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ON HITTING PROBABILITIES FOR AN ANNIHILATING
PARTICLE MODEL!

By DIANE SCHWARTZ

University of Southern California

Erdos and Ney introduced a discrete time annihilating particle model
on the integer lattice and conjectured that, starting from an initial state
of a particle at each lattice site except the origin, the probability a particle
ever hits the origin is 1. This paper proves this conjecture for the con-
tinuous time version of their model.

1. Introduction. In [2] Erdos and Ney introduced the following annihilating
particle model on the integer lattice, Z. Start with a particle at each lattice site
of Z except 0. Let 0 < p < 1. At each unit of time a particle at x jumps to
x — 1 with probability p and jumps to x + 1 with probability 1 — p. If two
particles collide or cross each other’s path then both particles are annihilated.
A one-sided variant of this model is at each unit of time let a particle at x jump
to x — 1 with probability p and remain in place with probability 1 — p. In this
caseif a particle attempts to landonan occupiedsite then both particlesareannihil-
ated. For both models Erdos and Ney [2] conjectured but could not prove that

P[the origin is ever hit] = 1.

In this paper we prove Erdos and Ney’s conjecture for the continuous time
versions of these models. By the continuous time version we mean that each
partile waits an exponentially distributed random time (mean 1) before jumping,
where the random times are independent for each particle and for each jump.
The method of proof is to identify the continuous time annihilating particle
model as a transformation of Holley and Liggett’s [4] voter model and then use
Harris’s [3] results on representing certain additive processes as random graphs.

Adelman [1] has written a paper in which he argues that the Erdés-Ney con-
jecture (discrete time) is true whenever p = ¢ = }. Adelman bases his proof on
symmetry relationships and hence our proof is quite different and also extends
to the case where p =+ g.

2. Identifying the annihilating particle model with the voter model. The
voter model that we consider is a strong Markov process 7, on {0, 1}* (product
topology) whose infinitesimal generator, when restricted to cylinder functions,
is given by
@1 Qftn) = 2 Zeez n()(1 = n(x + 1)) + (1 — 7()n(x + DIfG7) — f(0)]

+ (1= ) Daez (1 — 7(x — 1) + (1 — 7()n(x — 1)
X Lfen) = fo)]
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where 0 < 2 < 1, p(u) = n(u) if u + x and ,p(x) = 1 — 5(x). Then 7, can be
described as a configuration of states 0 and 1 on Z with site x being in state 7,(x)
at time 7. Each site remains in its present state for an exponential random time
(mean 1), then with probability 2 it aligns itself with its right neighbor (01 —
11, 10 — 00) and with probability 1 — 2 it aligns itself with its left neighbor
(10 —» 11, 01 — 00). It is possible that there is no resulting change if a site and
its neighbor are already in the same state.

Think of 7, as describing a random string of 0’s and 1’s on the integer
lattice. At each time ¢ place a particle at site x if »,(x) = n,(x — 1). Let &, =
{xe Z|n(x — 1) # 5,(x)}. Then &, describes a configuration of particles on Z
and we show below that &, is the annihilating particle model with initial con-
figuration &, = {x|9(x — 1) # n(x)}. If0 < 2 < 1 this is the two-sided version
and if 2 = 1 or 2 = 0 this is the one-sided version (cf. Erd6s and Ney’s random
intervals [2]).

Using the convention that §(x) = 1 if there is a partcle at site x and §(x)=0
if not, the annihilating particle model is a strong Markov process &, on {0, 1}*
(product topology) whose infinitesimal generator, restricted to cylinder functions,
is given by N

S9E) = 2 Daez arasf) = SO+ (1 = D) Xoez [fonif) — f9)]
where 0 < 1 < 1 and
(@) = &(u) if u#ta, u+bd
=0 if u=a
= §(b)[1 — &(a)] if u=25.
Hence ,,§ describes the change in ¢ after a particle jumps (and is possibly an-
nihilated) from a to b. Let ¢: {0, 1}* — {0, 1}” be given by #()(x) = 1 if and

only if 7(x — 1) # 7(x). Then the claimed correspondence between &, (annihil-
ating particle model) and 5, (voter model) is £, = 6(5,). To prove this we note

that
{n(@)(1 — 7(8)) + (1 — n(@)n(®)}9(O(M))] = 9(,..§) — 9(£)

whenever a = xandb = x 4+ lora = xand b = x — 1. Therefore Qg(0(n)) =
7g(§) for all cylinder functions g and hence {#(7,)},5, and {£,},., have the same
finite distributions.

