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LOCAL NONDETERMINISM AND THE ZEROS
OF GAUSSIAN PROCESSES!

By Jack Cuzick
Columbia University

The concept of local nondeterminism introduced by Berman is gener-
alized and applied to divided difference sequences generated by a Gaussian
process. The resulting estimates are then used to find simple sufficient con-
ditions for the finiteness of the moments of the number of crossings of level
zero. In particular it is shown that under mild regularity conditions very
little more is required to make all moments finite when the variance is
finite. The results are extended to curves & € €%[0, T]. Finally examples
are given in which the variance is finite but the third moment is infinite.

1. Introduction. The concept of local nondeterminism was introduced by
Berman (1973) and shown by him to be closely related to the existence of a
continuous local time for Gaussian processes. In studying the moments of
N(0, T), the number of zero crossings in time interval [0, T] for a Gaussian
process, we require a form of local nondeterminism, not for the process, but for
its associated divided difference sequences. We begin by defining ¢-regularity
for stationary Gaussian processes and show that this condition implies the gener-
alized notion of local ¢-nondeterminism for divided difference sequences of the
appropriate order. This condition is then used to find simple sufficient conditions
which guarantee the finiteness of all the moments of N(0, 7). In one important
special case we establish the convergence of the (factorial) moment generating
function of N(0, T'). This extends previous work in Cuzick (1975), to which we
refer the reader for background on the problem.

To simplify exposition we shall take the separable Gaussian process X(f) to be
stationary with mean zero. Analogous results hold for processes with stationary
increments if we use their spectral function (Berman (1973), Section 4). In
Section 2 we develop material concerning local nondeterminism and divided
differences. This material is applied in Section 3 to obtain simple sufficient
conditions for finite zero crossing moments. Section 4 extends the results of
Section 3 to crossings of general curves; the final section considers the more
difficult question of necessary conditions for the existence of higher moments.

2. Local nondeterminism. Let X(f) have spectral distribution function F(4)
and nth spectral moment 2, = (= |4|* dF(1). We need the following notations
and definitions:
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NONDETERMINISM AND ZERO CROSSINGS 73

PrOPERTY (R1). A collection of measures {¢,},., satisfies Property (R1) if

there exists a bounded interval [4, B] such that for any x,, - - -, x, € [4, B] there
isa 0 > 0 with
(1 liminf,_, §,dy, >0

where C = [A4, B\, S;(x;) and S,(x) is an open sphere of radius ¢ centered
at x.

DEFINITION. Let ¢ be any function which is regularly varying at the origin
with index 0 < 8 < 2 and ¢(0) = 0. If 8 = 2, we require also that

lim inf,.,z,,,_o $(s7)/5°6(1) > O .

We say that a stationary Gaussian process X(t) is ¢-regular if all spectral mo-
ments are finite or 1,, < oo, 4,,,, = co and the collection of measures

dF(4]t)
(1)
satisfies Property (R1). If ¢(7) = o*(r) = E(X™(f) — X™(0)) satisfies the above
conditions we say that X is regular.
Note that the extra condition when 8 = 2 is satisfied if ¢(f) = #|In ¢|*, « = 0 or
(1) = p(0) — p(r) with p(r) is nonnegative definite and increasing on [0, ], ¢ > 0.
We recall the notion of divided differences and of extended divided differences:

dG,_y(3) =

DerINITION. The nth divided difference of a function X{(#) at the distinct points
t, < -++ < t,,, denoted X[¢,,,, - - -, t,], is defined iteratively by

X[t'n+la -..,tl] = X[tn+1, -'.,ttz] — f[f,n, cee, t1]
n+1 — Y1

with

X(t) — X(#)

tZ_tl

When X'(1) exists we define X[#,, ;] = X'(t,).
We further define the nth extended divided difference by

X[t, 1] =

X,[tyars <+ oo 1] = X[ty -5 ] — X[ty -+, 1]
¢(t'rb+1 - tl)

for functions ¢(#) which are positive on (0, ¢,,, — #,) with ¢(0) = 0.
DeriNITION. The process X(¢) is locally ¢-nondeterministic if for any k and any
t=(t, -, ty)withr, <t < - < gy,
(2) lim inf, , det Cov (X(t,), X[t ;)5 - -+ Xya[ti_ys 1]) > 0.
We say that the nth divided differences of X(7) are locally ¢-nondeterministic if
lim inf, , det Cov (X(t,), X[#}, £;], =+ X[ty - -5 t01]s

(3) X[ty o5 taals -+ s X[ toenors -5 1]) > 0
n=0,1,.-;k=n+2,
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Again if ¢(f) = E(X™(r) — X™(0))* we suppress explicit mention of ¢. When
n = 0 and ¢(7) = ¢%(7) our definition is equivalent to Berman’s by his Lemma 2.2.

