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Let us observe an infinite sequence z; = r1 + &1, z2 = rz2 + &, + -+ Where
r1, rz, +-- are the partial sums of independent and identically distributed
random variables and the sequence of random variables ¢ (the errors) is
bounded by a function f(k). Knowing the sequence z, we want to deter-
mine the distribution function of the summands. We will show that this

problem cannot be solved in general even if f{k) is constant.

1. Introduction. Let a sequence of independent and identically distributed
random variables £, §,, - - - with an unknown distribution F(x) be given. Denote
the partial sums 3%, &, by r,, k =1,2, -:.. We observe a sequence r, + ¢,
k=1,2, ..., where ¢, is some error term. The error is bounded by a function
f(k)i.e., limsup ¢,/f(k) < 1 with probability 1, but we know nothing more about
it. Can we recognize the unknown distribution F(x)? The answer is trivial if
f(k) tends to 0. In that case we know the individual terms &, with an error
tending to zero, thus the empirical distribution functions F,(x) based on the first
n terms of the erroneous sample will tend to F(x). Now what can be said about
larger errors?

The first nontrivial answer was given by P. Bartfai who proved in [1]and [2]
that if { exp(tu) dF(u) < oo for |t| < ¢, and f(k) = o(log k), then the unknown
distribution can be recognized from one single realization with probability 1.
On the other hand, Remark 1 of [3] implies that even if F(x) is the standard
normal distribution but f(k) = ¢ log k, then on the basis of the sequence r, + ¢,
one cannot decide whether F(x) is normal or not.

In this paper we deal with the case when the existence of the moment gener-
ating function is not assumed. We substitute it by the following condition:

(1) F(—x) +[1 — F(x)] < Cie™*®,x = 0.

We shall suppose throughout this paper that #(x) is nonnegative, monotonically
increasing, concave (i.e., #’(x) is nonincreasing), xu’(x) /' co as x — oo, and
#'(x) is continuous. (xu#'(x) — oo implies that F has all moments.)

By a modification of the proof of Bartfai we prove

THEOREM 1. If ry, 1y, -+, 8, 8,, - - - are sums of i.i.d. rv’s with two different
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distribution functions F(x) and G(x) satisfying (1) with an u(x) such that

) §= 40) dx = oo
X

then we have with probability 1 with appropriate ¢ > 0 (c depending only on F and
G)
log n
r,— S 2
Ira = 5l > (log log n)°
for infinitely many n.
We do not know whether the (log log n)° can be omitted in this inequality.
A slight modification of the proof would give the following

THEOREM la. If F(x) satisfies (1) with a function u(x) satisfying (2),

finy=o <ﬁ%?> forall k>0
then F(x) can be reconstructed from the sequence r, + ¢,, k = 1,2, ... with pro-
bability 1.
Our Theorem 2 will show that the case { #(x)/x* < oo is quite different.
THEOREM 2. If

S“u—gldx<oo

then we can find two distributions F(x) and G(x), F(x) # G(x) and two samples &,,
&, -+ and y,, 7, --- with distributions F and G in such a way that F(x) and G(x)
satisfy (1) and the partial sums r, = 3.5, &, 5, = 2.{., 7, satisfy the relation

]rn - snl é 1
~ for all n with probability 1.

We shall see that this theorem has the following

COROLLARY. For any u(x), for which § u(x)/x*dx < oo there is a distribution
F(x) satisfying (1) such that F(x) cannot be recognized even if f(k) = C whatever
the positive constant C is.

One may expect that these “hardly recognizable” distributions are pathologi-
cal. We will show however that there are many pairs of “nice” distributions
which satisfy Theorem 2.

Finally, we would like to mention that our investigations concern the situation
when nothing is known about the structure of the error. If we know something
of it, we may expect better results. The case when the error is caused by
rounding off seems to have special interest. Therefore we quote the following
result of P. Bartfai.

THEOREM OF BARTFAI [2]. Let & be the class of distribution functions with an
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absolutely continuous density function of bounded variation. Let ry,r,, --- be the
partial sums of i.i.d. rv’s with a distribution F € %", Then the unknown distribution
F can be recognized from the sequence [r,], k = 1,2, ... with probability 1. ([-]
stands for integer part.)

The authors thank Mr. Tusnddy for many useful discussions.
2. Proof of the theorems.

