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PROBABILITY BOUNDS FOR FIRST EXITS
THROUGH MOVING BOUNDARIES

By STEPHEN PORTNOY!
University of Illinois at Champaign-Urbana

Let S, Ss, - -+ be partial sums of independent and identically distri-
buted random variables and let f(n)and g(n) be increasing positive sequences.
Nearly sharp bounds are presented for the probabilities P{S; = g(i), i =

1, --+,n}and P{—f(i) £ S; < fi),i = 1, - -+, n} under conditions on f and
g. The most difficult results are the lower bounds in the normal case. Re-
sults are obtained by an embedding method which approximates Brownian
motion by sums of independent random variables taking on only two or
three values.

1. Introduction. This paper is concerned with obtaining sharp bounds on first
passage probabilities of the following form: let S,, S,, - - - be the partial sums of
ani.i.d. sequence of random variables and let f{n) and g(n) be increasing (smooth)
positive sequences. Then define

g =P{—f) = Si = fi);i=1,.--,n}
ro=PlS;=g(i)i=1, - -,n

where f(n) and g(n) are regularly varying functions with index a €0, 4] and
B €[4, 1) respectively. Section 2 obtains lower bounds for g, and r, for Brownian
motion (from which results for sums of normal random variables follow directly).
Using an embedding technique, lower bounds are given for ¢, of the form
prexp{—c, 21, f~*(i)}, and for r, of the form p,exp{—c, 37, (9()) — 9(i — 1))},
where p, and p, are constants depending on f and g and ¢, and ¢, are absolute
constants. For a = } and $ # }, the bounds have exponents n'~** and n*~!
respectively.

Using more elementary techniques, Section 3 presents upper bounds of the
same form for g, and r,. Section 4 discusses how results can be extended to
sums of nonnormal random variables. In particular, results of Lai [6] discussed
below show that bounds for g, hold whenever the second moment is finite (in
the i.i.d. case, and less generally in the independent case). Using the recent in-
variance principle of Komlos, Major and Tusnady [5], bounds on r, are extended
to the case when the distribution has a finite moment generating function.

It is important to note that results giving bounds on g, have been independently
obtained by Lai [6]. His results are much better in the sense that he is able to
eliminate a technical assumption requiréd here (equations (2.1) and (2.16)) and,
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FIRST EXIT TIMES 107

as noted above, his results hold for sums of independent random variables (sat-
isfying an appropriate moment condition). However, the results here may have
some independent interest, since the proof here is completely different and it
does have some minor advantages: (1) it applies to Brownian motion for a lower
bound, (2) the expression for the bound is much simpler. (although the bounds
appear to agree in general), and (3) values (not the best possible) for the absolute
constants ¢, and c, are given.

I'would also like to note that this research was originally suggested by Professor
Wijsman ([9], Section 3.3) who was interested in a sequential analysis problem
with boundaries |S,’/n — blogn| < ¢. In particular, he wanted to know if
p(t = n) < pe~* (for some p and ¢) where r is the first time the inequality does
not hold. It is possible to use the method of proof for Theorems 2.1 and 2.2 to
show that there are constants p and ¢ such that P{r > n} > pe~* for any ¢ > 0.
However, the method does not seem to give reasonable bounds for the more
general probability P{g(i) — f(i) < S, < g(i) + f(i),i =1, ---, n}. In a recent
preliminary announcement [7], Lai and Wijsman have announced that they now
have results which lead to bounds on this more general probability.

2. Lower bounds.

THEOREM 2.1. Let X(t) be a Brownian motion and let f(t) = Ly(t)t* be a regularly
varying nondecreasing function such that inf { f(t): t = 0} > 1 and also

. 1
(2.1) either 0 <'a <%, or a=4% and L)< R_(t)_(ﬁgf)
where -—R(t)———-*-f—OO' as t—oo.
(log log 1)

Then for any ¢ > 0 (small enough so that f*t) = 1 + %e for all t = 0) there is
p > 0 such that

m} = pexp{— yprp L+ )
@) M) S X0 S[0.05 5 m z pexp{-zur L]
where ¢, = (3)** and n(m) = [3(1 + &)m].

