ON ONE-DIMENSIONAL DIFFUSIONS WITH TIME PARAMETER SET $(-\infty, \infty)$

By J. THEODORE COX

George Institute of Technology

Let p_t , $t \ge 0$ be the probability transition semigroup for a continuous one-dimensional diffusion. We examine continuous Markov processes ξ_s , defined for all $-\infty < s < \infty$, which are governed by p_t . We determine necessary and sufficient conditions for the set of such processes governed by p_t to be nontrivial, and give an example where these conditions are satisfied.

0. Introduction. In [5] and [6] Dynkin uses his work on excessive functions and measures to develop a theory for processes ξ_s ($s \in T$, an interval of real numbers) which are Markovian between random birth time α and death time β . We propose to study a subclass of these processes, obtaining results similar to those in [4]. We consider the case $T = \mathbb{R}$, $\alpha = -\infty$, $\beta = +\infty$, with ξ_s taking values in an interval I. Thus we are looking at one-dimensional diffusions ξ_s , defined for all $-\infty < s < \infty$, which did not "begin" at any instant in time, but have instead been forever evolving according to some fixed (time homogeneous) transition mechanism.

Section 1 presents the necessary definitions and framework. Section 2 deals with the extreme points of the set of measures corresponding to the processes ξ_s ; it presents a theorem of Dynkin's, a characterization of the extreme measures, and some results on the boundary theory involved. In Section 3 we give a necessary and sufficient condition for a transition semigroup to have associated nontrivial processes ξ_s . Finally, a manageable sufficiency condition is given and examples provided.

1. Notation and definitions. Let I be an interval of real numbers, \mathscr{B} the Borel subsets of I. For convenience we assume $r_1 < 0 < r_2$, r_1 , r_2 are the endpoints of I (which may or may not belong to I). Let $p_t = \{p_t(x, B): t \ge 0, x \in I, B \in \mathscr{B}\}$ be the probability transition semigroup of a diffusion $\mathbf{P} = \{P_x\}_{x \in I}$ on I as defined in [7]. X_t ($t \ge 0$) will denote the process, P_x is the p.m. (probability measure) on the path space satisfying $P_x[X_0 = x] = 1$, and E_x is the corresponding expectation operator. Throughout this paper p_t is assumed to be regular, i.e., if $r_1 < x < r_2$, $y \in I$, then $P_x[\tau_y < \infty] > 0$, where τ_y is the usual first hitting time of y.

 p_t has an associated speed measure m and scale function S, as described in [7]. We mention here that S is a strictly increasing, continuous function defined on

Received November 2, 1976.

AMS 1970 subject classifications. Primary 60J60; Secondary 60J50.

Key words and phrases. One-dimensional diffusions, boundary, entrance laws.

I such that for all $x \in [a, b] \subset I$,

(1.1)
$$P_x[\tau_a < \tau_b] = \frac{S(b) - S(x)}{S(b) - S(a)}.$$

If $r_i \notin I$, let $S(r_i) = \lim_{x \to r_i} S(x)$.

Let $C_b(I)$ be the bounded continuous functions defined on I, and $C_c(I)$ those members of $C_b(I)$ with compact support. If $f \in C_b(I)$, the map

$$(1.2) (x, t) \rightarrow E_x[f(X_t)]$$

is jointly continuous.

 p_t is now regarded as fixed, and we wish to investigate continuous, strong Markov processes ξ_s , $s \in \mathbb{R}$, which have transition probabilities p_t . To this end we let Ω be the set of continuous functions from \mathbb{R} to I, ξ_s the coordinate map, $\xi_s(\omega) = \omega(s)$, $\mathscr{F} = \sigma[\xi_s, s \in \mathbb{R}]$, $\mathscr{F}_s = \sigma[\xi_u, u \leq s]$, and $\mathscr{F}_{-\infty} = \bigcap_s \mathscr{F}_s$.

