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ON ONE-DIMENSIONAL DIFFUSIONS WITH
TIME PARAMETER SET (— o0, o0)

By J. TuEODORE CoX
George Institute of Technology

Let p;, t = 0 be the probability transition semigroup for a continuous
one-dimensional diffusion. We examine continuous Markov processes &s,
defined for all —oo < s < oo, which are governed by p;. We determine nec-
essary and sufficient conditions for the set of such processes governed by p:
to be nontrivial, and give an example where these conditions are satisfied.

0. Introduction. In [5] and [6] Dynkin uses his work on excessive functions
and measures to develop a theory for processes &, (se T, an interval of real
numbers) which are Markovian between random birth time « and death time .
We propose to study a subclass of these processes, obtaining results similar to
those in [4]. We consider the case T = R, @ = —o0, § = + o0, with &, taking
values in an interval I. Thus we are looking at one-dimensional diffusions &,,
defined for all —co < s < oo, which did not “begin” at any instant in time, but
have instead been forever evolving according to some fixed (time homogeneous)
transition mechanism.

Section 1 presents the necessary definitions and framework. Section 2 deals
with the extreme points of the set of measures corresponding to the processes &,;
it presents a theorem of Dynkin’s, a characterization of the extreme measures,
and some results on the boundary theory involved. In Section 3 we give a
necessary and sufficient condition for a transition semigroup to have associated
nontrivial processes §,. Finally, a manageable sufficiency condition is given and
examples provided.

1. Notation and definitions. Let 7 be an interval of real numbers, <% the
Borel subsets of 1. For convenience we assume r, < 0 < r,, ry, r, are the end-
points of I (which may or may not belong to 7). Let p, = {p(x, B): 1t = 0, xe,
B e &7} be the probability transition semigroup of a diffusion P = {P,},., on I
as defined in [7]. X, (r = 0) will denote the process, P, is the p.m. (probability
measure) on the path space satisfying P,[X, = x] = 1, and E, is the correspond-
ing expectation operator. Throughdut this paper p, is assumed to be regular,
ie.,ifr, < x < ry, yel, then P[r, < o] > 0, where 7, is the usual first hitting
time of y.

p. hasan associated speed measure m and scale function S, as described in [7].
We mention here that S is a strictly increasing, continuous function defined on
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808 J. THEODORE COX

I such that for all xe[a, b] C I,
(1.1) Pz, <7,] =

Ifr, g1, let S(r,) = lim,_, S(x).
Let C,(I) be the bounded continuous functions defined on I, and C,(I) those
members of C,(I) with compact support. If fe C,(I), the map

(1.2) (x 1) = E[f(X)]

is jointly continuous.

p: is now regarded as fixed, and we wish to investigate continuous, strong
Markov processes &,, s € R, which have transition probabilities p,. To this end
we let Q be the set of continuous functions from R to I, §, the coordinate map,
E,((D) = w(s), g = 0‘[53, se R], ‘_7, = U[Eu, u=< S], and ﬁ-_w = n, ‘_g:.

DeriNITION 1.1. _#(p,) is the set of all p.m.’s & on (Q, %) such that for
allseR, t = 0, Be <7,
(1.3) Pléwie Bl F ] = plés B) Fae.
It is not difficult to show that (1.3) is equivalent to

Flé, €By, -, €, €B,]
= SBI T SB“ ‘@[ésl € dxl]p,z_,l(xl, dx,) - - - Psn—sn_l(xn—v dx,)

for s, < -+ <5, Bie B If we set p(B) = F[¢, e B], and write vp,(B) =
§ v(dx)p,(x, B), then
(1.4) BsPi = Moy seR,1=0.

Conversely, if 1, is any family of p.m.’s on (I, &&) satisfying (1.4), then p, and
p. define an element &7 e _#(p,). {,},ex is an entrance law for p,.

& will be called trivial if Z[€, € B] is independent of s for all B e <7, other-
wise Z is nontrivial. If p. has an invariant p-m. v, vp, = v, then _#(p,) contains
the trivial & _#(p,) will be called nontrivial if it contains a nontrivial element.
An example presented in Section 3 shows that _#(p,) can indeed be nontrivial.
We regard _#(p,) as the proper realization of the intuitive description given in
the introduction, and will now proceed to study _#(p,).

S(6) — S(x)
S(b) — S(a)

2. The extreme points. Let _#(p,) have the topological s-algebra determined
by weak convergence (see [1]). _#(p,)'is convex, and _#,(p,) will be the set of
extreme points. The following, due to Dynkin, is a special case of Theorem 2.1
in [5].

TueoreM 2.1. _#Z(p,) is a measurable subset of _#(p,). Each P e _#(p,) is
uniquely represented in the form

(2'1) F = Sxe(w*@' d,l(ﬁ’)

for some p.m. A on _#Z|p,). Furthermore, & ¢ _#,(p,) iff & __ is P-trivial, i.e.,
AA)=0o0r1 forall Ac & _.
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It will be convenient in what follows to work with vague convergence (—,) of
sub-p.m.’s as defined in [2] (i.e., v, —, v if § fdv, — { fdv for all fe C,). The
next result gives more information about _Z,(p,).