REMARK. If lim inf, , o%(?)/$(f) = O, then X() cannot be @-regular or locally
¢-nondeterministic.

In studying local nondeterminism, we are rescaling a collection of random
variables so that the limiting variables do riot become linearly dependent along
any subsequence of the t as |f, — #,| — 0. This rescaling is reflected by a rescal-
ing of the spectral measure. This is made clear in the following basic result.

THEOREM 1. If X is ¢-regular and 2,, < 0o, 2,,,, = co, then the nth divided
differences of X are locally ¢-nondeterministic.

Before proving Theorem 1 we need the following two lemmas.

LEMMA 1. Let f, be entire functions such that f, — f uniformly on compact sets.
If there exists a family of measures p, on the real line with Property (R1), then
§ | fal* dp,, — O implies f = 0.

Proor. The uniform convergence implies that f is entire so that if f is not
identically zero, it can have only a finite number of zeros, x,, - - -, x,, on any
bounded interval [4, B]. Choose [4, B]land d > 0 so that C = [4, B]\U, Ss(x;)
satisfies (1). Then since inf, ., [f(x)]? = ¢ > 0 and f, — f uniformly on C, we
have that

[
2

lim inf,_, § |f.|?dp, = = liminf,__ {,dy, > 0.

This contradicts our assumptions and thus f must vanish everywhere.

LEMMA 2. If ¢(t) is regularly varying with index f3, then for all 6, ¢ > 0, there
exists a t* > 0 such that

(1) _
(1 — &)sf+e §&§ 1+ ¢)st?
o =
forall0 < s < 1and 0 < t < t*.

Proor. The regularly varying function ¢(#) has a representation
p(1) = e(r) exp §1 — ). du
u

where ¢(f) — ¢ > 0 and b(f) —» 8 as 1 0. Choose t* < 1 so small that 3 —
I<buygsp+ofor0<su<rrandl —eZc(st)fe() < 1 +efor0<s< 1
and 0 < ¢ < r*. Then

B(st) _ e(5t) gy 1o _ b(H) Ayt
40 _c(—t)exps’t Tdug(l—}- )sf=7 .

The lower bound follows analogously.

ProoF oF THEOREM 1. The method of proof is to show that there does not
exist a subsequence t'¥ such that the limit in (2) or (3) is zero. We shall assume
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that 4, < oo, 4, = oo and give a proof for first divided differences. The general
case is similar.
Choose ¢ > 0 so that ¢%(r) is positive in (0,¢). Let t;, <t < -+ < t,, and
define
Y, = X[1,, 1,]

Y = Xalty 150 1550] j=1 k.
We must show that

lim inf, ,det Cov (X(t,), Yo, - -+, Y},) = C, > 0.

Using the integral representation for divided differences (Isaacson and Keller
(1966), page 250) we have

4) Y, = {3 X'(t, + s4,) ds
Y, =i} X'ty + 58;) — X'(tjan + SBj) 4o j=1, -k
¢*(Aa‘ + Aj+1)
where A; = t;,, — t;. According to Berman ((1973), page 82) it is enough to
show that if

(5) lim, ., o Var [aX(#) + Stob;Y,] =0
for some subsequence t*’ and fixed @ and b, thena =56, =0 forj=0, -, k.

Since the process is stationary we may take ¢, = 0. Using (4) the variance in
(5) can be rewritten in spectral form as

(6) 125 l9:()*

where

dF(i/h)
h*p(h)

gh(j) = a},¢i(},) + b,2 S(l) et(sAl/h)sz;(h) ds
™) + §8 Ziaa b2 [exp[i((t; + 58,)/W)A] — exp[i((tje1 + sB;40)/1)A]]
X [___SbL] ds
¢§(A] + A‘j+1)

and h = max,g ;<. A, so that A;/h < 1. We now distinguish two cases depend-
ing on the index § of the regularly varying function ¢.