DEFINITION 1.1. $\mathcal{M}(p_t)$ is the set of all p.m.'s \mathscr{P} on (Ω, \mathscr{F}) such that for all $s \in \mathbb{R}$, $t \geq 0$, $B \in \mathscr{B}$,

$$(1.3) \mathscr{T}[\xi_{s+t} \in B | \mathscr{T}_s] = p_t(\xi_s, B) \mathscr{T}-a.e.$$

It is not difficult to show that (1.3) is equivalent to

$$\mathscr{T}[\xi_{s_1} \in B_1, \dots, \xi_{s_n} \in B_n]$$

$$= \int_{B_1} \dots \int_{B_n} \mathscr{T}[\xi_{s_1} \in dx_1] p_{s_0-s_1}(x_1, dx_2) \dots p_{s_n-s_{n-1}}(x_{n-1}, dx_n)$$

for $s_1 < \cdots < s_n$, $B_i \in \mathcal{B}$. If we set $\mu_s(B) = \mathcal{P}[\xi_s \in B]$, and write $\nu p_t(B) = \int \nu(dx) p_t(x, B)$, then

$$\mu_s p_t = \mu_{s+t}, \qquad s \in \mathbb{R}, \ t \geq 0.$$

Conversely, if μ_s is any family of p.m.'s on (I, \mathcal{B}) satisfying (1.4), then μ_s and p_t define an element $\mathcal{S} \in \mathcal{M}(p_t)$. $\{\mu_s\}_{s \in \mathbb{R}}$ is an entrance law for p_t .

 \mathscr{T} will be called trivial if $\mathscr{T}[\xi_s \in B]$ is independent of s for all $B \in \mathscr{B}$, otherwise \mathscr{T} is nontrivial. If p_t has an invariant p.m. ν , $\nu p_t = \nu$, then $\mathscr{M}(p_t)$ contains the trivial \mathscr{T} . $\mathscr{M}(p_t)$ will be called nontrivial if it contains a nontrivial element. An example presented in Section 3 shows that $\mathscr{M}(p_t)$ can indeed be nontrivial. We regard $\mathscr{M}(p_t)$ as the proper realization of the intuitive description given in the introduction, and will now proceed to study $\mathscr{M}(p_t)$.

2. The extreme points. Let $\mathcal{M}(p_t)$ have the topological σ -algebra determined by weak convergence (see [1]). $\mathcal{M}(p_t)$ is convex, and $\mathcal{M}_t(p_t)$ will be the set of extreme points. The following, due to Dynkin, is a special case of Theorem 2.1 in [5].

THEOREM 2.1. $\mathcal{M}_{e}(p_t)$ is a measurable subset of $\mathcal{M}(p_t)$. Each $\mathcal{S} \in \mathcal{M}(p_t)$ is uniquely represented in the form

(2.1)
$$\mathscr{T} = \int_{\mathscr{M}_{\sigma}(p_{\tau})} \mathscr{T}' d\lambda(\mathscr{T}')$$

for some p.m. λ on $\mathcal{M}_{e}(p_{t})$. Furthermore, $\mathcal{S} \in \mathcal{M}_{e}(p_{t})$ iff $\mathcal{F}_{-\infty}$ is \mathcal{S} -trivial, i.e., $\mathcal{S}(A) = 0$ or 1 for all $A \in \mathcal{F}_{-\infty}$.

It will be convenient in what follows to work with vague convergence (\to_v) of sub-p.m.'s as defined in [2] (i.e., $\nu_n \to_v \nu$ if $\int f d\nu_n \to \int f d\nu$ for all $f \in C_c$). The next result gives more information about $\mathscr{M}_c(p_t)$.

PROPOSITION 2.2. (i) If $\mathscr{S} \in \mathscr{M}_{\epsilon}(p_t)$, then there is a continuous function $z: \mathbb{R} \to I$ such that for all $s \in \mathbb{R}$,

$$(2.2) p_{s+t}(z(t), dy) \to_v \mathscr{S}[\xi_s \in dy]$$

as $t \to +\infty$. If $\mathscr S$ is nontrivial, then $z(t) \to r$, where $r=r_1$ or $r=r_2$, and $r \notin I$, $|S(r)|=\infty$.