Proor. For ¢ > 0, define

(2.3) ht) = (1 + 3)7H(31) ,
then A(n) ='(3)*(1 + %e)"tLy(§n)n* = L(n)n* where L(n) is slowly varying and
(for e small enough) A(n) > 1, n = 1,2, - ... Also note that # satisfies the condi-
tion (2.1) above. Let Y, Y,, ... be independent,
Y, = h(n) with prob. 1/(24*(n))
=0 with prob. 1 — 1/A(n)

= —h(n)  with prob. 1/(2k(n))

(note: EY, = 0, Var Y, = 1). Let X(¢) be a Brownian motion process and define
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T, T, --- such that
(2.4) X(T,) ~ X, Y, n=1,2,..-.

In particular, let T, = Yr_, W, where W, = U, + V, with (U,, V) independent
for different i and for each i

2.5 U~ inf{ 1X(1)] > __}
h(i)
V; ~inf {t: X(r) is not between 0 and (sgn X(U,))h(7)} -
Then it is easy to see that (2.4) holds.
It must first be shown that there is a monotonic sequence (k) such that
(2.6) Pk < T, k=1,2, .- | X(T,) =0,k =1,2,---} =p, > 0.

First note that (since A(i) > 1) conditional on X(7},) =0 for k = 1,2, .-, U,
and V, are independent, U, is distributed as the time to leave +1/A(i) and V', is
distributed as the time to leave [0, A(i)] given that the exit is through 0. From
Breiman ([2], page 289) it then follows that the moment generating function for
W, (conditional on X(T,) =0, k =1,2, --.) is

2.7 M,(s) = K(n)  sin (25)¥(h(n) — 1/h(n)) 2 sin ((2s)}/h(n))

H(n) — 1 sin ((2s)*h(n)) sin (2(2s)/h(n))
A direct computation (using W, = U, + V,) shows that
(2.8) Exw, = 31 + 1/K(n)),

Var* W, = 2(4h*(n) — 6 + 4/k(n) + 14/ (n))
(where the asterisk denotes the above conditioning).
Now let W,, W,, - -- be independent with m.g.f. M,, M,, - - where

(29) Mn(s) = M'n»(s)e_aE‘W” °
We first check the condition for the result of Feller [3].

(72 2 o)

w
M (s) = Ex £
A(5) = T

(va)ts ) (108,%.)° papy s Un
(2.10) = CXP{(Ingn)g} v Wa I( (log, ,,)3>
for @S2
(log,v,)} — s

where log, represents the iterated logarithm. Here
(2.11) v, = ¢, Var* (W,) = ¢, L¥n) - n***!
for appropriate c, such that ¢, — ¢ as n — oo (this uses the definition of A(n),
(2-8) and Feller [4], page 273). Let s(n) = a/k*(n) for some a < =*/8. Then a
direct calculation shows M,(s,) < B (for B independent of n). Now,
@ _ (Lt 2 2L(mn
(log, v,)} (log, v,)} s(n) a
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Therefore, since 4 satisfies condition (2.1),
) - 2
(log, )t — s(k)

Hence, applying (2.10),

ME*W“I(W’ > ___Qﬁ*~__> < Bexp[(—a/k(n))(v,)}/(log, v,)}

2 (72 2 ortis) S Bexpl(—alRm)(w.)(10g, 0.1
= Bexp[—a(c,)}(nt~*/L(n)(l0g, v,)})] -

This sums as long as # satisfies condition (2.1). Therefore, the result of Feller
[3] shows that
(2.12) P{|T, — d,| > ((2 + ¢)v, log,v,)} i.0.} =0
for any ¢ > 0 and where d, = %n + % 32, 1/k%().

Now, define a monotonic regularly varying sequence I(f) with /(0) = 0 such
that for n large enough,
(2.13) I(n) = d, — ((2 + ¢)v, log,v,)}
(note: [ can be chosen monotonic by (2.11) for « < 4). Using a standard argu-
ment, it follows from (2.12) that
(2.14) Piny<T,,n=1,2,---|X(T,) =0,k =1,2,---} =p, > 0.

