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ALGORITHMS FOR LINEAR INTERPOLATOR AND
INTERPOLATION ERROR FOR MINIMAL STATIONARY
STOCHASTIC PROCESSES'

By H. SALEHI
Michigan State University

Algorithms for linear interpolator and interpolation error for a minimal
univariate weakly stationary stochastic process with discrete multiparameter are
derived. The Fourier coefficients of the inverse of the spectral density play an
important role in the determination of these algorithms.

Introduction. Let Z be the set of all integers, n > 1, and Z”" be the Cartesian
product of Z with itself n times. Endowed with the usual addition operation, Z" is
a discrete abelian group. An important problem in the theory of g-variate, ¢ > 1,
weakly stationary stochastic process indexed by elements of Z” is to obtain
formulas for the linear interpolator and interpolation error matrix. This problem
seems to have potential application to many diverse areas of physical, natural and
social sciences. In each case, the values of a stochastic process representing a
particular phenomena either are missing at some points of Z” or it is not possible to
obtain direct measurements at these points. The natural thing then is to try to
interpolate these missing values from the known values of the process. In [3]
Masani considered a full-rank minimal g-variate process (the missing value is at
one point) over Z and obtained an explicit expression for the interpolation error
matrix in terms of the spectral density of the process, thereby extending the ¢ = 1
-result due to Kolmogorov [1]. Using J. von Neumann’s alternating projections
theorem, an infinite series expansion for the linear interpolator of a g-variate
process over Z was obtained in [12]. The expression obtained in [12] depends on
the optimal factor of the spectral density, the reciprocal of the optimal factor, and
the innovations of the past and future of the process via the alternating projections
theorem. As a result, the expression obtained for the interpolator does not assume a
compact form. In addition for processes over Z", n > 2, a new difficulty arises,
namely the determination of the optimal factor of the spectral density which unlike
the case n = 1 is not available in the literature. The main purpose of this paper is
to obtain a closed form expression for the interpolator and interpolation error for a
univariate minimal stationary process over the discrete group Z” with n being an
arbitrary positive integer. .

For the benefit of the reader we add that the general theory of g-variate weakly
stationary stochastic processes over any locally compact abelian group has been
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INTERPOLATION OF STATIONARY PROCESSES 841

developed over the past few years [2], [13]. Materials regarding the interpolation
error matrix for a g-variate process, not necessarily of full rank, over Z, Z"
(n > 1), or any discrete locally compact abelian group may be found in [4a], [9],
[11], [13]. Under the assumption of minimality Theorem 2 of Yaglom given in [14]
may be reduced to our Theorem 2 for the n = 1 case. The problem of linear
interpolator is discussed by Rozanov in [5] and [6] for the case n = 1. Combining
[5] and [6] one can deduce our Theorem 4 for the special case n =1 from
Rozanov’s work. However, our proof is direct, short and our result is given for the
general case of arbitrary n. We might point out here that the extension of Theorem
4(a) of this paper to the nonminimal case remains open. Also the problem of
determination of the linear interpolator and interpolation error for processes
indexed by the set of real numbers are unresolved [10]. For this case the solution
will undoubtedly lead to complicated integral eéquations which would be difficult to
handle. For rational spectral density this problem is discussed in [7]. An explicit
solution for the linear interpolator and interpolation error matrix for a general
g-variate stationary process over Z”" or more generally over any locally compact
abelian group would be a significant contribution to the field. Another problem
which is worthy of research is the relaxation of assumption of Theorem 4. Could
the algorithm of Theorem 4(a) be obtained by replacing the square integrability of
the inverse of the spectral density by its mere summability?

Let x,, Kk € Z", be a univariate weakly stationary stochastic process taking
values in a Hilbert space JC. For the following notations we refer the reader to [3],

[4] and [13].

. 1. Notation. T will denote the topological dual of Z, i.e., T is the unit circle in

the complex plane which is identified with [0, 2#]. T, the dual of Z” is simply the
Cartesian product of T with itself »n times (7, is the n-dimensional torus). For k in
Z" with components k,, - - - , k, and @ in T, with components 4, - - - , 8, we will
write (k, 9) for k0, + - - - +k,0,. F will denote the spectral distribution of x;,
k € Z"; f will denote the spectral density of x,, k € Z". Both F and f are defined
on 7,. y will stand for the correlation function of x;, K € Z". y and F are related
by y(k) = (1/27)' (e "®P dF, k € Z". (This is Bochner’s theorem.) For ab-
solutely continuous F with density f this is y(k) = [,e~"*%f do, where o is the
normalized Haar measure on 7,,. L, ,, or in the absolutely continuous case L, ,
will denote the usual Hilbert space of square integrable functions on 7, with
respect to (w.r.t.) F. We recall that the space L, , is isometric to § (x), the subspace
generated by x,, k € Z”, under the isomorphism map x; <> e~ ®# [13]. As usual
this map between the time and spectral domains will play an important role in this
paper. We will simply refer to it as the isomorphism map.