(ii) If
$$\mathscr{P} \in \mathscr{M}_{e}(p_{t})$$
 is nontrivial, $[a, b] \subset I$, then $\mathscr{P}[a \leq \xi_{s} \leq b] \to 0$ as $s \to -\infty$.

Before turning to the proof we list a few preliminary results. As shown in [7] (Section 2.7) and [8] (Theorems IV.4, IV.6, IV.7), for each $x \in I$ there is a subp.m. π_x

$$(2.3) p_t(x, dy) \to_y \pi_x(dy)$$

as $t \to \infty$. π_x may or may not depend on x, and $\pi_x(I) = 0$ is possible.

LEMMA 2.3. (i) Assume $x(n) \to x \in I$, $t(n) \to \infty$. Then $p_{t(n)}(x(n), dy) \to_v \pi_x(dy)$ as $n \to \infty$.

- (ii) Assume $r \notin I$, $|S(r)| = \infty$, $r = r_1$ or $r = r_2$. Then for all $x \in I$, $p_i(x, dy) \rightarrow_v \pi(dy)$ independently of x, where $\pi(I) = 0$ or $\pi(I) = 1$.
- (iii) As in (ii), assume also that K is a compact continuity set for π , $[a, b] \subset I$. Then $\sup_{a \le x \le b} |p_t(x, K) - \pi(K)| \to 0$.

PROOF. We omit the details. Only equations (1.1) and (2.3) above, and Corollary 2.18 in [7] are used. \square

LEMMA 2.4. Fix $s \in \mathbb{R}$, $f \in C_c(I)$, $\mathscr{P} \in \mathscr{M}(p_t)$, define Z_u by

$$Z_{u} = \mathscr{E}[f(\xi_{s}) | \mathscr{F}_{u}], \qquad u \leq s.$$

Then $(Z_u, \mathcal{F}_u)_{u \leq s}$ is a martingale with continuous sample paths, and

(2.4)
$$Z_u = \int_I p_{s-u}(\xi_u, dy) f(y)$$
.

PROOF. \mathcal{E} denotes expectation wrt \mathcal{P} . The first assertion follows from the definition of Z_u . Equation (2.4) holds because of equation (1.3). Finally equations (1.2) and (2.4) and the fact that ξ_u is continuous imply that Z_u is continuous. \square

The martingale argument which follows was used by Dynkin in [6] and [7] in a more general setting to derive his integral representation theorem. In addition, equation (2.2) falls easily from his construction.

PROOF OF PROPOSITION 2.2. (i) Define Z_u as above. By the martingale convergence theorem there is an $\mathscr{F}_{-\infty}$ -measurable random variable $Z_{-\infty}$ such that $Z_u \to Z_{-\infty}$ \mathscr{F} -a.e. as $u \to -\infty$. By Dynkin's theorem $\mathscr{F}_{-\infty}$ is \mathscr{F} -trivial, which means $Z_{-\infty}$ is a constant (\mathscr{F} -a.e.) and

$$Z_{-\infty} = \mathscr{E}[Z_{-\infty}] = \langle \mathscr{F}[\xi_s \in dy] f(y) .$$

Let Q be the rationals, D a countable dense (in the topology of uniform convergence) subset of $C_{\mathfrak{c}}(I)$. Then there is a subset $\Omega_{\mathfrak{o}} \subset \Omega$, $\mathscr{P}(\Omega_{\mathfrak{o}}) = 1$, such that

$$(2.5) \qquad \qquad \int_{I} p_{s-u}(\xi_{u}, dy) f(y) \to \int_{I} \mathscr{P}[\xi_{s} \in dy] f(y)$$

as $u \to -\infty$ for all $\omega \in \Omega_0$, $s \in \mathbb{R}$, $f \in D$. Standard arguments imply the truth of (2.5) for all $\omega \in \Omega_0$, $s \in \mathbb{R}$, $f \in C_c(I)$. Since $\mathscr{S}(\Omega_0) = 1$, $\Omega_0 \neq \emptyset$. Choose $\bar{\omega} \in \Omega_0$, set $z(t) = \bar{\omega}(-t)$, and (2.2) follows.

