The Annals of Probability
1979, Vol. 7, No. 3, 515-525

TIME-DEPENDENT FUNCTIONS OF BROWNIAN MOTION THAT
ARE MARKOVIAN'

By ALBERT T. WANG
University of Tennessee

The class of continuous functions f(¢, x) for which f(¢, X(¢)) are Markov
processes is explicitly determined, where X(¢) is a Brownian motion on the real
line. This extends a result by Walsh.

1. Introduction. Let X(f) be a one-dimensional Brownian motion and f(, x)
be a continuous function from [0, o) X R to R; then which properties of f make
J(t, X(¢)) a (homogeneous or nonhomogeneous) Markov process? When f(z, x) =
h(x) for all ¢, similar problems were studied by Rosenblatt [6]; Dynkin [3], page
325; and Walsh [7].

Rosenblatt [6] studied functions A(X,) of a stationary Markov chain X,. Under
the hypothesis that the transition probabilities of X, are dominated by a sigma
finite measure, he obtained some necessary and sufficient conditions on 4 for h(X,)
to be Markov. For a stationary Markov process Z(¢), Dynkin ([3], page 325) has a
sufficient condition on function A to make A(Z(t)) Markov. In the case of a
one-dimensional Brownian motion X(?), the following explicit criterion of & was
obtained by Walsh [7] for A(X(?)) to be a Markov process.

PrOPOSITION 1. Let ly(x) = 0, I;,(x) = x, I,(x) = |x|, and I(x) = d(x, E), where
E = {all even integers} and d(x, E) =inf {|x — y|ly € E}. Then h(X(?)) is a
Markov process if and only if for some i,0 <i <3
Q) h(x) = g ° l(ax + b),
where a and b are constants, g is continuous and strictly monotone.

The purpose of this paper is to obtain a result similar to that of Walsh for
time-dependent functions of Brownian motion. To state our problem more pre-
cisely, let (X(2), 9, P, ,), t > 0, be a standard Brownian motion on the real line

1
(R, %) with transition functions

p(s,x,t,B) = P, (X(t) € B)=p(t —s,x,B), where 0<s<t,BERB,

and % is the completed sigma field generated by {X(u), s < u < t}. Let Y(¢) =
f(¢t, x(¢)) and § be the completed sigma field generated by { Y(u), s < u < ¢}. For
convenience, we define & * to be the sigma field generated by {X(u), u > s} and we
define G° similarly. We shall obtain a necessary and sufficient condition on f under
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which the process Y(¢) satisfies both (2) and (3) given in the following:

@ P, [Y() € BIF;] = P, [ Y() € BIY(w)] = q(u, ¥(u), 1, B),
6 P, [Y(1) € BIS,] = P, [ Y(2) € B|Y(w)] = q(u, ¥(u), 1, B),
where 0 < s <u <1, B € B, x € R. In both (2) and (3), g(u, y, t, B) are Markov
transition functions defined for {(u, y)|0 <u < o0,y € f(u, R)},u <t, B € B.

Throughout this paper, unless stated otherwise, f denotes a continuous function from
[0, ) X R to R. We shall use f,”'(B) to denote f(z, -)~'(B). We put

4 S = {fIf(s, x) = f(s, x') implies p(s, x, 1, ,”'(B))
= p(s, x', 1, ;7 '(B)),
 forallt>s>0,BEB}.
(5) T = { f| f satisfies formula (2)},
(6) U = { f|f satisfies formula (3)}.

In Lemma 1, we obtain S = T = U. This is an extension of some results obtained
in [6] and [3]. The main result of this paper is given in the following:

THEOREM. f € U if and only if f is in one of the following four forms.
@) f(z, -) = C(¢) for all t;

(ii) there exists ty > 0 (ty may be o) such that f(t, ') are strictly increasing
(decreasing) for all t < ty, and f(t, -) = C(¥) for all t > ty;

(iii) there exists t, > O such that for t < to, f(t, x) = g(t, |ax + b|), where g is a
continuous function such that g(t, ) is strictly monotone for each t, and f(t, -) =
C(2) for t > t,;

(iv) there exists ty > O such that for t < to, f(t, x) = g(t, l(ax + b)), where a, b are
constants and g is as given in (iii), and f(t, -) = C(¢) for t > ,.