We now complete the proof. If X(T,) = Ofork = 1,2, ..., nthen | X(t)| < h(k)
for T, ,<t<T,(k=1,2,...,n). If also l(k) < T, for k =0,1,2,...,n,
then

—h(I7Y(1) + 1) < X(t) S (I () + 1) for 0 <t < [i(n)].
Therefore, using (2.14),

P{—h(I7(1) + 1) < X(1) < k(Y1) + 1), 0 < 1 < [(n)])
= P{—h(I7Y(t) + 1) < X(1) < h(I7Y(t) + 1),
0< 1< [m|XT)=0k=1,-.-,n)
X P{X(T,)=0,k=1,2,..-,n}
2 PUK) S Tk =1, n|X(T) = 0,k = 1,2, .-} Tl (1 — 1/K(0))
= py Il (1 — 1)) -

Now, using (2.13) and the definition of d,, /(f)/t — % as t — co. Since I(¢)
goes to + oo, it follows that /=(s)/s — § as s — co. Since /& varies regularly,
h(ct)/t — c= uniformly for ¢, < ¢ < ¢, (with ¢, > 0, ¢; < +o0) (see Feller [4],
page 274). Therefore,

W +1)
h(31)

Therefore, using (2.3), it follows that for any ¢ > 0 (small enough so that

lim,_,,
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1 4 4 < f*%i) for all i) there is p,, p/ and i, such that

P=f) S X0 S 0,05 S U 2 T2 (1 = 0 )

1 4 Z¢)c
> p T (1 — (_3—°> .
2 M (1= S
Letting m =‘[l(n)], n < [3(1 + ¢)m] for m large enough; and since f varies regu-
larly, Theorem 2.1 follows using the inequality 1 — x > exp[ —x(1 + ¢)/(1 + 2¢)]
for x small enough. []

REMARK. If 0 < o < §, one can show (using Feller [4], page 273) that

(2.15)  exp(—Znr (1 + o)D)

Z exp{—(1 + e)e,c*(m)[3(1 - e)m]'=*/Li(m)}
where c*(n) — (1 — 2a)~*. Thus by changing ¢, the lower bound could be written
as pexp{—3(1 + eym'*/2(1 — 2a)L;(m)}. If a = 4, the result in Feller is in-
applicable; but if Ly(¢) is smooth enough, we may often obtain

= ¢, log n/L*n) .

PG = N 7[16 >

THEOREM 2.2. Let X(t) be a Brownian motion and let g(f) be a monotonic in-
creasing function with g(0) < 0 and such that the function by(t)=g(}t) — 9(3(t — 1))
(for t = 1) is regularly varying of the form b(t) = L(t)#*~' (so that from Feller
[4, page 273], g(¢) is regularly varying with index ).  Further suppose, sup {by(%):
t = 0} < 1 and also
(2.16) either 1 < B<1, or B=14% and L|(t)= (log)R(?)

R()
(log log 1)t
Then for ¢ > O (small enough so that (1 + €)b,*(t) < 1 for all t) there is p > O such
that with n(m) = [3(1 4 &)m],
(217)  PX() Z 9(1),0 < 1< m) = pexp{— Zrw (1 + e)b(i)} -

Proor. The proof proceeds exactly as the proof of Theorem 2.1, although
here it is the differences {A(n) — A(n — 1)} which play the fundamental role.
As in (2.3), for ¢ > 0 define A(7) = g(3t)(1 + ¢)*. Define

(2.18) b(n) = h(n) — h(n — 1) n=1,2-...

Then b(n) = (1 + ¢)¥(g(4n) — 9(4(n — 1))); and, hence, b(n) < 1 forn=1,2, ...
and also b(n) is regularly varying, say

(2.19) b(n) = L(n)n**.

where

Furthermore, L(n) satisfies (2.16); and, by Feller [4, page 273] h(n) is also
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regularly varying with index 3. Now define Y}, Y,, - .. independent with

Y, = b(n) with prob. 1/(1 + b¥(n))
= —1/b(n)  with prob. &¥n)/(1 + b¥(n)).