Assume \mathscr{P} is nontrivial, $t(n) \to \infty$, $z(n) = z(t(n)) \to r$. If $r \in I$, then by (i) of Lemma 2.3,

$$p_{s+t(n)}(z(n), dy) \longrightarrow_v \pi_r(dy)$$
.

The limit π_r (even if it is a p.m.) is independent of s, and so (2.2) implies \mathscr{P} is trivial. Hence $r \notin I$. Assume $r = r_2$, $|S(r_2)| < \infty$, $[a, b] \subset I$. Eventually z(n) > b, and then

$$p_{s+t(n)}(z(n), [a, b]) \le P_{z(n)}[\tau_b < \infty]$$

$$= \frac{S(r_2) - S(z(n))}{S(r_2) - S(b)}$$

$$\to 0$$

as $n \to \infty$. Hence $\mathscr{P}[\xi_s \in I] = 0$, which is impossible, and $S(r_2) = +\infty$. Finally, since z(t) is continuous, z(t) must tend to one of r_1 or r_2 .

(ii) Follow the proof of Proposition 2.2 in [4]. The missing technical details are provided by (i) of this proposition and Lemma 2.3. □

Note that a necessary condition for $\mathcal{M}(p_t)$ to be nontrivial is that one of the endpoints r not belong to I and $|S(r)| = \infty$. This condition is far from being sufficient. (2.2) describes $\mathcal{M}(p_t)$ (via 2.1) completely, but it is difficult to apply unless the form of p_t is explicitly known.

3. $\mathcal{M}(p_t)$ and entries from the boundary. We introduce the following definition as a refinement of the idea implicit in (2.2).

DEFINITION 3.1. A sequence z(n), $n=1, 2, \cdots$ of elements of I is an entry from ∂I (the boundary of I) for p_t if there are constants $c(n) \to \infty$ and a p.m. Φ on $\mathbb R$ such that

$$(3.1) P_{z(n)}[\tau_0 - c(n) \in du] \to_v \Phi(du) \text{as} n \to \infty.$$

Roughly speaking, z(n) tends to some point in a manner which captures the distribution of the (infinite) time it takes to reach 0 from this point. Further explanation of the terminology is provided by the next results.

THEOREM 3.2. $\mathcal{M}(p_t)$ is nontrivial iff p_t has an entry from ∂I .

COROLLARY. Let p_t have speed m and scale S. If

(3.2)
$$\int_0^{r_2} \int_y^{r_2} dm(u) dS(y) = +\infty , \qquad \int_0^{r_2} \int_y^{r_2} \left(\int_z^{r_2} dm(u) \right)^2 dS(z) dS(y) < \infty ,$$
 then $\mathcal{M}(p_t)$ is nontrivial.

LEMMA 3.3. Assume z(n) is an entry from ∂I for p_t .

- (i) If z(n') is a convergent subsequence of z(n), then $z(n') \to an$ endpoint $r, r \notin I$, $|S(r)| = +\infty$.
- (ii) Assume $z(n) \to r$. Then there is a family of p.m.'s $\{\Phi_x\}_{x \in I}$ on \mathbb{R} such that $P_{z(n)}[\tau_x c(n) \in du] \to_v \Phi_x(du)$.

PROOF. Assume $z(n') \uparrow r \in I$. Let u be a continuity point of $d\Phi$, so

$$\Phi((-\infty, u]) = \lim_{n' \to \infty} P_{z(n')}[\tau_0 \le u + c(n')]$$

$$\ge \lim_{n' \to \infty} P_r[\tau_0 \le u + c(n')]$$

$$= P_r[\tau_0 < \infty].$$

Let $u \downarrow -\infty$ to obtain $P_r[\tau_0 < \infty] = 0$, which is impossible (by regularity) unless r is an endpoint of I. Similar arguments, using the properties of S and the fact that Φ is a p.m., establish $r \notin I$ and $|S(r)| = \infty$.