2. Some preliminary results. We shall show that § = T = U. Before we do so,
we state without proof the following proposition which is needed later on.

PROPOSITION 2. Let g and h be continuous functions from R to R. Suppose g is
constant on sets {x|h(x) = A}, X € R; then there exists a Borel measurable function
v from R to R such that g = v ° h.

The following lemma is an extension of a result in [6] and [3].

Lemmal. S=T=U.

Proor. Clearly, T C U. We only need to prove S C T and U C S. For
0<s<u<x<t '

™ P,.[Y() € BIF:] = P, [ X() € 17'(B)I5:]
= 2,.[X() € 17 (B)XW)]
= p(w X(w), 1,7'(B)).
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Assume f € S. Then p(u, x, t, f,”'(B)) = p(u, x', t, £ '(B)) whenever f(u, x) =
Sf(u, x). Now let u,t, and B be fixed; we put g(x) = p(u, x, t, £~ '(B)) and
h(x) = f(u, x). By Proposition 2, we know that there exists a Borel measurable
function » such that p(u, x, t, £, (B)) = v[ f(u, x)]. Hence p(u, X(u), t, £7I(B) =
»[Y(u)] is Y(u) measurable and
®) P, [ Y(1) € B|F,] = p(u, X(u), tff'(B))
[Y(w)] = P [Y(1)E B|Y(u)].
The first equality of (2) is obtained. Now we define *
&) q(u,y,t, B) = P, [ X(1) € f7'(B)],
when f(u, x) = y. By (4), q(u, y, t, B) are well defined for {(u, y)|0 < u < oo, y €
Sf(u, R)}, t > u. Combining (7), (8), and (9), we get
(10) P, [Y(t) € B|Y(u)] = p(u, X(u), 1, ;" '(B))

= P, xw[X(?) € £,71(B)]

= q(u, Y(u), t, B).

Thatis, f € T.
Now assume f € U. When s = u and f(s, x) = y, we use (3) to obtain
(11) P [Y(t)EB]= P, [Y(2) € B|Y(s)]

= q(s,y, t, B).
Then, for f(s, x) = f(s, x")
(12) p(s, x, 1, ,7(B)) = P, [ Y(r) € B] = q(s, 9, 1, B)
=p(s, %, t, £, '(B)).
The technique used in proving the following lemma is very similar to that given

in [2], Lemma 5A. This lemma is an extension of [7], Lemma 1.

LEMMA 2. Let f € S. Then any proper local maximum (resp. minimum) of f(t, )
is also a global maximum (resp. minimum).

Proor. We will give the argument only for the case of maximum. Assume
t > 0. Let f(1, x,) = b be a proper local maximum of f(¢, -), but not an absolute
maximum. Then there exist x,, x,, x; such that x; < x, < x,, x; & [x;, x,] and that

(13) max { f(t, x)), f(t, )} <b,  max, .., {f(t,x)} =b,
(14) f(t, x;) > b (we may assume x; > x,).

By the continuity of f, there exists ¢ > 0, a(s) € (x,, x,) such that for all s €
(¢t — &, 1], (15) and (16) hold.

(15) max, <.<x,{f(s, x)} = f(s, a(s)) > max { f(s, x,), f(s, x,)}.
(16) max, .. {f(s, x)} = f(s, a(s)) <f(s, x3).
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For s € (¢t — &, t], we define

(17) B(s) = sup {x < x;|f(s, x) = f(s, a(s)) }.

Since f is a continuous function, we can take a(s), 8(s) to be measurable. Hence we
can find {s,};° C (¢ — &, t] such that {s,} increases to s, € (¢ — &, 7], and that
(18) li‘Inn—mo B(sn) = B(SO)’ li]nn—»ooa(sn) = a(SO)‘

Given any positive € < 41, by the fact that f(s, x) > f(s, B(s)) for all x € (B(s), x5,
there exists N, such that for all n > N,,

(19) P(Sm B(s,), 505 fso_l{ [f(so, ,3(50)), °°)}) > % - &
On the other hand, by (15) we can find N, such that for all n > N,
(20 P(sm a(s,), S f;o_l{[f,(so, a(sy)), °°)}) < % — &

But f(s,, a(s,)) = f(s,, B(s,)), n=0,1,2- -, (19) and (20) contradict the defini-
tion of S.
The case for which ¢ = 0 can be easily obtained by a continuity argument.