Next suppose that 7, is that element of {0, 1}7 satisfying n,(x) = 1 if x > 0 and
x is an odd integer, 7,(x) = 1 if x < 0 and x is an even integer, and z,(x) = 0
elsewhere. Then &, = {xe Z|x # 0}. Hence Erdos and Ney’s conjecture in
continuous time becomes

(2.2) " P,[740) # 7(—1) forsome ] =1.

Since {1,(0) = 1 for some 1} C {»,(0) # 5,(— 1) for some ¢} P, -a.s. when y,isas
above, the proof of (2.2) will be a consequence of the proof that

P, [7(0) =1 for some ¢]=1.
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3. Constructing 7, as a graphical process. In this section we follow Harris
[3] and construct 7, (the voter model) using a random graph on

S={(x,1)|xeZ te|0, c0)}.

Let N,(1), x € Z be independent Poisson processes with parameter 1. Fix a reali-
zation of these Poisson processes. Let 7,(k) be the kth jump time of the N,(7)
process. At each (x, 7)€ S such that r,(k) = ¢ for some k > 1 place a directed
line segment from (x, ) to (x — 1, r) with probability 2 (i.e., an arrow with head
at (x — 1, ¢) and tail at (x, 7)) and with probability 1 — 2, place a directed line
segment from (x, t) to (x + 1, ¢). An active path (up) from (x, s) to (y,?) is a
sequence of alternately vertical and horizontal line segments from (x, s) to (x, t,)
to (yy, 1) to (yy, 1,) to (py, 1) to - -« to (y, ty) to (y, t) satisfying

(i) S<l‘1<t2< <t1v§t'
(ii) There is no arrowhead in the interior of any vertical line segment.
(iii) Each horizontal line segment coincides in extent and direction with one
of the directed arrows on the random graph S.

An active path (up) follows the graph upwards along vertical lines and hori-
zontally along the direction of the arrows (tail to head). Using the random
graph define the process 7, on {0, 1}# as follows: »,(y) = 1 if and only if there
exists an active path (up) from (x, 0) to (y, #) from some x € Z such that (x) = 1.
From [3] (Section 4.c and Section 9) we know that 7, is what Harris calls an
additive process and that 7, has an infinitesimal generator given by (2.1). That
the generator is (2.1) can be verified directly.

In order to continue we define an active path (down) from (y, 1) to (x, 5) as a
sequence of alternating vertical and horizontal line segments from (y, ) to (y;, 5,)
to (x;, 5,) t0 (x,, $,) to - - - to (x, 5y) to (x, 5) satisfying

() t>85>8> - >85, =5
(ii) There is no arrowhead in the interior of any vertical segment.
(iii) Each horizontal line segment coincides in extent and in opposite direction
with one of the directed arrows on the random graph S.

An active path (down) follows the graph downwards along vertical lines and
horizontally along the arrows from head to tail.

For any fixed realization of the random graph S there is an active path (down)
from (y, ) to (x, 5) if and only if there is an active path up from (x, s) to (y, f).
For the process 7, started at y we have 7,(y) = 1 if and only if there exists an
active path (down) from (y, 7) to (x, 0) for some x such that (x) = 1. We point
out that it is possible that there is no active path (up) from (x, 0) to (y, f) for
any y € Z but, in contrast, for each ye Z, + > 0 and s < ¢ there is a (unique)
x € Z such that there is an active path (down) from (y, 7) to (x, s). In particular,
there is always an active path (down) from (y, ) to (x, 0) for some x ¢ Z.

4. The dual process. Fix a realization of the random graph S§. For each ¢
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let (Y,!)y<,5: b€ @ process on Z defined as follows.
YOc = Y‘,' = X

if there exists an active path down from (0, ) to (x, t — s5). Then (Y,"),<,s; is @
stopped continuous time birth and death process on Z with p(x, x — 1) =1 — 2
and p(x, x + 1) = 2. From our comments at the end of Section 3 we see that

P [7,(0) =1 forsome ¢ = 0] = Prob[Y/ e {u|n(u) = 1} for some ¢ = 0}.

In Section 5 we will prove that these probabilities are 1 and hence that the
Erdos and Ney conjecture is true. First we need the following lemmas.

(4.1) LeMMA. Let C={xeZ|x > 0and xisodd} U {xeZ|x <0 and x is
even}. Thenlim,_ Prob[Y/'e C] = }.