ProoF oF THEOREM 1. Suppose first that the characteristic functions ¢(r) and
¢(¢) of our distributions are infinitely differentiable satisfying

|at«|’lbv|§D» Yy = 1,2,--~

where
ay _ Ny gD(t) (v)
bu - ((_l) /v') |:10g ¢(t):L=0

(these are real numbers) and D, (= 1) is logarithmically convex, i.e., D,,,/D, is
nondecreasing. Let

f(2) = Dk a2

This is to replace the logarithm of the moment generating function, the existence
of which is not assumed here, and we try to approximate exp(If,(¢)) by

(1/m) 7. exp(1R))

R; = Xm<si & j=1--,m={n/l].
The integers k, | and the positive number ¢ will be given later depending on n
assumed to be large enough.
For 0 <exim < %
‘ S Xl S P (exfp) £ 1
and we have

where

exp(iR;) = koo (1R, + O(1)
provided that |tR,| < k/2e. To estimate the probability of this event we use
Markov’s inequality

P(R,| > k[2et) < (et/k)E|R,|" .
Generally, putting

exp(Ifi(2)) = Do a'/,zf‘ s
= (1/p)ER;* 0<p<k,
the characteristic function of R; being ¢!(f). By Cauchy’s coefficient estimation
d,| = (1/r*) max,,_. lexp(ifi(2))] = (1/r*) exp(l 23 D, )
forall p = 0,1, ---. Generally, for fixed s and
0<t< 12Dy < 12Dy %0 (k=5 + 1)

(3) \2zk=a+l Dv ty < t8+1 maxs+l§v§2k Dv(Zt)y_a—l ZT:O (%)y .S_. c2ta+l ’
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since the maximum here is attained either for v = s + 1 or v = 2k, the sequence
D,(2t)'—*-* being logarithmically convex. Using this with s = 0 and

r= 12Dy,

(4) |d#| = (l/r,u) exp(czl’) ®= 0’ 1’ tee
Hence
(5) EIR,|* < (u[r*) exp(c,lr)  p even, 0.< ;< 2k

and the Markov inequality gives
P(IR;| > k[2et) < (2et/ky (2} r+) exp(c,lr)
< exp(c,lr — k)
e.g.,if t < 0.1r and » = 2k. Since j takes m = [n/l] < n values, we get
(©) eXp(IR;) = Nkoq (tR,)u! + O(1)
forallj = 1, ..., m simultaneously with the exception of an event of probability

< nexp(c,lr — k).
Now
E i (Rt = Fid,t = exp(ifi(n)) — Dipnd,
= exp(Ifi(1)) + O(1)
for k = ¢,lr, using again (4) and ¢+ < 0.1r. By Cauchy’s inequality and (5) we
also have
E| Tl (R PP < (K + 1) Tl (W PI)EIR[™
< (k4 1) 2E, (2! (20)! exp(c,ir)[r*
=< (k4 Dyexp(e,lr) 25, (2v)!/p!?10™ < ¢k exp(c,lr) .

We are now ready to apply Tchebycheff’s inequality for
' (1/m) 27 (Bh-0 PRy

The R;’s being independent, its variance is at most ¢,k exp(c,/r)/m which is thus
also an upper bound for the probability that our quantity deviates by more than
1 from its expectation. Taking into account (6) at the same time, we have

(1/m) 25 exp(tR;) = exp(Ifi()) + O(1)
with probability at least 1 — nexp(c,lr — k) — c,k exp(c,lr)/m. Choosing k =
[2log n], | = [k/5c,r] this probability is > 1 — 1/n? > 1 as n— oo, if e.g.,
™ r=1/2Dy¢ > 1]k .
We proceed the same way with the 7,’s, denoting by S; and g,(z) quantities
corresponding to R; and f,(z), respectively. Let

M, = max, ;. |r; — s .
Then
|tR; — tS;| < 2M, < 2M,,
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and so
(1/m) X7, exp(tR;) = exp(O(M,))(1/m) 2 7_, exp(1S;) -
Hence we obtain
exp(/fi()) + O(1) = exp(lgu(t) + O(M,)) + O(exp(O(M,)))
and in case
(®) lgu(t) =2 c(M, + 1)
this yields
[(fu(r) — gu(1)) = O(M,, + 1) .

Suppose that a, == b, and let v = 5 be the first index with a, # b,. Recalling
la,|, |6,] £ D, (3) shows that

|fu(t) — 9u(0)] = (la, — bJl/2)*,
if we make the legitimate choice
) 1= ¢/ Dyt
with ¢, sufficiently small, giving
(10) M, + 1 = ¢ lt* = c,k/Ds;V*

with probability tending to 1. Our choice of D, will satisfy Dj* < log* k for
infinitely many & and so

M, = max,,, |r; — s;| = ¢, log n/(log log n)*¢-"

a.s. for infinitely many n.
It remains to take care of the assumptions made in the course of the proof.
Dj¥ < log* k for our k guarantees (7).

