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A GENERALIZATION OF THE KARLIN-MCGREGOR
THEOREM ON COINCIDENCE PROBABILITIES
AND AN APPLICATION TO CLUSTERING

By F. K. HwaNG
Bell Laboratories

Karlin and McGregor calculated the coincidence probabilities for n°
particles independently executing a Markov process of a certain class. This
note extends their result by allowing the particles to have different stop-
ping times. Applied to a-one-dimensional clustering problem, this gives
a new solution computationally simpler than previous ones.

1. Introduction. Consider a continuous-time Markov process whose state-
space is the set of integers and whose sstates are all stable. Suppose that n labeled
particles start out in states a; > -+ > a, respectively and execute the process
simultaneously and independently under the restriction that whenever a transi-
tion occurs, the particle moves from a given state into only one of the two
neighboring states. Karlin and McGregor [2] proved a theorem which gives the
coincidence probabilities for these particles. In this note we generalize their
theorem by allowing the particles to have different stopping times. The gen-
eralized theorem is applied to a one-dimensional clustering problem.

2. A generalization of the Karlin-McGregor theorem. Let S,(f) denote the
state in which particle i is found at time . Then S;(0) = a;. Let E be the event
that S,(t;,) = B; fori =1, ..., n with 8, > 8, > ... > B,, where ¢, is a given
stopping time for particle i, without any two particles ever having been coin-
cident during the intervening time. Our problem is to find Pr (E), the probability
of the event E.

To compute Pr (E), we need to consider a larger ensemble of events. Let ¢
be a permutation of the set {1, - .-, n}. Let E;; be the event that particle i starts
in state «; and stops at a given time #; in state ‘BJ under the condition C,; (a gen-
eralization of the condition used in [4]) which prescribes that for every #, < ¢;

Si(te) > B j<Kk,
St) < B i j> k.
Let p,; denote the probability of E,;. °

v

GENERALIZED KARLIN-MCGREGOR THEOREM. Suppose eithert, = t,> - - -
orty <t, < --- <t,. Then Pr(E) = det|p,;|.

(The special case that all the stopping times are identical, hence {C;;} a vacuous
set, is known as the Karlin-McGregor ’theorem.)
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Proor. Let ¢ be a permutation of the set {1, ..., n}. Define

. Ea - n?=1 Ea(a‘)]\' .
Then
Pr(E)) = %=1 Pocii -
Therefore o ' '
V det Ipijl = Za Slgn (0) Pr (Ea)

where sign (¢) = 1 or —1 according to whether ¢ is an even or odd permutation.

We first note that if ¢ is not the identity permutation, then E, can be realized
only when a coincidence state has occurred. This conclusion is of course forced
by the conditions {C,;}.

Consider any realization ¢ (of the n joint executions) which has a coincidence
state. Let ¢ be the first time a coincidence occurs in 6, say between particle i
and particle j with i < j (our argument can be easily modified for the case that
more than two particles coincide at ¢°). Let R be the closed region formed by
the path of particle #, the path of particle j and the line # = 0. Then no stop-
ping time can lie in R. Suppose the contrary, that 7, is such a stopping time.
Then either particle x has a coincidence (with particle / or particle j) before 7°
or necessarily i < x < j and ¢, < min {t, ¢;}. But the former possibility is a
contradiction to our definition of #° and the latter a contradiction to our assump-
tion on the stopping times.

Let ¢’ be the realization obtained from 6 by interchanging the paths of particle
i and particle j after #. Then clearly Pr (6) = Pr (6'). Furthermore, if there
exists a stopping time ¢, such that condition C,; is satisfied (on #,) under 6 but
not under ¢, then ¢, must lie in the region R. Since no such 7, exists, § ¢ E,
implies 6’ € E,, for some ¢’. It is also clear that sign (¢) = —sign (¢’). Therefore
Pr (6) and Pr (¢") cancel each other out. Thus only those realizations from E,,
where I is the identity permutation, which do not have coincidence states con-
tribute to the det fp,;|. Since they all have plus signs, we have proved:

det |p,;| = Pr (E).

