_1)} - \int_0^{\xi} \xi_1 \frac{1}{(1-I)q_{\theta}} \, dI \quad h \to \infty \\ & = Y_1 \, . \end{split}$$

Now the first assertion of the theorem follows if the limit on h and integration with respect to P in the last line of (2) may be interchanged; this follows easily from standard theorems (e.g., [9], page 52) since the sequence $\{\sum_{j=1}^{\lfloor m\theta\rfloor} (X_j/r_j), m \ge 1\}$ is bounded in L_2 and hence uniformly integrable.

That $E(Y_1)=0$ and $Var(Y_1)=\int_0^\theta q^{-2}\,dI$ is easily verified by straightforward computation. \square

REMARK 2. The process $\{B_n(t) \equiv (1+t)U_n(t/(1+t)), 0 \le t < \infty\}$ is also a martingale and has the same covariance as Brownian motion, $E(B_n(s)B_n(t)) = s \wedge t$. Note that the random variable T_n may be written in terms of the process B_n as

$$T_n = \int_0^{\theta^*} f \, dB_n$$

where $f(t) = [(1+t)q(t/(1+t))]^{-1}$, $\theta^* = \theta/(1-\theta)$, and the integral is to be interpreted as an improper (since f is unbounded near zero) Riemann-Stieltjes integral. In analogy with stochastic integrals (of deterministic L_2 functions) with respect to Brownian motion ([5], page 21) it is not surprising that

$$E(T_n^2) = \int_0^{\theta^*} f^2 dI = \int_0^{\theta} q^{-2} dI.$$

REMARK 3. For $q \in \mathcal{C}$, $\int_0^{\theta} q^{-2} dI \to 0$ as $\theta \to 0$ and hence $\text{Var}(Y_1)$ can be made arbitrarily small by choosing θ small.

REMARK 4. If $\int_0^1 q^{-2-\delta} dI < \infty$ for some $\delta > 0$, then the C_r and Jensen inequalities may be used to show that $E|Y_1|^{2+\delta} \le C(\delta) \int_0^\theta q^{-2-\delta} dI < \infty$ with $C(\delta) = 3 \cdot 2^{1+\delta}$.

By use of the Birnbaum-Marshall inequality it may be shown that (confer [10], page 41 and Lemma 2.2 of [11])

$$(4) P\left(\sup_{0< t \leq \theta} \frac{|U_n(t)|}{q(t)} \geq \lambda\right) \leq \lambda^{-2} \int_0^{\theta} q^{-2} dI.$$

When $q \equiv 1$, $\theta = 1$ Dvoretzky, Kiefer and Wolfowitz [3] proved that

(5)
$$P(\sup_{0 \le t \le 1} |U_n(t)| \ge \lambda) \le Ce^{-2\lambda^2}$$

for some absolute constant C > 0. The following corollaries of Theorem 1 shows that (1) implies versions of the inequalities (4) and (5) which differ from them by constant factors.

Corollary 1. For $q \in \mathbb{Q}$ and $\lambda > 0$

(6)
$$P\left(\sup_{0 < t \leq \theta} \frac{|U_n(t)|}{q(t)} \geq \lambda\right) \leq 16\lambda^{-2} \int_0^\theta q^{-2} dI.$$

PROOF. This follows immediately from (1) and $E(T_n^2) = \int_0^\theta q^{-2} dI$.

COROLLARY 2. For all $\lambda > 0$

(7)
$$P(\sup_{0 \le t \le 1} |U_n(t)| \ge \lambda) \le 8(2\pi)^{-\frac{1}{2}} \lambda^{-1} e^{-\lambda^2/50}.$$