LEMMA 3. Let f € S. Iff(t, -) has an improper local maximum (or improper local
minimum) then f(u, ) = C(u) for all u > t, where C(u) is a continuous function of u
only.

ProOF. Suppose f(?, x,) = b is an improper local maximum. Then there exists a
sequence {x, }° of distinct terms such that x, converges to x, and that f(z, x,) = b
for all n. Hence for all fixed u > ¢, B € B, p(¢, x,, u, £, '(B)) is a constant. Since

(21) p(ts X, u,f;‘_l(B)) = fj,,"(B)[27T(u - t)]_%exp [_ (x _y)2/2(u - t)] day,

it is a real analytic function of x when u and B are fixed. Now p(¢, -, u, £, '(B)) is
a real analytic function which equals to b at {x,}i_,; it must be a constant
function. Differentiating both sides of (21) with respect to x we get for all x € R

@) oy — D[2mu = %] 2exp [~ (x = »)/2u — D] dy = 0.

This is possible only when f,"'(B) or its complement is of Lebesgue measure zero.
Let B be any open interval. Then f,”'(B) is an open set. Hence f,”'(B) is either R
or the empty set. That is, f(u, -) = C(u) for all u > ¢. It follows by the continuity
of f that f(¢, -) = C(?). '

REMARK 1. Let f € S. Let f(¢, -) be a nondegenerate function. Then Lemma 3
implies that f(s, -) are nondegenerate for all 0 < s < ¢. Furthermore, by using the
arguments of Lemma 3 we can prove that {x|f(z, x) = b} does not have a limit

point for any b € R.
The following lemma is simply a restatement of definition (4). We present it as a
lemma because of its importance.

LEMMA 4. Let f € S and let f(s, x) = f(s, x'). Then P, , is equal to P , on g.
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Let us now stop for a moment to see one of the implications of our main
theorem. Let f € S and f{(z, -) be nondegenerate and not strictly monotone. Then
our theorem implies that f(¢, -) should be of the form as given in either (iii) or (iv)
in the statement of the main theorem. We shall prove this is indeed the case. We
need more notations to proceed. Define

@) m() = inf, (f(t, x)},  M(1) = sup, {f(t, 0)}.

(29) r()=m()+c ifm(t) > —oo,
=M{l)—c ifm(t)= —oc0,

(25) A (1) = {x]|f(t, x) = r.()},

A, (1) = {x|f(t, x) = m(1)},
Ay (1) = {x|f(1, x) = M(2)}.

LEMMA 5. Let f € S and f(t, -) be nondegenerate and not strictly monotone. Then
f has the following properties:

(i) Any local extremum of f(s, -),0 <s <t, is a global extremum of f(s, -).
Conversely, any global extremum of f(s, -),0<s <t, is a proper local
extremum of f(s, *).

() Ay (DU A () #D, Ay() N A=

(iii) For each s,0 < s < t, Ay (s) and A, (s) contain only isolated points. Let x,
and x, be two adjacent extrema of f(s, +) (when there is no extremum adjacent
in either the left or the right, one or both of x, and x, can be taken from
{— o0, ©}). Then f(s, -) is strictly monotone in the open interval spanned by
x, and x,.

(iv) For each x € A, (1) (or A, (%), A(?), t > 0, and any given € > 0, one can
find & > 0 and a unique x, for each s € (t — 8, t] such that x; € A,(s) (or
A, (s), A(s)) and |x, — x| < e.

Proor.

(i) Since f € S and f(¢, -) is nondegenerate, by Lemma 3 f(s, -), 0 <s <,
cannot have improper local extremum. Hence any local extremum of
f(s, -), 0 < s < t, must be a proper local extremum. But proper local ex-
trema of f(s, -) are global extrema by Lemma 2. The converse can be shown
by similar arguments.