3. Aone-dimensional clustering problem. Consider N (= 2) points distributed
independently and uniformly in [0, 1). Let n, denote the maximum number of
points contained in a subinterval of size p. The problem is to find the proba-
bility distribution function Pr (n, < n) for all p, n, and N. Wallenstein and Naus
[5] gave a formula for Pr (n, < n) in the case that p is rational. Huntington and
Naus [1] gave a computationally simpler formula which imposes no restrictions
on the parameters. In this section, we apply the generalized Karlin-McGregor
theorem to give a formula for Pr (n, < n) (with no restrictions) which achieves
further computational simplification. Our approach is very similar to what
Saperstein [4] did for a discrete clustering problem known as the generalized
birthday problem.

Define L = [p~'], the largest integer not exceeding p~'. Assume p~! > L, since
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otherwise we can compute Pr (n, < n) by the formula given by Naus [3]. Divide
the interval [0, 1) into L + 1 disjoint half-open intervals 1, -+, I, where the
first L intervals are of length p and the last one is of length p’ =1 — Lp. Let
n,i=1,..., L+ 1, denote the number of points in /; and let z(n, L + 1, N)
be the set of all partitions of N objects into L + 1 ordered parts such that no
part contains n objects or more. Let y,(7) be the number of points in the sub-
interval [(i — Dp, (i — 1)p + ) of I;. Define
pi=7p for 1<iL,
=p for i=L+1.
Then y,(p;) = n.
Let F be the event that a given (L + 1)-tuple (n, - - -, n.,,) € =(n, L + 1, N).
Define

o,

s = nihin;, — (i —1)n

and
Bi = a; + yi(ps) = & + n.
Then
Pr(n, < n, F)

= Pr(n, 4+ () — y(t)y <n forall i=1,...,L and 0 << p,, F)

=Pr(n, — n+ y,.(t) < y(t) forall i=1,...,L and 0 <1=<p,; F)

= Pr(a,, + () < a; + pi(2)

forall i=1,..-,L and 0 £t < p;, F) .
However, a, > a, > -+- > a,,,and B, > B, > - -+ > B, under F. Therefore
the event (n, < n, F) can be interpreted as the event that L + 1 particles with
stopping times ¢, = p, jointly execute a Poisson process without coincidence.
According to the generalized Karlin-McGregor theorem, the probability of this
event is
det {py;l

where C,; is the condition

a, + yi(p)) > fryn for i=1,...,L4+1 and j=1,.--, L,

and

e GPYE LAy — pPPtre i
P = Lbilan =g T r—
/2,9 -—aie—lp- ;—o f—o 1A% NBi—a:—2
= (ﬁz *_'a‘):‘ PSR G ) ') (p; — P ",
i i)
which we abbreviate as (A%~%e~%?i/(8; — a,)!)g;;. Therefore
det | pyl
41 (Aps)rie=*?i[n;t)
n;! 9i; l .
(B; — a)!

Pr(n, < n, F|(ny, « -+, np4) = I

= det
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Finally,

Pr (np <n) = Z(nl,~-~,np+l)sn(n,L+1,N) Pr(n, ---,n,,, | N)
X Pr(n, <n, Fl(ny, « -+, ny,,))
9i; ‘ .

(B; — a)l

The above formula involves computations of the determinant of a (L 4 1) x
(L + 1) matrix as many times as there are partitions in z(n, L + 1, N). The
formula given by Huntington and Naus [1] involves similar computations but
the number of matrices involved equals the number of ways of partitioning N
objectsinto 2L + 1 ordered parts such that the number of objects in two adjacent
parts is always less than n. It is clear that the former collection contains many
fewer elements than the latter. The fact that g,; is a sum has negligible effect
on the computing work since the main effort is spent in inverting the (L + 1) %
(L + 1) matrices.

= N! 2i(ng, gy enin L1,y 96t
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