Again EY, =0, Var Y, =1, and }7_, Y, ~ X(T,) where T, = Y7, W,and W,
are independent and distributed as the time for X(7) to leave the interval [b(n),
—1/b(n)]. Conditional on X(T,) = h(i), i = 1,2, - .., W, has moment generating
function M,(s) = (1 4 b*(n)) sin ((25)}/b(n))/sin ((2s)}(b(n) + 1/b(n))) (at least for
s small enough; see Breiman [2], page 289). Here, E*(W,) = % + 4b*(n) and
Var* (W,) = Z(4/b¥(n) + 6 4 4b%(n) + b*(n)). Again letting W,, W,, - - - be in-
dependent with moment generating function M,(s) = M,(s)e**""=, (2.10) can
be obtained. Here, using (2.19) and Feller [4], page 273, we have

v, = Nt Var* (W) = c,n**|L*(n)

for appropriate ¢, such thatc, —casn— co. As before, let s(n) = ab*(n) where
a < n*/8. Then M,(s,) < B (for Bindependent of n) and (v, )!/(log, v,)? = 2/s(n).
Once again (2.10) can be applied to obtain an upper bound which will sum

since L(n) satisfies (2.16). Thus, Feller [3] can be applied to obtain (conditional
on X(T,) = h(i))

P(T, =zd, + ((2 + ¢)v, log,v,)t i.0.} =0

where d, = §n 4 § 31, b%(n). Defining u(n) = d, + ((2 + ¢)v, log, v,)t, u is
monotonic, #(n)/n — % as n — oo, and P{T, < u(n),n = 1,2, - .- | X(T,) = h(i),
i=1,2,.-.} =p,>0. NowifT, < u@i)fori=1,2,...,nand X(T},) = h(k),
then X(f) = h(k) — 1/b(k + 1) = h(u='(t) — 1) — 1/b(u~%(1)) for T,_, <t < T,
(k =1,2,...,n). Furthermore, A(31)~*(h(u=(t) — 1) — 1/b(u~*(1))) — 1 as t— oo;
and, therefore, there is p such that

PX() 2 01, 0 < 1 < [u()]} Z pPIX(T) = h(i), i = 1, -+, n)
= p I (1(1 + B4(0))
= pTTi ((L + (1 + 9)b3(0) -

Again the result follows using standard inequalities (since by(i) — 0 as i — co). []

REMARK. Here, if § < <1, one will be able to obtain the bound
exp{—cm**-L?*(m)} where ¢ = (3)*~Y(1 + ¢)/(28 — 1); and similar bounds can
generally be obtained if 3 = § and L(¢) is smooth enough.

3. Upper bounds. An upper bound for ¢, can be easily derived from bounds
on the probability, P{|S,| < B,i = 1,2, - - -, n}, where S, S,, - - - are partial sums
of i.i.d. .#7(0, 1) random variables. The following lemma shows that this bound
is the same as the bound for Brownian motion except for the multiplicative
constant and the factor (1 — ¢) in the exponent. It would be interesting to see
if the factor of (1 — ¢) could be eliminated (by allowing a multiplicative constant)
but I conjecture that this cannot be done.
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LEMMA. With S,, S,, - - - as above, for any ¢ > 0 there are constants K and B,
such that for B> B and n = K,
2
(3.1) P(S, < B;i=1, ---,n}gexp{—-%n(l—B;i)}.

Proor. Let S, = X(i), i = 1,2, ... where X(¢) is Brownian motion, let N =
min (i: |S;| > B 4 A), and let T = inf {¢: |X(f)] > B + A} (where 4 > 0 will
be chosen later). Let M = [T + 1]; with probability ®(4/(M — T)}), | X(M)| > B
and N < T + 1. Otherwise, N equals M plus the (conditionally independent)
time, N’, for a sequence of partial sums to leave the interval [ — B, B] given that
the sequence starts at a (random) position X(M) € [ — B, B]. Let N* be distributed
as N but be independent of X(f). From Anderson’s theorem (see [1], page 173)
it follows that N’ (conditionally on X(M)) is stochastically smaller than N* (and,
thus, E[exp(tN')| X(M)] < E exp(tN*) for t = 0). Therefore, for t > 0,

(3.2) EetV < Q(A)Eet ™V (1 — Q(A))E[EetT+1+V") | X(M)]
< Q(A)eEe'™ 4 (1 — Q(A))e'Ee'TEet™” ,
where Q(4) = E®(A/(M — T)*). Now, from Breiman [2], page 289,
EetT — 2sin (20)4(B + A) )
sin 2(20)4(B + A)