(ii) By our hypothesis f(#, -) is nondegenerate and not strictly monotone. If
f(t, +) is monotone but not strictly monotone, then for some b{x|f(z, x) =
b} has a limit point. Then it follows from Remark 1 that f(z, -) is degener-
ate, a contradiction to our hypothesis. Now we know f(#, -) is not mono-
tone, hence by the continuity of f(z, -) it has a local extremum. By using (i)
one obtains A, (f) U A, (f) # . It is also true that A, (?) N A, () = G,
because f(z, -) is nondegenerate.
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If either A,,(s) or A,,(s), 0 < s < ¢, contains an accumulation point, then by
Lemma 3 f(u, -), u > s, are degenerate, hence contradicting our hypothesis.
Now assume that x; and x,, x; < x,, are two adjacent extrema of f(s, -),
0 < s < t. If f(s, -) is not monotone in (x,, x,), then it has a local extremum
in (x,, x,) and hence a global extremum (by (i)) in (x,, x,). This contradicts
our assumption that x, and x, are adjacent. If f(s, -) is monotone but not
strictly monotone in (x;, x,), then for some b{x|f(s, x) = b} has a limit
point. This would imply that f(u, -), u > s, are degenerate and is a con-
tradiction to our hypothesis.

First, we prove the existence of 8 and x, in the case when x € A,(#). By (i)
x is a proper local maximum of f(#, -). Given € > 0, by the continuity of f
one can find & > 0 and an x, for each s € (¢ — &, 1] such that x; is a local
maximum of f(s, -) and that |x, — x| < e. By (i) again x; € A,,(s). Simi-
larly, one can obtain the existence of § and x, in the case when x € A, ().
Note that in the proof presented above we only used the property (i) and the
continuity of f.

Now assume x € A (¢). For simplicity we will also assume m(f) > — oo.
The case when m(f) = — oo can be treated similarly. Since m(f) > — oo,
there exists 8, > 0 such that m(s) > — oo for all s € [t — §,, £]. Now for
s € [t — 8, t], we define a continuous function

v(s, 2) =[ f(s, 2) = m(s)]/[r(s) — m()]if f(s, 2) < re(s),
=1-[f(s, 2) = m(s)]/[r.(s) = m(s) ] if fls, 2) > re(s)-

Since f(s, +), 0 < s < ¢, are piecewise strictly monotone (see (iii)), the local
extrema of »,(s, -) are also proper for s € [t — &, ¢]. It is easy to see that x
is a proper local maximum of ».(s, -) if and only if x € A (s). Then our
arguments used in the case when x € A, (f) can be applied here.

Now we start to prove the uniqueness. We will only prove the case when
x € A, (f); the other cases can be proved similarly. Given arbitrary ¢ > 0,
assume that for each 8 > 0 we can find s, s € (¢ — 6, ], and two distinct
points x,, x in A,(s) such that |x — x,| < e and |x — x;| < e. Then one can
find a point x” which is located in between x, and x; and belongs to A,,(s).
This implies that x is a limit point of {A,,(s)|s € (¢ — 8, £)} for any § > 0.
It follows then that f(z, -) is degenerate, a contradiction to our hypothesis.

Let f satisfy the conditions of Lemma 5. Then by 5 (i) A, (f) U A,(f) #* . Let
Ay (1) # D. For x € Ay (2), we define

(28)

L(t, x) = sup {z]z <x,z € A,(1)},
R(t, x) = inf {z|z > x,z € A,(1)}.

Clearly, we have L(t, x) < x < R(t, x).

LEMMA 6. Let f € S and f(t, -) be nondege;terate and not strictly monotone. Let
Ay (D) # D and x € Ay(t). Then f(t, -), when restricted to (L(t, x), R(t, x)), is
symmetric to x.
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PROOF. Assume ¢ > 0. From Lemma 5(iii), f(¢, -) is strictly increasing in
(L(¢, x), x) and is strictly decreasing in (x, R(f, x)). Suppose that f(z, -), when
restricted to (L(z, x), R(?, x)), is not symmetric to x; then one can find two distinct
points x” and x” in (L(t, x), R(t, x)) such that f(z, x) = f(t, x") = r,(2) for some b
but |x” — x| # |x’ — x|. Without loss of generality, we can assume that x” — x >
x — x’ > 0. By using Lemma 5(iv) we can find § > 0 and a unique y(s) for each
s € (¢t — 4, 1] such that y(s) € A,,(s) and lim,_,y(s) = y(f) = x. Further, for each
s € (t — 8, t] we define
(29) a(s) = sup {z| f(s, 2) = r,(s), z < ¥(s) },

B(s) = inf {z|f(s, z) = r,(s), z > ¥(5) }.