(ii) The details, similar to those in the proof of Theorem 4.1 in [4], are omitted. \Box

PROOF OF THEOREM 3.2. The plan is to imitate the proof of Theorems 2.3 and 2.4 in [4] whenever possible. Assume z(n) is an entry from ∂I , $z(n) \uparrow r_2$. Fix $s \in \mathbb{R}$, $f \in C_c(I)$, $b = \sup\{y : f(y) \neq 0\}$. Then $b < r_2$, z(n) > b eventually, and

$$\int_{I} p_{s+c(n)}(z(n), dy) f(y) = E_{z(n)}[f(X_{s+c(n)}); \tau_{b} \leq s + c(n)]
= \int_{-\infty}^{\infty} E_{b}[f(X_{s-u})] P_{z(n)}[\tau_{b} - c(n) \in du]
\rightarrow \int_{-\infty}^{\infty} E_{b}[f(X_{s-u})] \Phi_{b}(du)$$

by (3.1), the fact that Φ_b is a p.m., and $u \to E_b[f(X_u)]$ is a bounded continuous function on \mathbb{R} . Here we have set $E_b[f(X_u)] = 0$ for u < 0. Hence there is a sub-p.m. μ_s on (I, \mathcal{B}) such that $p_{s+e(n)}(z(n), dy) \to_v \mu_s(dy)$. Now the argument in [4] shows $\mu_s(I) = 1$, $\mu_s p_t = \mu_{s+t}$, and hence μ_s defines an element $\mathcal{F} \in \mathcal{M}(p_t)$. To see that it is nontrivial let $s \to -\infty$ in the last expression above.

Conversely, if $\mathcal{M}(p_t)$ is nontrivial, Dynkin's theorem guarantees the existence of a nontrivial $\mathcal{P} \in \mathcal{M}_{\epsilon}(p_t)$. Let \mathcal{P} have the representation in (2.2). The argument in [4] shows the family $P_{z(t)}[\tau_0 - t \in du]$ is tight, and hence there is a vague limit Φ which is a p.m.; say $t(n) \to \infty$, $P_{z(t_n)}[\tau_0 - t(n) \in du] \to_v \Phi(du)$. The technicalities are overcome by Lemmas 2.3 and 3.3. \square

PROOF OF COROLLARY. The assumptions imply $S(r_2) = \infty$, $r_2 \notin I$, hence $P_b[\tau_a < \infty] = 1$ for $b > a \in I$. In fact, as shown in [8] (or [7])

$$E_b[\tau_a] = \int_a^b \int_{y^2}^{r_2} dm(u) \, dS(y) \,, \qquad E_b[\tau_a^2] = 2 \int_a^b \int_{y^2}^{r_2} E_u[\tau_a] \, dm(u) \, dS(y) \,.$$

From these formulas one derives

$$\operatorname{Var}_b[\tau_a] = E_b[\tau_a^2] - (E_b[\tau_a])^2 = \int_a^b \int_y^{\tau_2} (\int_z^{\tau_2} dm(u))^2 dS(z) dS(y)$$
.

Hence (3.2) implies

$$\label{eq:limber_limber_2} \lim\nolimits_{b\to r_2} E_b[\tau_0] = +\infty \;, \qquad \lim\nolimits_{b\to r_2} \mathrm{Var}_b\left[\tau_0\right] = \sigma^2 < \infty \;.$$

Since the time from b to 0 is equal in distribution to the sum of (any number of) independent random variables, there must be a p.m. Φ on \mathbb{R} such that

$$(3.3) P_b[\tau_0 - E_b[\tau_0] \in du] \rightarrow_v \Phi(du) , \quad b \rightarrow r_2$$

(see Theorem 4.2 in [4]). So p_t has an entry from ∂I , and $\mathcal{M}(p_t)$ is nontrivial. \square

We note that (3.3) is apparently stronger than (3.1). This is not so, provided we replace $E_b[\tau_0]$ with constants c(b), $c(b) \to \infty$ as $b \to r_2$. Using concentration functions one can "interpolate" between the z(n), as shown in Theorem 3.2.1 in [3].