Let t = 7°(1 — ¢/2)/(8(A + B)?). Then E exp(tT) < 2/sin n(1 — ¢/2), and 4 can
be chosen so that (1 — Q(4))e‘Ee*”™ < . Thus, using a Chebyshev-type inequality
and (3.2),

Pl|S| = B;i=1,..-,n} < e "Ee'”
Q(A)e'Ee'”
= 1 — (1 — Q(A))e*Ee'”

for some ¢, (depending on ¢); and the result follows. []

< e-t'n

THEOREM 3.1. LetS,,S,, - - - be partial sums of i.i.d. .#7(0, 1) random variables,
and let f(i) be positive and increasing in i. Let m = [log, n] (log base 2). Tken for
any ¢ > 0 there is p > 0 such that '

(33)  PISISfiyi=1, - n) < pexp{—c(l — &) D" 7{—)}
where ¢, = 7?/16.
Proofr. Fork = 1,2, ..., m, define
B, = {|S]| S f2¥);i =21+ 1, ..., 2/,
Then,
P{IS)| < i) i =1, - -+, n} < P(N-=1 By)
= IIr,P{B,|B, B, ---, B,_j}.
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Now with j(k) = 2*-1,
P(N3=1 Ba) = EP{N5-1 B;| ;)
= EP(IS| = fli), i =1, -+, (k) — 1] S0}
X P{By|S;00{S;m = fU(K))} -
By Anderson’s theorem (see [1]), P{B,|S;,, = x} < P{B,|S,, = 0}; and for k
large enough this can be bounded by (3.1). Therefore, for k > K,,
P{B,|B,, B,, - - -, B,_;} < exp{—2¢,(1 — ¢)2¢71/f}(2%)} .
Thus,
PIS| = f);i =1, .-+, n} < TIEw P(B| By, - -+, B}
X exp{—2¢c,(1 — ¢) 2 - 2k=1/f3(2k)}

< pexpi—c(l —¢) Yt _1__.}

< pexp-cfl — o) It i
REMARK. If fis regularly varying with index 0 < a < }, (3.3) will yield the

same bound as the lower bound (2.15) up to the constant ¢, in the exponent.

I conjecture that the actual rate is of the form exp{—(?*/8)(1/1 — 2a)(1 +

o(1))n*=**/L¥(n)}, but I cannot prove this.

THEOREM 3.2. LetS,, S,, - - - be partial sums of i.i.d. _#7(0, 1) random variables,
let g(i) be increasing in i and assume the differences b(i) = g(i) — g(i — 1) are non-
increasing. If 1 < m < n and g(m)/m — b(m 4 1) = 0, then

2
(3.4)  PS, = gl)i=m, -, n) < exp{—%i(_'.n_)_ i b2(i)} .
m
Proor. Using the joint moment generating function for (S,, -, S,), a
Chebyshev-type inequality shows that for any (z,,, -- -, t,) with all #, > 0,
P{S; = g(i); i =m, -+, n} < exp{— 27, Lg(Ms, .5 (tns -5 1)
= exp{— Xl 1:9(i) + %%}
where
o’ = Var (01, 1,8 = T (Diejum 1)
Thus, the minimizing value, *, of the quadratic form, ¢(7), in the exponent
satisfies for k =m, ..., n

0= —g(k) + 251 (Zijom %) -
Therefore, g(m) = m )7, t,*and fork =m + 1, ..., n,
blk) = g(k) — gk — 1) = T, t* .
Hence, g(m) = m(t,* 4+ b(m + 1)); and ¢,,* = g(m)/m — b(m + 1),
t* = b(k) — b(k + 1), for =m+1,...,n—1,
t,* = b(n).
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Since b(k) is positive and nondecreasing, #,* = 0 for k = m, - -.,n. Furthermore,
since g is a quadratic form, the quadratic term at * is minus the linear; and