Clearly, a(r) = x', B(t) = x”, f(s, a(s)) = f(s, B(s)) = ry(s), f(s, ¥(s)) = M(s). Be-
cause x” — x > x — x’, we know B(s) — y(s) > y(s) — a(s) when s is very close to
t. Indeed, there exists 8’ > 0 such that
(30) inf { B(s) — v(s")|t — &’ < min (s, 5’)

< max (s, 5") <t} > sup {y(s) — a(s)|t — &’

< min (s, ") < max (s, s") < t}.
Pick an s € (+ — &', £]. By Lemma 5(iii), (s, -) is strictly increasing in (a(s), y(s))
and strictly decreasing in (y(s), B(s)). Further, we know f(s, a(s)) = f(s, B(s)).
Hence

G {y=f(s,2lals) <z <y(s)} = {» = f(s, 2)|¥(s) <z < B(s)}.

Now let T = inf {u|Y(u) = M(u) or Y(u) = r,(u)}. We will restrict our attention
to T under the measure P, ,. Note that P, , is a measure defined on ¥°. Then the
set {Y(s) = x, T <t} is §; measurable under P, ,. We put

(32) A = sup {PM[ Y(2) €[ (1), M(0)], £ < T]ly(s) <z< ,B(s)},
(33) B = sup {PM[ Y(2) €[r,(2), M(1)], 1 < T]Ia(s) <z <y(s)}
From Lemma 4 and (31), it follows that 4 = B. On the other hand, for z €
[v(s), B(s)]
(34) {X(s) =z, Y(2) €[r,(1), M(1)], 1 < T}
= {X(s) = z, y(u) < X(u) <P(u)fors <u <t
X)) €[v(n), B(1]}
and for z € [a(s), y(s)]
(35) {X(s) =12z Y(t) €[r, (), M(H],t < T}
= {X(s) = z, a(u) <X(u) <y(u)fors <u<t,
X(1) €[a(r), (]3]

Knowing (30) and the properties of P, , we can see that 4 > B. Hence f(¢, -) must
be symmetric about x.
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Now let ¢ = 0. By our assumption A,(0) # &. By Lemma 5(i), we know that
x € A, (0) is also a proper local maximum of f(0, -). By the continuity of f it
follows that there exists § > 0 such that for all s € [0, 8], A,,(s) are nonempty and
f(s, ) are nondegenerate and not strictly monotone. Hence f(s, -), s € (0, 8], are
symmetric to its absolute maximum when they are restricted to the proper inter-
vals. Then by a continuity argument, one can prove Lemma 6 for the case when
t=0.

REMARK 2. In Lemma 6 if one replaces the condition A, (¢) # & by A, (1) + <&
. and assumes that x € A,,(¢), then f(¢, -) is symmetric to x in an interval defined
similar to (L(z, x), R(¢, x)).

REMARK 3. Let ¢ be positive and f(¢, -) be nondegenerate and not strictly
monotone. From Lemma 5(ii) A,(¢) U A,,(f) # . Further, Lemma 5(i) implies
that the global extrema of f(¢, -) are proper local extrema. By the continuity of f, it
follows that f(s), s € [t — &, ¢t + 8], are nondegenerate and not strictly monotone
for some 8 > 0. Hence f(s, -), t — 8 < s <t + &, also have the kind of symmetric
property given in Lemma 6 and Remark 2.

REMARK 4. Let f € S and f(¢, -) be nondegenerate and not strictly monotone.
Hence A,,(f) U A,,(Y) # D and Ay (1) N A, (f) = &. Then f(z, -) either attains one
of its absolute extrema or it attains both of them. If it attains only one of its
absolute extrema, then by Lemma 5(iii) it can only attain this extrema at one point,
say at point x. Then f(¢, -) is symmetric to x by either Lemma 6 or Remark 2.
Similarly one can see that if f(#, -) attains both of its extrema, then f(¢, -) is a
periodic function.