Casel. g<2.

Extract a subsequence so that A /h — 4, and t;/h — 7, with 0 < 9, < 1 for all
j. If6; + d,,, = 0, then the term corresponding to ¥, j = 1 drops out since by
Lemma 2
lexp[i((sA; + (1 — 5)A;,1)/h)A] — 1] p}(h) = 0

PHA; + A1)

uniformly on compact sets. The first two terms in (7) also go to zero uniformly
on compact sets.

We now apply Lemma 1 to (6) and find that

9(2) = Tjes b4 i {expli(z; + $6;)2] — exp[i(t;., + 0,,1)AIH9; + 0;,.} 2 ds
=0

llm(Aj+Aj+1)/th
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where § = {1 < j < k:d; + d,,, > 0}. Note that S is never empty. Thus the
Fourier transform § of g(4)/i2* is identically zero and

(8) 9(x) = Xjesb;fi(x)
where
f](x) = (aj + 6.7“'"1)—-ﬂ/2 Sé I[fj+83j,tj+1+85j+1](x) ds *

Note that supp f; = [7;, 7;,,]- Let m = sup,.{i}. If d,,, > O, then f, ., is the
only term in (8) which is positive on [7,,,;, 7,,,], and it is strictly positive on
that open interval. Thusb,,, = 0. If §,,, = 0, then d,, > 0 and f,(t,,,,) = 0
but f,,(tm) > 0, so that again b, ., = 0. Proceeding inductively we have
b; =0 for all jeS. Now let

k' = max;, s A;

and in the same manner find at least one more b ; = 0. Continue this procedure
until we have all b, = 0, j > 1. Finally we obtain Var (aX(t,) + b, X"(1,)) = 0
so that a = b, = 0. :

Casell. When 8 = 2 we must be more careful about the degenerate intervals.
We have that .
(9)  S{expLi(t; + sA)/R)A] — expLi((tyss + 5,,)/R)T) ﬁ’f’h ds
(10) = |:exp[z((t + s8,)/h)A] — exp[i((;4: + SAJ'FI)/h)Z]:l
((s8; + (1 — 9)A;..)/h)
(s4; + (1 — 5)A,,,)¢(h)
< e

By our extra assumption in the definition of ¢-regularity when g = 2, the
second term in (10) is bounded so that we can extract a subsequence such that

1 (58, + (1 — 5)A;,)84(h) ds —
T RMA, + AL

for some 0 < K < oo. Thus if (A; + A;,,)/h — 0, (9) will converge to iiKe' i*
along this subsequence. Thus as before, the integrand (7) converges to the null
function. In this case the Fourier transform of g(2)/i2* is a generalized function
which consists of g(x) as before plus possibly weighted delta functions localized
at some of the 7;. This does not affect the fact that b, = O for je § and the proof
continues as before

REMARK. It is known that X is locally nondeterministic when ¢%(¢) is locally
concave (Berman 1973). It is not known if the concavity of ¢%(f) implies local
nondeterminism for divided differences. This point is overlooked by Mirosin
(1973, 1974a, 1974b) and invalidates his proofs of results on crossing moments.
This point has been discussed more fully in Cuzick (1975)

We now give some results which help to characterize ¢-regularity.
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THEOREM 2 (Berman 1973, Lemma 7.1). If ¢*(t) = E(X™(f) — X™(0))* is regu-
larly varying with index 0 < B < 2 for some n then X(¢) is regular.
THEOREM 3. If

(11) lim, s:"dfﬁ(xt/)')

then X is not locally nondeterministic. If 2, < oo, then (11) holds.

=0 forall ¢>0,

Proor. For the first part it is enough to show that

(12) det Cov (X,[0, 7], X,[¢, 2¢])
goes to zero as t — 0. Equation (12) can be written in spectral form as
(13) 2 Real {g;;o (e — 1yY(e=* — 1)"F(‘/’)} :

(1)

The integral on [e, co) goes to zero by assumption. On [0, ¢] we have that (13)
is less than or equal

26 § e — 1 djgj/)” < 26 et — 1P ng(zt/)o
For the second part we know that ¢’(f) = 2,*(1 + o(1)). Since
{2 dF(2) < a7 {3 22 dF(A)
it follows that

Seo

dFQ)1) _ o | dFQ) _ §5-2 2 dF(Q)
a*(f) a¥(r) —  a() ey
~ A7 (2 22dF(A) >0 as t—0.