2

§) = 4 Dy (Blpum 0 = = L ;5 a8). 0
4. Extensions to sums of nonnormal variables. The results of earlier sections
can all be extended to sums of i.i.d. random variables with more general dis-
tributions. For example, as was noted in Section 1, Lai [6] has proven versions
of Theorems 2.1 and 3.1 which hold for sums of i.i.d. random variables with
finite second moment (and, in fact, for sums of independent random variables
satisfying a slightly stronger condition).  However, as the following argument
shows, the result of Theorem 3.2 (and, hence, a result analogous to Lai’s) can

not hold in such generality:

PROPOSITION. Let S,, S,, - - - be partial sums of a sequence of i.i.d. random vari-
ables with finite second moment and a cdf satisfving 1 — F(x) = ¢,/x*. Let {g(n)}
be any sequence with g(n) < ¢,n, n = 1,2, -... Then there is a constant b such
that

(4.1) P{S, = g(i),i = 1,2, ---, n} = b/n**t, n=1,2,...
ProofF. From Spitzer [8], Theorem 3.5, there is a constant c, such that
P{S,=0,i=1, .--,n— 1} = ¢/nt, n=12...
Therefore,
P{S, = g(i),i =1, co,n} = PX, = g(n); S, — X, 20,i=2,..-,n}

= P(X, = ¢yn) - ¢fnt
> c,6f[(c;n)* - n¥] = bjnktE. 0

However, if the underlying distribution has a finite moment generating func-
tion in a neighborhood of the origin, the results of Komlos, Major and Tusnady
[5] (hereafter abbreviated KMT) can be used to extend the results of Theorems
2.2 and 3.2.

THEOREM 4.1. Let S,,S,, - -- be partial sums of i.i.d. standardized random
variables, X,, satisfying Ee’*i < oo for |t| < t; and suppose g(1) satisfies the hy-
potheses of Theorem 2.2. Let d be such that

(4'2) g(])gg(]—’_N)—d—g(N)’ j:1’2)"';N:1’2)"'

(the existence of d uses the fact that g(n) — g(n — 1) is eventually decreasing). Let
a(n) be the exponent in the lower bound of equation (2.17) defined using 2(g(t) + d)
to replace g(t). Then for any ¢ > 0, there is a positive constant p* such that

4.3) P{S, = g(i),i=1,---, n} = p* exp(—(1 + e)a(n)) .
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Proor. For integers N, < N, < n,
P{S; =z g(i),i=1, ..., n}
= P(S; = 39(i),i=1, -+, N; S, =29(i),i =N, + 1, -+, N;

S;=29(),i=N,+1,...,n}
(4.4) 2 P{S; = 3g(i),i=1, .-, Ny
Si = Sy, 2 200) = 39(N), i = Ny + 1, -, Ny
Si = Sy, Z 9() = 20(Ny), i = N, + 1, -- o
= P1P2Ps >

where p,, p,, and p, are the probabilities of the three events described in the
previous line.

Let 6 > 0 be such that P(X;, = 6) = p > 0 and let k be such that g(n) —
g9(n — 1) < /3 for n = k,. Then
PrZ P{S; 2 39(i), i =1, -+, ky;
S; = 39(ke) + 0(i — ko), i =ky + 1, -+, N}}
(4.5) = P(S; = 39(i), i =1, .., ky}
X PS, — S 2 (i — ko), i = ky + 1, -+, N}
gPI’P{Xiga’izko‘i‘ 1, "'7N1} .
— plle—Nl(—logp) .
For p,, use Theorem 1 of KMT [5] to construct new random variables, {S};

with the same distribution as {S;, y — S .}> and partial sums {T;} of i.i. d..170,1)
random variables satisfying the conclus10n of the theorem. Then

P = P{Sz = 29(’) — 3g(N1)” =N+ 1,N, + 2, ""N2}
(4.6) = P(T,=2g(i) + 2d;|T, — S| < g(N),i =1, ---, N, — N}}
= P{T. 2 29(i) + 2d,i = 1, - -+, Ny} — P{sup,cicn, [T, — S| > 9(V,)}
> pe““”2’ _ Ke—l(a(Nl)—ClogNg) ,

where (4.2) is used to obtain the first inequality, p comes from Theorem 2.2
and K, 2, and C come from KMT. The same inequality holds for p, with N,
replaced by N, and N, by N, = n. Now, if N, and N, are chosen (depending on
n) so that (for i = 1, 2)