~ Without loss of generality we may suppose

b, = Ep, =0 and b, = E(p; — b,)* > 0.
(3) with s = 2 shows that for ¢, in (9) sufficiently small
lg, (1) = ¢,lt*

and if (8) did not hold, we would get (10) right away with s = 2.
Turning to a, and b,, we first estimate

SUP_woceces [9(N] = =18 dP(E] 2 %) = v 7 72 P(I6)] 2 x) dx,
and the same way for ¢*(¢). Applying (1) and factoring out
x*texp(—u(x)/2) £ ¢,y max,;, x* exp(—u(x)/2),
we get further

< ¢V max,, x* exp(—u(x)/2) (& exp(—u(x)/2) dx .
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Differentiation shows that the maximum is taken at x = x(v) /" 4 oo defined by
v = xu'(x)/2

since by assumption xu'(x) /" +co. This latter also implies u(x)/log x — + oo
(x — o0), hence the last integral is finite. Putting

D, = x*(v) exp(—u(x(v))/2)/v*
we thus have

(v)

(11 SUP_cocicon ||9SZ<“8I| < cyvlexp(v)D, .

The convexity of log D, can be checked by considering v as a continuous parame-
ter and calculating
dlog D,
dv

= log 2/u'(x(v)) — 1

which is in fact increasing since both 1/#'(x) and x(v) are such. Hence v! D, is
also logarithmically convex; and to infer from ¢(f)  ¢(¢) a, % b,, or what is
the same thing ¢*(0) = ¢*’(0), we can apply the Denjoy-Carleman theorem
(see [5]) provided that

(12) V! D+ D) D,y = 35D (v + 1)D,,, = oo
But, D, being log-convex even for continuous v, this is easily seen to be equiva-
lent to
+oo = {~exp(—dlog D,/dv) dv|v = (e[2) {* W' (x(v)) dv|v
= (€/2) §= (W (x)/xu'(x)) d(xu'(x)) = (e[2) §= du'(x) + (¢/2) §~ w'(x) dx/x
= O(1) + (¢/2) §= (u(x)/x") dx
by partial integration and u(x) = O(x).
- Finally, from (11) (for ¢ = 0) it follows the same way as in (3) that the
polynomial
7(2) = Lz ezt or 3, ¢(0)z¢/p!
satisfies
l=(2)] < %
for
lZl =T = Cy, min(l/Dl/”, 1)

and as 7'(0) = ¢(0) and ¢**(0) (¢ = 1, 2, .- -, v), respectively, we get
la.]  or |b] =|[log (1 + n(2))]izl/v! < log 2/r < ¢}, D,

by Cauchy’s coefficient estimation, where the right-hand side can be made in-
creasing with ¢;, large enough and this can play the role of D, in the proof. (12)
and log-convexity implies

D, [D, £ Dy|Dy,_, S log’k (v <2k — 1)
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for infinitely many k and by multiplying these Dj;f < ¢, log*k and the proof is
completed.

(The above method shows that under the conditions of Theorem la the a,’s
can be determined with probability 1. This remark proves Theorem 1a.)

In preparation for the next proof we remark that the Denjoy-Carleman
theorem is sharp: If

D+ DDy < 400,
which we have seen to be equivalent to
§= (u(x)/x*) dx < +oo0,
then for any interval («, 8) we can find a function (f) vanishing outside (a, )
but not identically such that
SUP_acica [A(D)] < 0! D,

(5] If (a, B) © [—m, x], then, integrating by parts v times, we get for the nth
Fourier coefficient

(1/2x) §4 exp(—int)h(t) di| < (1/2z|n|") 2 [A(1)] dt

< w1 D, Jnf* = o1 x() exp(—u(x(v))/2)/|nlv*

S o eXP(—”(|”|/2)/2) s

choosing for v an integer with |n|/2 < x(v) < |n|. This is possible if the variation
of xu'(x)/2 is at least 1 over the interval [|n|/2, |n|], which, e.g., by adding xt
to u(x), can always be achieved. Replacing u(x) by au(fx), the }’s can, of
course, be replaced by and number.