ProrosiTION 2.2. (i) If P e _#,(p,), then there is a continuous function z:
R — I such that for all se R,

(2.2) Pori(2(D), dy) —, F[€, € dy]
as t— 4oo. If S is nontrivial, then z(t) —r, wherer = r orr =r,, andr¢l,
|S(r)| = oo.

(ii) If & e #,(p,) is nontrivial, [a, b] C I, then F[a < &, < b]—0ass— —oo.
Before turning to the proof we list a few preliminary results. Asshown in [7]

(Section 2.7) and [8] (Theorems IV.4, IV.6, IV.7), for each x € I there is a sub-
p-m. =,

(2.3) X, dy) =, m(dy)
as t — co. m, may or may not depend on x, and x,(I) = 0 is possible.

Lemma 2.3. (i) Assume x(n) — x € I, t(n) — oco. Then p,, (x(n), dy) —, m,(dy)
as n— oo.

(ii) Assumergl, |S(r)) = co, r =r,orr=r, Thenforallxel, p(x,dy)—,
n(dy) independently of x, where n(I) = 0 or n(I) = 1.

(iii) As in (ii), assume also that K is a compact continuity set for x, [a, b] C I.
Then sup,.,<; |p:.(x, K) — n(K)| — 0.

Proor. We omit the details. Only equations (1.1) and (2.3) above, and
Corollary 2.18 in [7] are used. []

LemMa 2.4. Fix se R, fe C,(I), P e #(p,), define Z, by

Z, =EfE)F]s u<s.
Then (Z,, F ,)us, is a martingale with continuous sample paths, and
(2:4) Zy = \1 PuCs DY) -

Proor. & denotes expectation wrt &, The first assertion follows from the def-
inition of Z,. Equation (2.4) holds because of equation (1.3). Finally equations
(1.2) and (2.4) and the fact that &, is continuous imply that Z, is continuous. []

The martingale argument which follows was used by Dynkin in [6] and [7] in
a more general setting to derive his integral representation theorem. In addition,
equation (2.2) falls easily from his construction.

PROOF OF PrOPOSITION 2.2. (i) Define Z, as above. By the martingale con-
vergence theorem there is an % __-measurable random variable Z__, such that
Z,— Z_, FP-a.e. asu— —oo. ByDynkin’s theorem & __ is F-trivial, which
means Z__, is a constant (“-a.e.) and

Z_,=%Z_,) =\, L. e YIfY) -
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Let Q be the rationals, D a countable dense (in the topology of uniform conver-
gence) subset of C,(I). Then there is a subset Q, C Q, S ) = 1, such that

(2.5) V1 Pucu(Eur IY) = §0 L€ € DIfY)
asu— —oo forall we Q,, se R, fe D. Standard arguments imply the truth of
(2.5)forallw e Q,, se R, fe C,(I). Since A(Q) =1,Q2,# @. Choose @ € Q,,
set z(t) = @(—1), and (2.2) follows.
Assume &7 is nontrivial, #(n) — oo, z(n) = z({(n)) — r. If r € I, then by (i) of
Lemma 2.3,
Ps+t(n)(z(n)’ d)’) v ﬂr(dy) *
The limit x, (even if it is a p.m.) is independent of s, and so (2.2) implies & is
trivial. Hencer ¢ I. Assume r = r,, |S(r,)| < oo, [a, ] C I. Eventually z(n) > b,
and then
Poriem(2(n), [a, B]) < P,p)[7y < 00]
_ S(r) — S(z(m)
S(ry) — S(b)

—0

as n— oo. Hence Z°[§,eI] = 0, which is impossible, and S(r,) = +oo. Fi-
nally, since z(f) is continuous, z(#) must tend to one of r, or r,.

(ii) Follow the proof of Proposition 2.2 in [4]. The missing technical details
are provided by (i) of this proposition and Lemma 2.3. []

Note that a necessary condition for _#{(p,) to be nontrivial is that one of the
endpoints r not belong to I and |S(r)] = oco. This condition is far from being
sufficient. (2.2) describes _#(p,) (via 2.1) completely, but it is difficult to apply
unless the form of p, is explicitly known.

3. _#(p,) and entries from the boundary. We introduce the following defi-
nition as a refinement of the idea implicit in (2.2).

DEeFINITION 3.1. A sequence z(n), n = 1,2, ... of elements of I is an entry
from I (the boundary of I) for p, if there are constants ¢(n) — oo and a p.m.
@ on R such that

(3.1) P,mlto — ¢(n) € du] —, D(du) as n—oo.

Roughly speaking, z(n) tends to some point in a manner which captures the
distribution of the (infinite) time it takes to reach O from this point. Further
explanation of the terminology is provided by the next results.

THEOREM 3.2. _#(p,) is nontrivial iff p, has an entry from dl.
COROLLARY. Let p, have speed m and scale S. If

(3.2)  (p{pdm@)dS(y) = +oo, {52 {2 (122 dm(u))* dS(z) dS(y) < oo,
then _#(p,) is nontrivial.
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LEMMA 3.3. Assume z(n) is an entry from 0l for p,.