(4.7) N, < —_51%(;2—); | a(Nit) < 9(N;) 5

log Niwy K 9(N)) 5 a(N,) < a(n);
then, considering the dominating terms and combining (4.6) (for p, and p,), (4.5)
and (4.4) yield a bound p, exp{—ea(n) — a(N,) — a(n)} for nlarge enough. The
result (4.3) follows directly from this; so it remains to check (4.7).
First consider the case where a(n) < n’ for some 6 < } for n large enough.
Note that g(n) > n*, a(n) is increasing and a(n) > log n (this only requires that
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Ly(t) in Theorem 2.2 tend to + o). Define N, = ca(n) where ¢ < —e¢/log p and
N, = a7*((ca(n))?). Now N} = (ca(n))t = a(N,); so g(N,) > a(N,). Since a(n) >
log n, for n large enough

a(e“’"‘"”é) > (ca(n))t = etcatnn? > a~Y((ca(n))})
= N} = (ca(n))! = log N,
= g(N,) > log N, .

Now, if we define N; = a~*((V,)?), then as above, a(N;,) € g(N,) and log N, € g(N,),
so it remains to show that N; > n (at least for n large). But if § < %, for n large
enough,

(@(n))* < a(n) < ca(n) .

But if a(n) < n’, (a*(n))” = a*(a’(n)). Therefore, a’(a*(n)) K ca(n) or a*(n) <
a~Y(ca(n))}) = N, or n < a {((N,)}) = N,.

Lastly if there is no 6 < % such that a(n) < n’, then the conditions on g imply
that g(n) = n’L,(n) for some § (satisfying 28 — 1 = }) and L, slowly varying; and
also a(n) = n*-'L,(n). Here define N, = n**~'-<1and N, = nf~%2 where ¢, and ¢, are
such that both exponents are positive and (8 — 1)* > ¢, and ¢,8 < (28 — 1)g,.
So N, < a(n); and since a(N,) = n*#~V¢~% L (N,) and g(N,) = nf*-1=e1) L (N,),
a(N;) € g(N,). Trivially, g(N,) > log N,. Similarly, g(N,) > a(n) and g(N,) >
log n; so (4.7) holds in general and the proof is complete. []

THEOREM 4.2. Let S,, S,, --- be partial sums of i.i.d. standardized random
variables with finite moment generating function in a neighborhood of the origin, and
let K, 2, and C be the constants given by Theorem 1 of KMT [5]. Let g(n) be a
positive increasing sequence, b(n) = g(n) — g(n — 1) (withb(1) = g(1)), and a(n) =

7, b*(i). Suppose g(n) is such that

(1) l0g”—>Oasn—>oo, and
a(n)

(2) for each n there is m, such that

(i) MaOasn-—»oo, and

a(n)
(ii) ifc, = mL (g(m,,) — %a(n)’) — b(m, + 1), ¢, = 0.

n

Then for any ¢ > O there is N such that for n > N
P{S; 2 g(i), i = 1,2, -+, n} < exp{—}(1 — &) X, 0i)} -

REMARK. If b(n) are regularly varying with index 8 — 1 for 8 < 1, then con-
dition (2)(ii) can be satisfied by choosing m, = n® for some d < 1.

Proor. LetT,, T,, ... bei.i.d. .#70, 1) random variables given by KMT [5].
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Then

P{S, 2 g(i),i=1,---,n)
< P{S, =z g9(@),i=m,, ---,n}

gP{Sigg(i),izmn,.--,n;|Si—-Ti|§%a(n),i:1,...,n}

1
Ty {supms,‘ IS, — Ty > 7a(n)}

IA

P{Ti > g(i) — %a(n), i=m, ., n} + Kexp{—a(n) + Clogn)

IA

exp{—% X1, 1 0'()} + K exp{—a(n) 4 Clogn}

exp | —sa(n) (1 — —"j—(’"rgl)} [1 + K exp{—ja(n) + Clog n)]

IA

where the next to last line uses Theorem 3.2 (which required ¢, = 0). The
result follows directly using conditions (1) and (2). []

(1

(2]
[3]

[4]
[3]

(6]
(7]
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[9]
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