Proor oF THEOREM 2. The idea is based on the (known) fact that there exists
a random variable y that can be represented in two ways as the sum of two in-
dependent identically distributed random variables, y = &, 4+ £, = 7, + 7, say,
the two distributions being different. If for (§,_i, &y 7o, 7)) (= 1,2, -+ 4)
we choose independent replicas of the quadruple (§,, &, 7;, 7,) then we have
defined our sequences with r,, = s,,. If§, — 7, can even be made bounded, then

r, — s, will also be bounded.
All our variables will take integer values with probabilities
P& = k) = P(§, = k) = Di>
P(y = k) = P(p, = k) = g -
We must have
(13) Plr=m)= 35 wPiPmt = Dite—oo {5 Gm—p -

pi. and g, determine the conditional distributions of &, and »,,

Pn,m = P(sl _.S_ an = m) = ZZ:—kaPm—k/P(T = m) ’
Q'n,m = P(vl é ”|T = m) = ZZ:-&» qkqm—k/P(T = m) 1)
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but we are at liberty to prescribe their joint conditional distributions, e.g., as
(14) P =in=jlr=m)

= length of the interval [P,_, ., P;,.] N [Q;_1m> Qjml>»
(This is the so called quantile transformation that has already played an essential
role in [2] and [3], [4].) If for each n, m

Qn—lm S an = Qn+lm
or equivalently

(15) —4a9m-n é Z::—-m (Pkpm—k - qkqm—k) é qn+1qm—n—l )
then (14) will be zero unless i — j = 1,0 or —1, i.e., P(|§, — 7| £ 1) = 1 and
defining §, = y — &,, 7, = v — 7, the proof will be completed if we can choose
P and g, with the above properties.
In terms of the characteristic functions

o(t) = Xr-—w Pi €Xp(ikt), () = Dve—w i €Xp(ikt) —rZtsT
condition (13) takes the form ¢*(f) = ¢*(r). This will be fulfilled beforehand if
we seek our functions as

o) =) +9(t), () =f()) — 9(t) ,
f(t) = Xr-—a, exp(ikt) (with f(0) = 1) and
9(t) = Yp-_. b, exp(ikt)
having disjoint support.
According to the remark made after the proof of Theorem 1 there is a Fourier
series

h() = Ye-n dy exp(iki)
vanishing for z/4 < |¢f| < = but not identically (we may suppose d, + 0) such that
, d, = O(exp(—u(lkl)) .

The convolution
hy(t) = (1)2x) =, hy(t + 2)hy(2) dz
has nonnegative coefficients |d,|* and vanishes for 7/2 < |f| < =. We define

f(r) by
a4, = i« |d)| exp(—u(lk — 1]))

where we can assume 7 _,a, = 1. The property of vanishing for /2 <
|t| < = is preserved since

f(t) = ho(t) T exp(—u(lk) + ike),
but we also have
a, Z |dy|* exp (—u(|k|))
and since u(lk — I|) = u(|k|) — u(|l|), u(x) being increasing and concave,
(16) @ = 1 Qi eXP(—2u(|l]) — u(lk — 1))
= ¢ exp(—u(lk])) Ziz-. exp(—u(l]))
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and so
(17) ¢y exp(—u([K|)) < a, < iy exp(—u(lk])) -
Let now

By() = T1-_. e, exp (iki)
be a function vanishing for —n < ¢ < #/2 but not identically with

e, = O(exp(—4u(|k))))
and put
9(t) = 6(hs(t) + h(—1)) (£ 0).

(0 will be fixed later.) This is zero for |f| < n/2 and has real coefficients
satisfying

1bel < €190 exp (—4u(|k])) -

From (17) it follows that

Pr = a; + b
(18) 0 <cpexp(—ulkh) 52T %+ b <y exp(—u(hi)

for 6 small enough.
Turning to condition (15) we see from the last estimations and the fact
lu(lk + 1]) — u(|k|)] < u(1) that it is equivalent to

(19) |22=—w (bkam—k + bm—kak)l é IZn=—oo bkam-kl + |Z;=m—n bkam-kl
= ¢y exp(—u(jn) — u(jm — n)).
Note that, f(f) and g(r) having disjoint support, f(r)g(f) = 0, hence
Z?:—w bkam—k = 0 .

This means that we can replace, in the case of the first sum, >%___ by }7,,.
We do so if n = 0 but leave it in the original form if n < 0. In any case

| 2% emw D4 k| = €230 Jljhiza €Xp(—4u(|k]) — u(|lm — ki))
= €50 exp(—2u(|n))) i exp(—2u(lk]) — u((m — k))) ,
and as in (16) we get further
= cud exp(—2u(|n]) — u(jm|)) = ¢y exp(—u(|n|) — u(jm — nl))
using again u(|m|) = u(|m — n|) — u(|n|).