REMARK. The Ornstein-Uhlenbeck process, which is Markovand has § = 1,
is locally nondeterministic in the strongest possible way. As  moves farther
away from unity, local nondeterminism becomes less pronounced. For example,
if F has a density of the form f(1) = (1 4 2%)~%, then 4, = oo but the process is
not locally nondeterministic since ¢’(f) ~ £)|In ¢ and (11) holds. However, the
process is ¢-regular (and hence locally ¢-nondeterministic) when ¢(f) = 2. At
the other extreme, if f(4) = (1 + A|ln 2]*)~* with a > 1, then ¢*(f) ~ [In f|~o*
and X is not regular but is ¢*(¢)|In 7|~* regular. Also if ¢°(f) = [In #|~# in a neigh-
borhood of zero then X is not regular but is |In ¢|~#** regular. However, in these
last two cases ¢%(¢) is concave near zero and thus X is locally nondeterministic.

3. Moments of zero crossings. We can now apply the results of Section 2 to
study the moments of the number of zero crossings. Let the random variable
N(§, T') denote the number of crossings of the smooth curve ¢ by the differentiable
process X in time interval [0, 7], and let M, (&, T) denote the kth factorial mo-
ment of N(§, T). We refer to zero crossings by N0, T') and M, (0, T). In Cuzick
(1975) it was shown that a necessary and sufficient condition for M(0, f) < oo
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is that for some ¢ > 0

ke 274
(14) oo g Loy, oy < oo
k

where ¢ = Var (X'(t,)| X(¢;), j=1, ---, k) and det R, = det Cov (X(¢,), - - -,
X(t,)). The following two lemmas provide our basic estimates.

LEMMA 3. If X is ¢-regular with 2, < oo, 4, = oo and o*(t) = E(X'(f) — X'(0))*
is increasing in a neighborhood of zero, then for |t, — t,| near zero, there exists a
positive constant C, such that
(i) CTTH= AP $(Air + A))] < det Cov (X(1), - - -, X(1))
(i) o' < a%(4,)

2 < min (6¥(4,_,), 6¥(A, 34_"_2(_éi_—1)£2(_A?) =2, k=1
¢ = min (0( i 1) 0( l)) - Gﬁ(Ai_1 + Az) l
0l < d(A,y) -

Proor. (i) Using the divided difference manipulations from Cuzick (1975)
we have

det Cov (X(t,), - - -, X(%:))
= [TT4= APNTTEZ: 6(Aimy + A))] det Cov (X(1,), X[1,, 1],
X¢5[t1’ fy B3]y -+ oy Xga[teoys By ) -
The lower bound follows by the assumption of ¢-regularity on X.
(ii) The upper bounds follow by noting that for i < k
0 = Var (X'(£)| X(t,), j = 1, -+, k)
= G(A) Var (X[t 1o te] | X(1),j = 1, -+, )
< ¢*(A,) Var (X,[1;, 1., 1,,,]) < 0*(4,) -
The last step follows from the fact that
Var (X,[t, 1, 1,,,]) = Var (s:, X'(1) — X'(t; + sA,) ds>
o(d,)

< SbVar<X,(ti) - XA’(ti + SAi)>ds <1
N a(A,) N

since ¢ is increasing near zero. By considering the conditional variance of
X,[t:_1» t;, t;] when i > 1, the other half of the inequality is obtained. The re-
maining inequality follows since o%(f) is increasing near zero and ¢*(?)/¢*(2f) = §
for all ¢ (Lukacs (1970), page 69).

The next lemma sharpens Lemma 4.2 of Cuzick (1975).

LEMMA 4. If ¢(st)/sP¢(1) < K for 0 < s < 1 and t € (0, ¢] for some > 0 and
0< e< 1, then

19 ) = 5o () Tt < 90 (165

i
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ProoF. As in Cuzick (1975), we can assume ¢(x) = x* and ¢ = 1. In this
case, from the proof of Theorem 3 in MiroSin (1973) we see that

1) < (5) TR (Thar)(l = Ziar)l™ 7 ds

foranyy, >0, j=1, .-,k — 1, such that y = 3%}y, < 1. The result fol-
lows by taking r, > 1 and r <3
We can now state the major results for crossing moments.