Proor. Let X, be a continuous time jump process on Z starting at 0 with
p(x, x + 1) = 2 and p(x,x — 1) =1 — A Then, for each ¢, X, and Y, have
the same distribution. If 2 > } then lim,_, Prob [X, e C] = lim,_,, Prob [X, has
made an odd number of jumps] = 4. Similarly if 2 < 1. If 2 =1} then

lim,_, Prob [X, e C|X, = 0] = lim,_, Prob[X,e C|X, = —1]. By symmetry
Prob[X,e C|X, = —1] = Prob[X, e C°| X, = 0] and hence the desired result
follows.

(4.2) LemMA. Let¢ > 0 andt > 0. Then there existsa T > 0 such that for
anyr,<rn< - ---<r,standA;,Cc Z, AC Z

|Pr0b[Y;iie Ayi=1,...,n Y5F e 4]
— Prob[Ylie ;i =1, .-, n]Prob[Y{leAd] <e.
Proor. Fix a realization of the random graph. Let
Wt =0, Ut =0,

Wt = x if there exists an active path down from (0,7) to (x,¢—s)
using only the directed arrows which go from left to right
(i.e., tailat (y,r) and head at (y + 1,r)),

and

Ut = x if there exists dn active path down using only the directed arrows
which go from right to left (i.e., tailat (y + 1,r) and head
at (y,7)).

Then (W,!)y<,<. is @ jump process on Z which jumps only one integer step to the
left at a time with rate 1 — 4. Similarly (U,%),,, jumps to the right one step
at a time with rate 2. Hence for a fixed r and ¢ there exists an M such that

Prob[|Ul < M and |[W}! <M forall 0 <s<t]>1—c¢.

By construction Wt < Y, < U/ for all 0 < s < r. Therefore with probability
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at least 1 — ¢, Y, is defined in the terms of the subset of the random graph
given by :
D={xs)|x=M0Zs<1}.

From the construction of Y,” we see that if r < ¢ then Y,” is also defined in terms

of D. We now selecta T > 0 so that with probability at least 1 — ¢ Y/ !T is
defined in terms of the subset S\D. This can be done by choosing T satisfying

Prob[|X,| =M+ 1 forall T<s<TH+¢]>1—c¢

where X, is a cpntinuous time jump process on Z starting at 0 with jump rates
p(x,x +1)=2and p(x,x — 1) =1 — A Since (Y,"*T);_,cr,, and (X,)r<o<re
have the same distribution and since {|Y,*7| = M + 1 for all T <5 < T + ¢}
says that the active path (down) which determines Y /*” does not intersect D,
the lemma follows.

(4.3) LemMMA. Let N> 0, and ¢ >0. Let AC Z. Then there exists
<ty < -+ < ty such that

|Prob[Y{ie A foreach i=1,..-,N] — [[{L,Prob[Yfie A]| <.
Proor. Use Lemma (4.2) and an induction argument.

5. The main result.

(5.1) THEOREM. Let C = {xe Z|x > 0and x is odd} U {xe Z|x < 0 and x
is even}. Then P,[7,(0) = 1 for some t = 0] = 1 whenever y(x) = 1 for xe C.

Proor. From Section 4 we need only prove that Prob[Y,e C for some
t>20]=1. From Lemma (4.1) Prob[Y, ¢ C] < % for sufficiently large r.
From Lemma (4.3) given ¢ > 0 and N there exist r < 1, < t, < --- < ty such
that [Prob [Y/s ¢ C for each /] — J[, Prob[Y{i ¢ C]| < ¢ and hence that

Prob[Y, e C forsome t = 0] =1 —Prob[Yt‘iieC,i: 1, ..+, N]
=21—-(3)"—-¢.

Since N and ¢ are arbitrary this gives the desired result.
REMARK. Theroem (5.1) will be true for any set C satisfying

lim inf,_

Prob[Ytec] < 1.

Hence the Erdos and Ney conjecture can be proved for other initial configurations.

REFFRENCES

[1] ADELMAN, OMER. (1976). Some use of some ‘‘symmetries’” of some random processes. Ann.
Inst. H. Poincaré Sect. B. XII 2 193-197.

[2] ErDOs, P. and NEy, P. (1974). Some problems on random intervals and annihilating par-
ticles. Ann. Probability 2 828-839.

[3] Harris, T. E. (1976). Additive set-valued Markov processes and graphical methods. Ann.
Probability 6 355-378.



AN ANNIHILATING PARTICLE MODEL 403

[4] HoLLEY, R. and L1GGETT, T. (1975). Ergodic theorems for weakly interacting systems and

the voter model. Ann. Probability 3 643-663.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN CALIFORNIA
UNIVERSITY PARK

Los ANGELES, CALIFORNIA 90007