The second sum in (19) coincides with the first for n replaced by m — n — 1
and we see that (19) holds for ¢ sufficiently small. From (18) we get for the
tail probabilities the upper bound

Cn Dzs €XP(—u(k])) = cn exp(—u(x)/2) Zii- .. exp(—u([k])/2)
< e exp(—u(x)/2)
which is the statement with u#(x)/2 in place of u(x). []

3. Consequences of the theorems and problems. To prove the corollary we
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use a lemma. This lemma has already been proved in [4] (Lemma 1) but for
the sake of completeness we give the proof here again.

LEMMA. We are given distribution functions F,(x), Fy(x) and G,(x), G,(x) and
sums of i.id. rv’s r@, 1,0, .. 59 5,0 .o i = 1, 2 such that r,'” has distribution
F(x) and s,'” has distribution G(x), and moreover

P(ls,Y — P < a forall k) =1,
P(s, — ™| < b forall k) =1.
Let p be an arbitrary number O < p < 1 and
F(x) = pFy(x) + (1 — p)Fy(x) ,
G(x) = pGi(x) + (I — p)Gy(x) .
Then there exist two sequences of sums of i.i.d. rv’s ry, ry, «-- 8,8, --- such that
r, has distribution F(x), s, has distribution G(x), and P(|s, — r,| < a + b for all
k) =1.

ProoF. We may suppose that the two sequences of pairs {r,"V, 5,7}, and
{r.®, s,*};., are independent. Define a sequence of i.i.d. rv’s ¢, ¢, --- with
distribution P(¢;, = 1) = 1 — P(¢; = 0) = p such that the sequence is independent
of all the variables r,V, 5,0, r,®, 5,®. ~

Set t(n) = X%, ¢;, and

r, = ri'l()n) + r;?—)-r('n)

S,» = s(rl(2n) + S'(nz-)—r(n) *
Then the sequence 7, has the prescribed joint distribution, and the same holds
for s,. Furthermore,

|8, — 1] < sup, |85, — V| + sup, |5, — | <a+4b.
PROOF OF THE COROLLARY. Applying Theorem 2 with u(2'x) instead of u(x)

"we obtain two distributions F,(x), G(x) and sums of i.i.d.rv’s r“, r,®, ...,
59, 5,", ... with distribution F,(x) resp. G,(x) such that

P(lr“fi) — 5] < % for all n> =1

and F(x), G(x) satisfy (1).

Let 332, p; = 1, p, > 0, and let p, tend to zero fast enough. Define F(x) =
o piFi(x), Gix) = 34 pi Fi(x) + p,G(x). Then F(x) and G,(x) satisfy (1)
and they cannot be distinguished if the error may exceed 1/2'*!, because the lem-
ma enables us to construct two sums of i.i.d. rv’s r, r,, -, 5%, 5%, ... with
distributions F(x) and G,(x) in such a way that

; 1
W .
Ir"‘ s" I < 21/ D

Our lemma enables us to construct a much wider class of distributions satisfying
Theorem 2. Namely we have
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THEOREM 3. Let {* (u(x)/x*) dx < oo, and let the distribution function F(x) have
a density f(x) satisfying the inequality f(|x|) = Ce=**", x = 0. Then there exist a
distribution function G(x) and two sums of i.i.d. tv’s ry, ry, -+, 8, S, -+ - With dis-
tribution F(x) and G(x) in such a way that

P(lr, — s,| <1 forall n)=1.

Proor. Let F,(x) and G,(x) be two distributions constructed in Theorem 2.
Consider the convolutions
Fyx) = Fy(x)  I(x)
and
Gy(x) = Gy(x) = I(x)

(I(x) denotes the uniform distribution on [0, 1].) Then F,(x) and G,(x), too,
satisfy Theorem 2 and F,(x) has a density function fy(x), fy(x) < C'e~**). We
can write f(x) in the form

f(x) = afy(x) + (1 — a)h(x)
where 0 < a < 1 and A(x) is the density of a distribution function H(x). Because
of the lemma the distributions

F(x) = aFyx) + (1 — )H()
G(x) = aGyx) + (1 — a)H(x)

satisfy Theorem 3.

One would also like to characterise the pairs of distributions F(x), G(x) satis-
fying Theorem 2. In all our previous examples the characteristic functions of
these distributions F(x) and G(x) coincided in a neighbourhood of the origin.
Using a slight generaiization of the lemma we can get rid of this restriction.
Another question is whether the moments of these distributions may differ. We
can prove that if F(x) and G(x) have 4 4 ¢th moment ¢ > 0, then the third
moments must be the same. If the tails of the distributions satisfy (1) with
u(x) = x*+:, then even the fourth moments must agree, etc. But we cannot
answer the following question. Let F(x) and G(x) have all moments and assume
that they satisfy Theorem 2. Are all the moments of F(x) and G(x) necessarily
equal?
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