EXAMPLES. (a) Brownian motion, $I = \mathbb{R}$. $\mathscr{M}(p_t) = \emptyset$, even though each of the boundaries $r = \pm \infty$ do not belong to I and $|S(\pm \infty)| = \infty$. Since p_t does not have an invariant probability measure $\mathscr{M}(p_t)$ cannot contain the trivial element. Now use Theorem 3.2 and the well-known formula for $P_x[\tau_0 \leq t]$ to show $\mathscr{M}(p_t) = \emptyset$.

- (b) Brownian motion on [0, 1] with reflecting barriers. Here $\mathcal{M}(p_t) = \{$ the trivial element $\}$. $\mathcal{M}(p_t)$ cannot be nontrivial by Proposition 2.2, but the diffusion is ergodic, so $\mathcal{M}(p_t) \neq \emptyset$.
- (c) Ornstein-Uhlenbeck process. For a, b, δ positive constants, consider the diffusion defined on $I = \mathbb{R}$ by

$$\lim_{t\downarrow 0} \frac{E_x[f(X_t)] - f(x)}{t} = \frac{1}{2} a f''(x) - b(\operatorname{sgn} x) |x|^{\delta} f'(x) ,$$

or equivalently,

$$m(B) = \int_{B} a^{-1} \exp\left[\frac{-2b|y|^{1+\delta}}{a(1+\delta)}\right] dy$$
$$S(x) = \int_{0}^{x} \exp\left[\frac{2b|y|^{1+\delta}}{a(1+\delta)}\right] dy.$$

If $\delta=1$ we obtain the Ornstein-Uhlenbeck process. Computations show using (3.2) that $\mathcal{M}(p_t)$ is nontrivial for $\frac{1}{3} < \delta \le 1$. If $\delta=1$, using (2.2) and the explicit form of p_t , it can be shown that

$$\mathscr{M}_{s}(p_{t}) = \left\{ \mathscr{S}_{\alpha} \colon \alpha \in \mathbb{R}, \text{ and for } s \in \mathbb{R}, B \in \mathscr{B}, \right.$$
$$\mathscr{S}_{\alpha}[\xi_{s} \in B] = (\pi a/b)^{-\frac{1}{2}} \int_{B} \exp\left[\frac{(y - \alpha e^{-2bs})^{2}}{a/b}\right] dy \left. \right\}.$$

Acknowledgments. Portions of this paper were taken from the author's Ph. D. thesis written at Cornell University under the direction of Professor Frank Spitzer. I wish to thank Professor Spitzer for his guidance. Thanks also to Professor Harry Kesten for his help.

REFERENCES

- [1] BILLINGSLEY, PATRICK (1968). Convergence of Probability Measures. Wiley, New York.
- [2] CHUNG, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic Press, New York.

- [3] Cox, J. Theodore (1976). Entrance laws for Markov chains and one-dimensional diffusions. Ph. D. Thesis, Cornell Univ.
- [4] Cox, J. Theodore (1977). Entrance laws for Markov chains. Ann. Probability 5 533-549.
- [5] DYNKIN, E. B. (1971). The initial and final behavior of trajectories of a Markov process. Russian Math. Surveys 26 165-182.
- [6] DYNKIN, E. B. (1972). Integral representation of excessive measures and excessive functions. Russian Math. Surveys 27 43-84.
- [7] FREEDMAN, DAVID (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco.
- [8] MANDL, P. (1968). Analytical Treatment of One-Dimensional Markov Processes. Springer-Verlag, Berlin.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA 90007