THEOREM 4. Assume that X is ¢-regular with 2, < oo, A4, = oo and ¢*(t) is in-
creasing at zero. Then a sufficient condition for M (0, T) < oo is that

dA, i a’(dy)
(16) oo S <L>HQW@H+MW@H+MW

be finite.
Proor. Immediate from (14) and Lemma 3.

THEOREM 5. Under the assumptions of Theorem 4 and the additional assumptions
that ¢ is regularly varying with index 0 < 8 < 2 and

i _a()
(17) lim sup, |, ——~2 SOLO <

for some positive slowly varying function L(t), then all the M (0, T) are finite. If
X(¢) is regular and o* has positive index, then all crossing moments are finite.

Proofr. Using the remark before Theorem 1 and (17), there exist positive
constants K, and K, such that

K,9(1) < 0(1) = Kab(OL(7) -

These inequalities allow us to eliminate ¢*(f) from (16) and then it is enough to
establish the finiteness of

b b (dAA : > [ H;;ijb(lA.: AL)T [ ¢;Ai(Ai i )]H max, L(A,)+!

for some 0 < 6 < 1. Using Lemma 2 for ¢ small enough the product of the
last two terms is less than

max, ¢(4,)'°L(4,)*",

which is bounded for any 0 < 6 < 1. The finiteness of the remaining integral
follows from Lemmas 3 and 4. )

When X(7) is regular and ¢® has positive index, we can drop the requirement
that ¢* be increasing. In this case Lemma 2 implies that o*(st)/o*(f) < 1 + ¢ for
0 < 5 < 1 and ¢ small enough, so that the inequalities in Lemma 3(ii) still hold
if we multiply the right-hand sides by (1 + ¢)’.

The case in which 8 = 0 is more difficult and our results are less complete.
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THEOREM 6. If X has a spectral density given by f(A) = (1 + A|In 2|*)7*, then
for k = 2 and & > 4(3k — 2), we have that M\(0, T) < co.

Proor. The result is known when k = 2. We assume k > 3. Calculation
shows that ¢%(f) ~ |In 7]=**! and is monotone near zero. If we let ¢(f) = |In¢|-*
then X is ¢-regular and ¢%(r)/¢(f) ~ |In #|. Using these estimates directly on (16)
and splitting the integrand as in Theorem 5 it is enough to show that for some
0 < 0 £ 1, the following expression is finite:

([ TIEee) T ] :
e ... (e lg_l 7 =1 i X A.lél A'k/ .
55 58Tt (5 | s gy ) e (64 in A7)
The last term is bounded if « > 1k(1 — 0)~*. For any such 4 it is enough to
show

, (dA i) 7
18 e .. (e {;_1( i>l: i=1 i ]
9 o WSO T ge, + 80 ) <
Now make the substitution A; = &(x;) = exp(—x,~*®™"). Since £ is monotone,

EHE() + £(0) = 3(x + ) so that ($(Ai, + A))’ = $(xiy + x). Neglecting
constants we are led to the following majorant of (18):

R § Ly <dxi>|: k-1 x 1=/ :! ’
Xi HL—; (xi—x + X.L-)

where ¢* = £(¢). For any 0 < 6* < 1, this integral is less than

k-1 a*
TR T § o <‘le> I:H?;I (;ilx_i*_ xt):l max, (xi(l‘—d*)—(k_l)/aa) .
If « > (k — 1)/6, then some d* > 0 can be chosen so the last term remains
bounded. When the last term is bounded the remaining integral is finite for
any 6* > 0 by Lemma 4. Thus we require that-a > min,,., max ((k — 1)/d,
k/2(1 — 0)). This minimum occurs when d = 2(k — 1)/(3k — 2) and thus we
require that & > 4(3k — 2).

When 4, < oo we can relax the condition that ¢ have positive index of vari-
ation. We obtain

THEOREM 7. Suppose A, < oo, Ag= oo and X is ¢-regular. Let ¢*(f) = E(X"'(f)—
X"'(0))* be increasing near zero and assume (17) holds. Then M (0, T) < co for all k.