PROOF. For $q \equiv 1$ the inequality (1) holds for any $0 < \theta < 1$ since $r(t) = (1-t)^{-1}$ is increasing on [0, 1). Letting $\theta \to 1$ the Y_i of Theorem 1 become

$$Y_i = 1 - \int_0^{\xi_i} (1 - I)^{-1} dI = 1 + \log(1 - \xi_i) = -(\exp(1) - 1)$$

where $\exp(1)$ denotes an exponential rv with scale parameter one. Therefore $T_n = -n^{-\frac{1}{2}}(G_n - n)$ where G_n denotes a gamma (n, 1) rv and the right side of (1) may be computed exactly:

$$E(|T_n|1_{\{|T_n| \ge \lambda\}}) = \frac{n^{n+\frac{1}{2}}e^{-n}}{n!} \{ (1-\lambda_n)^n e^{n\lambda_n} + (1+\lambda_n)^n e^{-n\lambda_n} \}$$

where $\lambda_n \equiv \lambda n^{-\frac{1}{2}}$. Use of Stirling's formula and the elementary inequalities $\log (1-x) \leq -x - \frac{1}{2}x^2$ and $\log (1+x) \leq x - \frac{8}{25}x^2$, $0 \leq x \leq \frac{1}{4}$ (recall that $\sup_{0 \leq t \leq 1} |U_n(t)| \leq n^{\frac{1}{2}}$ and hence we need only consider $4\lambda \leq n^{\frac{1}{2}}$ or $\lambda_n \leq \frac{1}{4}$) to bound this last expression yields

$$P(\sup_{0 \le t \le 1} |U_n(t)| \ge 4\lambda) \le (2/\pi)^{\frac{1}{2}} \lambda^{-1} e^{-(8/25)\lambda^2}$$

which implies (7).

The inequalities (6) and (7) are not as sharp as the inequalities (4) and (5) essentially because of the two factors of two which enter through Lemmas 1 and

- 2. However, (1) holds for all $q \in \mathcal{O}$ and is more powerful than (4). In the following we use (1) to establish a law of the iterated logarithm for U_n .
 - 3. A law of the iterated logarithm for U_n . Let $b_n = (2 \log \log n)^{\frac{1}{2}}$ and let

$$\mathbb{B} = \{ f \in C[0, 1] : f(0) = 0 = f(1), f = \int_0^{\bullet} f' \, dI, \int_0^1 (f')^2 \, dI \leq 1 \}.$$

Finkelstein [4] has shown that with probability one the sequence $\{U_n/b_n, n \ge 1\}$ is relatively compact with respect to the supremum metric ρ and has limit set \mathbb{B} . James [6] extended this conclusion to the metrics ρ_q for a class of functions q which is slightly larger than \mathcal{Q} ; he shows that finiteness of the integral

$$\int_0^1 q^{-2} \{ \log \log (I(1-I))^{-1} \}^{-1} dI$$

is both necessary and sufficient for this convergence.

Here we use Theorem 1 in conjunction with the Berry-Esseen estimate of Katz [7] to establish the relative compactness of U_n/b_n with respect to ρ_q for a class of functions q which is slightly smaller than \mathscr{Q} . The proof is in the spirit of Chover's [2] proof of Strassen's law of the iterated logarithm under the assumption of a finite $2+\delta$ moment, $\delta>0$, and is considerably simpler than the proofs of [6]. In [16] we use the convergence given by Theorem 2 or [6] to prove a law of the iterated logarithm for linear combinations of order statistics; in [15] Theorem 1 is used to prove a different type of strong limit theorem for U_n . For $\delta>0$ let \mathscr{Q}_δ denote the subset of \mathscr{Q} having $\int_0^1 q^{-2-\delta} dI < \infty$.

THEOREM 2. Let $q \in \mathcal{Q}_{\delta}$ for some $\delta > 0$. Then with probability one the sequence $\{U_n/b_n, n \geq 1\}$ is relatively compact with respect to ρ_q with limit set \mathbb{B} .

PROOF. Suppose $q \in \mathcal{Q}_{\delta}$. In view of Finkelstein's [4] proof of the relative compactness with respect to the supremum metric ρ and symmetry of the process about $t = \frac{1}{2}$, it suffices to show that with probability one

(8)
$$\lim_{\theta \to 0} \lim \sup_{n \to \infty} \sup_{0 < t \le \theta} \frac{|U_n(t)|}{q(t)b_n} = 0.$$

Let $\varepsilon > 0$ and take $\lambda = \varepsilon b_n/4$ in (1). Application of the Cauchy-Schwarz inequality to (1) yields a bound involving $\{P(|T_n| \ge \varepsilon b_n/4)\}^{\frac{1}{2}}$. Since $q \in \mathcal{Q}_{\delta}$, Remark 4 implies that a $2 + \delta$ version of the Berry-Esseen theorem [7] may be used to bound this probability.

