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ON COMPLETE CONVERGENCE OF DISTRIBUTIONS AND
EXPECTED VALUES OF ORDER STATISTICS

By K. A1YAPPAN NAIR
Edinboro State College

Let {Fn} be a sequence of distribution functions and X(r, n, m) be the
rth order statistic in a sample of size » from F,. In this note we establish
a relationship between the convergences of F,, and EX(r, n, m) as m — oo.

Let X(1,n) < .- < X(n, n) be an ordered sample of size n from a distri-
bution function F. Chan (1967) has shown that the sequence of expectations
{EX(n, n)} completely determines F. Konheim (1971) has provided an alternate
proof for the same result. A more general result is given by Pollak (1973). He
has shown that for any sequence {k(n)} (1 < k(n) < n) of integers, {EX(k(n),
n)} determines F. Gupta (1974) has derived the result of Chan (1967) and
Konheim (1971) assuming that F is discrete.

In this note we prove a result concerning the convergence of distribution
functions and of expected values of order statistics.

Let X(r, n, m) and X(r, n) be the rth order statistics in samples of size n
from the distribution functions F,, and F respectively. For brevity we denote
X(1, 1, m) by X(m) and X(1, 1) by X. Expectations are denoted by E as in E, X,
the suffix F is used only when F is not clear from the context. In the following
F, and F may be continuous or discrete.

THEOREM 1. Suppose F,(x)— F(x) and E|X(m)| — E|X| as m — oco. Then
EX(r,n, m) —» EX(r,n) as m — oo for all r(1 < r < n) and n.

Proor. The distribution function G, of X(r, n, m) is given by

Gu(x) = Zier (F(O[1 = Fu(0)]"
= Zier L35 (=@ ()
(see David (1970), page 7). Hence
EX(ryn, m) = 2t 255 (= 1)°()(7) § x dF, 9 (x).

Since |X]| is uniformly integrable in F,, it follows that |X| is uniformly in-
tegrable in F,**/, and since furthermore F, **/ — Fi+i we find that EX(r, n, m) —

EX(r, n). (See Loéve (1963), page 183.)

THEOREM 2. Suppose for every n there exists a k(n) (1 < k(n) < n) such that
EX(k(n), n, m) — u(k(n), n) as m — oo, and E|X(m)|* < ¢ for some p > 1 and c
finite, then there exists a rv X with distribution function F such that F,, — F com-
pletely as m — oo, and p(k(n), n) = EX(k(n), n).
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Proor. Let {F, } be a subsequence converging to some distribution function
G. Then by a result on page 184 of Loéve (1963), F,. converges to G com-
pletely and E|X(m’)| — E4|X| as m" — oo. Hence by Theorem 1, EX(r, n, m’) —
E X(r,n)as m' — oo forall 1 < r < n. Therefore E, X(k(n), n) = E, X(k(n), n).
This implies that G = F. (See Pollak (1973).) This proves the theorem.

As an application consider the arithmetic mean of a sample of size m from a
population with mean zero and standard deviation unity. If n samples of
size m are taken, the expected value of the rth smallest mean, for large m,
is approximately equal to m~*E,X(r, n) where F(x) is the standard normal
distribution.
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