REMARK. The assumption 4, = oo is no restriction since it is known that when
all spectral moments are finite, then all crossing moments are finite. In other
cases the above conditions can be achieved by considering the appropriate de-
rivative of X. :

ProOOF. As in Lemma 3, we use divided difference manipulations and iterate
one further time to find that under the assumptions of the theorem

det Cov (X(1,), - - -, X(1}))
= CIT¢ 2 APHITES (Do + AHITESS (A + Aiy 4 A))
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and
Ao(B, + Ay) < A
min (A}_,, A)d*(A,_, + A) i=2,.---,k—1
Ai—laz(Ak—z + Ak—l) <AL,

Q
IIAIIAIA

Substituting these estimates in (14), it is enough to show that
YEEERYS | = (d_A;)[ J ] 6=, A, ][ Iz ¢(Ai-1 + Ai) T
A JUTTES (A + A) LTS 6(Ais + Ay + 4))
X [max; A, L(A)}* 2] < oo .

The last two terms are bounded and the remaining integral is finite as before.

We conclude this section by considering the rate of growth of the factorial
moments. Let (X, - - -, X,) be multivariate normal with mean 0 and component
variances ¢,>. An application of the Holder inequality shows that

E|[TE, Xy < (115, 0 E|Z)

where Z is a standard normal variable. From this and Cuzick (1975, (2.2)) it
can be seen that M,(0, ¢) is bounded by E|Z|* times the expression given at (14).
For the special case in which ¢%(f) = C|t| + o(?) it was shown in the above paper
that the constant C, in Lemma 3 satisfies C, = 3-*. Finally using the estimate
(15), we see that there exists a constant 7 such that M,(0, ¢) < r*E|Z|*. Thusin
this special case the factorial moments of N(0, T) grow no faster than the abso-
lute moments of a normal variable and thus the probability generating function
of N(0, T') converges in a neighborhood of unity.

The obstruction to a more general result in this direction is the lower bound
for C,. The same type of lower bound would be achieved if it could be shown
that

lim SUp, o Var (X¢‘)[117 ty 1) l X¢&[t2’ s 4], - s X¢i[’k-—2’ L B]) 2 c
with C independent of k. Some work in this direction can be found in Cuzick
(1977).

4. Crossings of general curves. The preceding results are not restricted to
zero crossings but also apply to a large family of curves. By a modification of
the argument in Cramér and Leadbetter (1967) it can be shown that for smooth
curves &

My, T) = §§ -+ §§ E(ITE= X'(8) — €(0)|| X(1;) = &(15), J = 1. -+ -2 )
X P(&(t), - -+, &()) dr, - - - dr,

where P,(x) is the joint density of (X(z,), - - -, X(#,))- The introduction of general
curves presents little additional difficulty when they are at least as smooth as the
sample functions of X. Thus there are many generalizations of the following

THEOREM 8. If the conditions of Theorem 5 are satisfied and

Ee &0, T], then My, T)< o for all k.
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Proor. Belyaev (1966) has shown that a sufficient COl’ldlthn for M (&, T) to
be finite is that all the integrals

ro o e B0y, Oy dA. ... dA

SO SO (det Rk)b 1 k=1
are finite for 1 <i < k and any permutation = of {1, --.,k}. Here y; =
E(X'(t;) — &'(t)| X(¢;) = &(t;),j =1, ---, k). By our previous methods, the
theorem is true if the g, satisfy the bounds given in the following

LEMMA 5. Under the conditions of Theorem 8, there exists a constant K such that
[l = K‘72(A1)X(Av sy Byly)

a’(A;_)d*(4,) A A P2k —1
ey L S

It < Ko®(B_)x(By - - -5 Byy)
where y(A,, - - -, A,_)) = T1i2) (oA, + A)/é(A;_, + A)).
Proof. From Belyaev (1966) we know that
det<§(ti) &), - $(fk))

V44 R
19 - _ k
(19) e det R,
where Z = (E(X'(1,)X(1)), - - -, E(X'(1)X(1,)))-
Using the divided difference manipulations in a manner similar to Lemma 3
we can rewrite the numerator of (19) for i < k as

sl £ K

(20) AN AT (A, + A))) det ( E"[t”ztl’ e } ,fk* )
where
5 = (5(’1)» é[tv t2]v fa[tv tz’ ts]’ ] §a[tlc—2’ tk—v tk]) ’
(Z*Y = E(X,[t;, t;, £,,,]Y)
R* = E(YY'), and