Now we define () to be the period of f(¢, -) if it is a periodic function and we
put y(¢) to be co when it attains only one of its absolute extrema. Note that the
extended valued function y(¢) is undefined when f(¢, -) is degenerate or strictly
monotone.

LEMMA 7. Let f € S and f(t, -) be nondegenerate and not strictly monotone. Let
x € Ay (f) # D (or x € A, (1) # D). Then x € Ay, (s) (or x € A, (s)) for all s €
[0, ¢].

PrROOF. Let a = inf {u|x € Ap(v) for all v € [u, 1]}. Clearly, 0 < a <t By
Lemma 3 f(a, -) cannot be degenerate. By the definition of a and the continuity of
£, f(a, -) cannot be strictly monotone either. Hence f(a, -) satisfies the conditions
of Lemma 5. Further, it is easy to see that x € A, (a). If a = 0, then there is
nothing more to be shown. Assume a > 0. Given a positive number ¢ < y(a) /4, by
Lemma 5(iv) there exists 8 > 0 such that for each u € (a — 8, a] one can find a
unique x, € A, (u) satisfying |x, — x| < e. By the definition of a, one can find
B € (a — §, a] such that x; # x. Without loss of generality, we can assume
xg < x. By Lemma 6 f(B, -) is symmetric to xg, when it is restricted on a proper
region. Hence one can find x’ <xz <x such that f(B,x") = A B, x). Then
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(B, x, a, £7(B)) = p(B, X, a, £ Y(B)) for all B € B. Now we choose a number

a

a € (m(a), M(a)) and put 4 = [a, M(a)}. Clearly,
(36) p(B, 2, £7(A) = [w[27(a — B)] Zexp [(z — »)*/2a — B)] .

By Remark 4, f(4) is a set which is symmetric about point x. Note that

(37) x' = x=(x" = x5) + (xg — x) <Y(B)/2 + Y(a) /4 < Y().

The last inequality (37) is true when we choose B very close to a. Hence
x' & Ay (a). Calculating the first and the second derivative of p( 8, -, a, f."'(4)) by
differentiating under the integral sign of (36), one can easily see that z = x is a
proper local maximum of p(B,z, a, £, '(4)). Indeed p(B, z, a, £, '(4)) attains
absolute maximum at point z if and only if z € A,(a). Hence p(B, x', a, £."'(4))
< p(B, x, a, £, '(4)). This contradicts our assumption that f € S and f( B, x) =

A(B, x).
LEMMA 8. Let f € S and f(t, -) be nondegenerate and not strictly monotone. Then
Ap(1) = Ap(0) and A, (1) = A,,(0).

ProOF. We will only prove that A, (#) = A,,(0). By Lemma 7, A, (1) C A,(0).
We only need to show A, (0) C A, (?). Let x € A(0). Define a = sup {u|x €
Ap(v) for all v € [0, u]}. Clearly, a > 0. We want to show a > ¢. By the definition
of a and the continuity of f, one sees that f(a, ‘) cannot be strictly monotone and
that x € A,,(a). Assume a < ¢. Then by Lemma 3 f(a, -) cannot be degenerate. By
going through a similar argument as given in Remark 3, we know there exists
8, > 0 such that for all s € [a, a + ), f(s, -) are nondegenerate and not strictly
monotone. Given ¢ > 0, by an argument similar to Lemma 5(iv) one can find
- 8, > 0 and a unique x, for each s € [a, a + §,) such that x, € A,(s) and |x, — x|
< ¢. Put § = min (§,, §,) and applying Lemma 7 to f(s, -) for each s € [a, a + §),
one obtains x, = x for all s € [a, @ + 8], a contradiction to the definition of a.
Hence a > ¢.

3. Proof of the main theorem. Let f € S. By Remark 4 f(0, -) can only be of
one of the following four forms:
(38) A0, ) = C(0) is degenerate;
(39) 0, -) is strictly increasing (decreasing);
(40)  f(0, -) attains only one of its absolute extrema and does so only at
one point x, and f(0, -) is strictly monotone in (— o0, x) and (x, o)
(see Lemma 5(iii)). Further, f(0, -) is symmetric to-x;
(41)  f(0, -) is a periodic function which satisfies the symmetric properties
given in Lemma 6 and Remark 2. Further, f(0, -) is piecewise strictly
monotone (Lemma 5(iii)).