Let $\sigma_{\theta}^2 = \text{Var}(\bar{Y_1}) = \int_0^{\theta} q^{-2} dI$, $C_{\theta} = E|(Y/\sigma_{\theta})|^{2+\delta}$, and denote the standard normal density by ϕ . Using the Berry-Esseen bound, Mill's ratio, and $(a+b)^{\frac{1}{2}} \leq a^{\frac{1}{2}} + b^{\frac{1}{2}}$ one obtains, for $n \geq 3$,

$$P\left(\sup_{0< t \le \theta} \frac{|U_n(t)|}{q(t)b_n} \ge \varepsilon\right) \le \left(\frac{4}{\varepsilon b_n}\right) \sigma_\theta \left\{ \left(\frac{8\sigma_\theta}{\varepsilon b_n}\right) \phi\left(\frac{\varepsilon b_n}{4\sigma_\theta}\right) + C \cdot C_\theta n^{-\delta/2} \right\}^{\frac{1}{2}}$$

$$\le c_1 \exp\left(-\frac{1}{2} \left(\frac{\varepsilon}{4\sigma_\theta}\right)^2 \log \log n\right) + c_2 n^{-\delta/4}$$

where c_1 , c_2 are constants depending on ε and θ but not on n. By Remark 3, θ

may be chosen so small that $\frac{1}{2}(\varepsilon/4\sigma_{\theta})^2 > 1$; with this choice of θ the above inequality implies, via Borel-Cantelli, that with probability one the lim sup in (7) is less than ε for a subsequence of the form $n_k = [\alpha^k]$ with $\alpha > 1$. This is easily extended to the full sequence in the usual way using (the Banach space version of) Skorohod's inequality, and since ε is arbitrary (8) holds. \square

Acknowledgment. This paper is based on part of the author's 1975 Ph. D. dissertation prepared at the University of Washington under the direction of Galen R. Shorack.

REFERENCES

- [1] Burkholder, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
- [2] CHOVER, J. (1966). On Strassen's version of the log log law. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 83-90.
- [3] DVORETZKY, A., KIEFER, J. and WOLFOWITZ, J. (1956). Asymptotic minimax character of the sample distribution function and the classical multinomial estimator. *Ann. Math. Statist.* 27 642-669.
- [4] FINKELSTEIN, H. (1971). The law of the iterated logarithm for empirical distributions. *Ann. Math. Statist.* 42 607-615.
- [5] McKean, H. P. (1969). Stochastic Integrals. Academic Press, New York.
- [6] JAMES, B. R. (1975). A functional law of the iterated logarithm for weighted empirical distributions. Ann. Probability 3 762-772.
- [7] KATZ, M. L. (1963). Note on the Berry-Esseen theorem. Ann. Math. Statist. 34 1107-1108.
- [8] Kiefer, J. (1972). Skorohod embedding of multivariate rv's and the sample df. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 1-35.
- [9] Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.
- [10] Puri, M. L. and Sen, P. K. (1971). Nonparametric Methods in Multivariate Analysis. Wiley, New York.
- [11] PYKE, R. and SHORACK, G. R. (1968). Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems. *Ann. Math. Statist.* 39 755-771.
- [12] SHORACK, G. R. (1972). Functions of order statistics. Ann. Math. Statist. 43 412-427.
- [13] SHORACK, G. R. and SMYTHE, R. T. (1976). Inequalities for max $|S_k|/b_k$ where $k \in N^r$. Proc. Amer. Math. Soc. 54 331-336.
- [14] Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 211-226.
- [15] WELLNER, J. A. (1976). Sequential quantile and spacings processes. Submitted to Ann. Statist.
- [16] Wellner, J. A. (1976). A law of the iterated logarithm for order statistics. To appear in *Ann. Statist*.

DEPARTMENT OF STATISTICS UNIVERSITY OF ROCHESTER ROCHESTER, NEW YORK 14627