Y = (X(1), X[t), t.], X[t tos ], -+ -5 X [teeas timrs B]) -
The determi_nant in (20) is bounded since all its entries are. Finally, using the
lower bounds of Lemma 3 for the denominator in (19), it follows that

el < Ka*(A)x(By, - -+, Be_y) i=1,---,k—1.
The bounds
] < Ka*(B,_)x(Bys -+ i) =2,k
follow analogously. The proof is completed as with Lemma 3.

5. Necessary conditions for M,(0, T) < oo. Geman (1972) has shown that a
necessary and sufficient condition for M,(0, T) is that
2
M<oo for some ¢ > 0.
t

§6
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This has been extended in Cuzick (1974) to curves ¢ whose derivatives satisfy
a Lipschitz condition of order |In ¢|-# with 8 > 1. By Theorem 6, little more is
required of ¢°(¢) to make higher moments finite. However, necessary conditions
are more difficult for higher moments. The main difficulty lies in obtaining
sharp lower bounds for the ¢. This is a question of obtaining lower bounds
for interpolation variances and is not handled satisfactorily by local nondeter-
minism, which is concerned with extrapolation. This point is not recognized by
Mirosin (1974b) and the proof of the estimates in his Lemma 3 is invalid. We
can, however, by ad hoc methods, establish some cases in which Ny0,T) < oo,
Ny0, T) = oo.

THEOREM 9. If d’(t) = E(X'(f) — X’(0))* = |In #|~* for &« < 3 and |t| < 0 with
0 > 0, then M,(0, T) = o.

ProOF. Assume EX(r)* = EX'(t)* = 1 so that X has covariance function
oty =1 — 1 4+ W(r) and
W(t) = 4 §¢§s o*(w) du = 22(In 1]=%(1 + 3a|ln f|~* 4 O|In #|?) .
For simplicity we rename A, = x, A, = y. For a small positive ¢ we consider

the region y < x < y(1 + ¢) and by direct calculation obtain the following seven
estimates in that region for small x:

(21A) E(X'(1)) — X[t,, ,])* ~ [In x|~

(21B) E(X'(t) — X[t,, t,)(X[t ts] — X[ty £,]) = O|In x|~1+D
(21C) E(X[t,, t,] — X[t 1,])* ~ |In x|~ (@+

(21D) E(X'(t,) — X[ty t1)(X[t, 1] — X[£y, 1,]) = O]In x|~(a+V
(21E) E(X'(t)) — X[ty t])(X[1 1,]) = O|In x|~(=+V

(21F) E(X'(1,) — X[ty £])(X [t 1,]) = O|In x|~(*+V

(21G) E(X[1, ;] — X[t t])° >

E(X[tl’ tz] - X[tz’ ta])(X[tl’ tz])
We shall only prove (21G). It can be rewritten as
(22) 1+ E(X[1, 4] — E(X[1,, 6]X[8, 14])
E(X[tl’ t2])2 - E(X[tv tz]X[tz’ ta]) ‘
1 4 =2¥O A+ (Ux + ) = V() = Y()/xy
—2W(/x + (Y (x +y) — W(x) — ¥(y)/xy
which is greater than or equal 2 when y < x since ¥ is convex and W(y)/)* is
strictly increasing at zero.
All of the terms in (14) can be written in terms of determinants or ratios of
determinants. For example, '
o = Var (X'(t,) | X(t,), X(1,), X(15))
~ Var (X'(t,) — X[t,, t,]| X[t), ;] — X[t,, 1], X[, 1,])
_ det Cov (X'(t,) — X[t,, t,], X[t,, t,] — X[t,, t;], X[1,, 1,])
B det Cov (X[1,, t,] — X[ty t], X[t,s 1;]) '
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In this manner, using the estimates (21), we obtain for y < x < (1 + ¢)y that

det R, ~ x*)*|In x|~(**V
o2 ~ |Inx|~* i=1,2,3.

Using these estimates the integral (14) will be infinite if

—(2a—1)/2

This will occur if @ < 3.
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