(i) If z(n') is a convergent subsequence of z(n), then z(n') — an endpointr, r ¢ I,
|S(")| = +oo.
(ii) Assume z(n) — r. Then there is a family of p.m.’s {®,},., on R such that
Pylr. — c(n) € du] —, @, (du).
ProOOF. Assume z(n') 1 rel. Let u be a continuity point of d®, so
(D((_oo’ u]) = limn’—m Pz(n’)[TO é u+ c(n’)]
; limn’—wo Pr[TO é u + c(n,)]
= P,[r, < o0].
Let u | —oo to obtain P,[r, < oco] = 0, which is impossible (by regularity) un-
less r is an endpoint of /. Similar arguments, using the properties of S and the
fact that @ is a p.m., establish r ¢ 7 and |S(r)| = co.

(ii) The details, similar to those in the proof of Theorem 4.1 in [4], are
omitted. []

Proor oF THEOREM 3.2. The plan is to imitate the proof of Theorems 2.3 and
2.4 in [4] whenever possible. Assume z(n) is an entry from 9/, z(n) 1 r;. Fix
seR, feC,), b =sup{y: f(y) + 0}. Then b < r,, z(n) > b eventually, and

V1 Pasen(2(0)s YY) = E o f(Xorom)s T = 8 + ¢(n)]

= Za B[ (X)) Peimlts — €(n) € du]

- Sc—ooo Eb[f(Xs-—u>](Db(du>
by (3.1), the fact that @, is a p.m., and u — E,[ f(X,)] is a bounded continuous
function on R. Here we have set E,[f(X,)] = O for u < 0. Hence there is a
sub-p.m. g, on (I, &%) such that p,, .. (z(n), dy) —, p1,(dy). Now the argument
in [4] shows p,(I) = 1, g, p, = t,4,, and hence p, defines an element & € _#(p,).
To see that it is nontrivial let s — — oo in the last expression above.

Conversely, if _#(p,) is nontrivial, Dynkin’s theorem guarantees the existence

of a nontrivial & ¢ _#Z,(p,). Let & have the representation in (2.2). The argu-
ment in [4] shows the family P, [r, — t € du] is tight, and hence there is a vague
limit ® which is a p.m.; say #(n) — oo, P, \[t, — #(n) € du] —, D(du). The tech-
nicalities are overcome by Lemmas 2.3 and 3.3. ]

PROOF OF COROLLARY. The assumptions imply S(r,) = oo, r, ¢ I, hence Py[7, <
] =1 for b > ael In fact, as shown in [8] (or [7])

Eyc,] = Vi \pdm(u) dS(y),  Ey[z,"] = 2 §; {32 Eu[7.] dm(u) dS(y) .
From these formulas one derives
Var, [7,] = E,[7,’] — (E[z.])* = (2§32 (172 dm(u))* dS(z) dS(y) .
Hence (3.2) implies

lim,_, Ey[z] = 400, lim,_,, Var, [t)] = o’ < 0.
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Since the time from & to 0 is equal in distribution to the sum of (any number of)
independent random variables, there must be a p.m. ® on R such that

(3.3) Pz, — Ey[7,) e du] —, @(du), b—r,
(see Theorem 4.2 in [4]). So p, has an entry from 97, and _#( p,) is nontrivial. []

We note that (3.3) is apparently stronger than (3.1). This is not so, provided
we replace E,[r,] with constants ¢(b), ¢(b) — oo as b — r,. Using concentration
functions one can “interpolate” between the z(n), as shown in Theorem 3.2.1
in [3].

ExAMPLEs. (a) Brownian motion, ] = R. _#Z(p,) = @, even though each
of the boundaries 7 = + oo do not belong to 7 and |S(+o0)| = oo. Since p, does
not have an invariant probability measure _#(p,) cannot contain the trivial
element. Now use Theorem 3.2 and the well-known formula for P,[r, < 1] to
show #(p,) = @.

(b) Brownian motion on [0, 1] with reflecting barriers. Here .#(p,) = {the
trivial element}. _#(p,) cannot be nontrivial by Proposition 2.2, but the diffu-
sion is ergodic, so _Z(p,) + @.

(¢) Ornstein-Uhlenbeck process. For a, b, d positive constants, consider the
diffusion defined on 7 = R by

limtlo Ez[f(Xt)3 _f(x) — %—af’(x) _ b(sgn x)lxlaf/(x) ,

or equivalently,

_ _2b|y|1+6 ]
m(B) = \,a'ex [_—_._ d
(B) {5 Y a(l + 0) 'y
2b|y[*? ]
S(x) = (zex l:_—_ dy .
() {5 exp a(l + 0 'y
If 6 = 1 we obtain the Ornstein—Uhlenbeck process. Computations show using
(3.2) that _#(p,) is nontrivial for £ < d < 1. If 6 = 1, using (2.2) and the ex-
plicit form of p,, it can be shown that

A (p) = {9’&: aeR, and for se R, Be &,

[, e B] = (zafb)t § , exp [w] dy} ,
alb
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