THEOREM A. Let f € S. Let f(0, -) = C(0). Then f(u, -) = C(u) for all u.

Proor. This is a consequence of Lemma 3.
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THEOREM B. Let f € S. Let f(0, -) be strictly increasing (decreasing). Then there
exists to > 0 (t, may be oo) such that f(t, -) are strictly increasing (decreasing) for all
t <ty and f(t, ) = C(t) for all t > t,.

PrROOF. Let ¢, = sup {u|f(v, -) are increasing for all v €[0, u]}. If ¢, = oo,
there is nothing more to be proved. We assume ¢, < oco. Given ¢ > 0 there exists
t, t, € [t to + €), such that f(¢,, -) is not strictly increasing. If f(¢,, -) is nondegen-
erate and not strictly monotone, then by Lemma 5(ii) A,(¢,) U A,(¢,) # . Using
Lemma 8, we have A,,(0) U A,(0) # I, a contradiction to the hypothesis that
SO, -) is strictly increasing. Hence f(¢,, -) can only be degenerate or strictly
decreasing. One of the following two cases has to happen. FEither there exists a
sequence ¢, decreasing to ¢ such that f(z,, -) are strictly decreasing for all n or
A, +), ty <t < t, + ¢ are degenerate for a certain ¢ > 0. Both cases will lead to
St ) = C(2y). Then by Lemma 3, f(¢, -) = C(¢) for all ¢ > ¢,

THEOREM C. Let f € S and f(0, -) be as given in (40). Then there exists t, > 0
such that for t < tg, f(t, x) = g(t, |ax + b|), where g is a continuous function such
that f(t, -) is strictly monotone for each t, a and b are two constants, and f(t, -) =
C(?) for t > 1,

ProoF. Without loss of generality, we assume A,/(0) = x and A,,(0) = . We
put #, = sup {¢#|f(s, -) is nondegenerate and not strictly monotone for s € [0, ¢]}.
By Lemma 8, we know A, (s) = x, A,(s) = & for all s € [0, #,). Clearly, f(¢,, -)
cannot be strictly monotone. If f(#,, -) is also nondegenerate, then by the argu-
ments of Remark 3 we would have f(z,, -) nondegenerate and not strictly mono-
tone for ¢, + 8 >t >, 8 > 0. Hence f(¢,, -) must be degenerate. Then f{(¢, -),
t > 1, are degenerate by Lemma 3. Now we know for all s € [0, ¢), f(s, ) are
symmetric to x and are strictly increasing in (— o0, x) and strictly decreasing in
(x, ). The existence of function g and constants a, b as given in the theorem is
not hard to prove and is left for the reader.

THEOREM D. Let f € S and f(0, -) be as given in (41). Then f(t, x) is of the form
as given in (iv) of the main theorem.

We omit the proof of Theorem D, because it is similar to the proof of Theorem
C. Now the necessity of our main theorem is obtained. The sufficiency is easy and
hence omitted.

Acknowledgments. The author wishes to thank the referee for his helpful
comments. Thanks also go to Professors Steven Orey and Bert Fristedt for their
clarifying remarks; and to Professor Naresh Jain for his helpful comments, criti-
cisms, and corrections.

REFERENCES

[1] Doos, J. L. (1955). A probability approach to the heat equation. Trans. Amer. Math. Soc. 80
216-280.



MARKOVIAN FUNCTIONS OF BROWNIAN MOTION 525

[2] DupLey, R. M. (1971). Non-linear equivalence transformations of Brownian motion. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 20 249-258.

[3] DYNKIN, E. B. (1965). Markov Processes 1 (English transl.). Springer-Verlag, Berlin.

[4] FReeDMAN, D. (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco.

[5] GirMaN, I. 1. and SKOROHOD, A. V. (1975). The Theory of Stochastic Processes 11 (English transl.).
Springer-Verlag, New York.

[6] ROSENBLATT M. (1959). Functions of a Markov process that are Markovian. J. Math. Mech. 8
585-596.

[7]1 WALsH, J. B. (1975). Functions of Brownian motion. Proc. Amer. Math. Soc. 49 227-231.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN CALIFORNIA
Los ANGELES, CALIFORNIA 90007