For a set T contained in Z", §, will denote the subspace of JC spanned by the
elements x;, k not in T. For T consisting of 0, the zero elements in Z", we write S,
instead of §,. P, will denote the orthogonal projection operator onto §,; P is
used when T = {0}. o2 denotes the error quantity [x, — Pyxol>. When T = {0},
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we simply write 62. When f~!, the inverse of the spectral density, exists and is
integrable w.r.t. ¢ without loss of generality ([2], [13]), we may assume that the
spectral distribution F is absolutely continuous. Moreover, it is known that

3 =[fnf " do]”,

which is originally given by Kolmogorov in 1941 in [1] for the case n = 1.

L,, L, and L will stand for the usual equivalence classes of functions on T,
w.r.t. the Haar measure o on 7,. Let T C Z” contain finitely many elements. Let
k € T. In the following theorems we obtain formulas for the determination of o2
and P,x,. Because of stationarity of x,, kK € Z", without loss of generality we may
assume that 0 € T and k = 0. T° denotes Z" \ T.

2. Theorem. Let x,, k € Z", be a weakly stationary stochastic process whose
spectral distribution F is absolutely continuous w.r.t. ¢ with f denoting its density. Let
£~V exist almost everywhere (a.e.) w.r.t. ¢ and f~' € L,. Then

(1) 0} =[ 1,/ kerdee’®Plf " do] "

where the coefficients d,, are obtained uniquely from the relations:
dy=1

b) °

zkerkCI_k = 0, leT \0,
with ¢, = [ e " ®Of ! do.

Proor. We first note that the coefficient matrix [¢;_;]; e involved in equa-
tion (2) is the Gramian of the vectors e’® ®)f~!, k € T in the space L, ;. We claim
that e®® -1 k € T, are linearly independent in L, ,, because otherwise there
would exist a set of constants, a,, kK € T, not all zero, such that 3, _ ya, e ® O !
=0 in L, ;. This means that |S, cro,e’®?f~'(9) = 0 a.e. 0. But by 8.4.2 (8]
I, crae® P cannot vanish on a set of positive o measure. Since also f # 0 a.e.
we arrive at a contradiction. Thus the matrix [¢,_,]; <7 is invertible. Therefore the
coefficients d,, d € T, are uniquely determined from (2). Let Xy = x5 — Pyx,. As
noted in [14], || %,|? is the maximum of all || x||? such that x L §, and (x,, x) = || x|
(L stands for the orthogonality sign). This is just the characterization of a
projection in a Hilbert space. Hence from the isomorphism map between §(x) and
L, ; we conclude that

(3) ”‘)‘(EOH2 = ma'xq)fT,,lq)Pfdo’ P € Lz,f’
where
[re®Defds =0, keTe

4
fT,,I‘PIZde = fT,,(PfdG-

From (4) we have ¢f = 2, crare”®? [ae. 0, where oy = [ e ® D @f do, k € T.
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But [ |p|’f do = [ |@f|’f ™" do. Therefore by (3)
[| %lI> = max fn,lzkerake_i(k’o)lzf_l do,
and by (4)
ag = || %l
That is,

lI%oll? = [mm Szl + Zierome @O do] ’

where max, min are taken over sequences of a,, kK € T \0. Note that |£,|
# 0 because of the minimality condition [13]. But the min [, |1 +
Sreroe ®Pf "1 ds is merely the squared distance of 1 from the finite
dimensional subspace spanned by e~"®®, k € T\ 0, in L, ;.. So this minimum is
obtained precisely when we have

1+ 3 cmone " ®DLe P in L, -, 1 € T\O.
That is, with ay = 1, S, c7@ [ e %% "' do = 0,1 € T\O0 or £, 7@, =
0,/ € T\O with ag =1 and ¢, = [ e %91 ds. Then the last expression for
|| %ol|* reduces to (1) and this completes the proof.

3. Remark. In [13] it is shown that

(xo, xk) _,(k 9)
“ET (R %)

. From the above discussion and the work in [13] it follows that the quantities
(%gs %)/ (Xg, %) are precisely the unique solutions of the system (2). We also note
that if the coefficients d,, kK € T are defined through the system b kETdkck 1;
Skerd_; =0, I € T\O, then of = [/ |, crdee " ®PPf ! do]™", which is
more consistent with the work of several authors in the field.

To obtain an explicit expression for the linear interpolator we are forced to
impose a stronger assumption on f.

-1
f‘1 da] .

A 2 —
| %oll” = {fT,,

4. Theorem. Let x,, k € Z", be a Weakly stationary stochastic process whose
spectral distribution F is absolutely continuous with the spectral density f.

@) Iff € L, and f~' € L,, then Prx, can be represented in the form
(5) Prxo = 2keT°B_kxk’
(6) B = —Zcrdici_y k €T
with-c, = [re”"®%f "' do, and where 4, k € T, are obtained uniquely from the
system of equations:
(7) Zierdl_ =1, I=0

Sicrdic_, =0, [ €T\O.
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(b) Merely under the condition f~' € L,, the interpolation error o7 may be
computed by

(3) 02 =[/7|Zverde’® V™" do] = dy.

(Compare formulas (8) and (1). For (8) we solve a system of r equations in r
unknowns, r = cardinality of 7, and then d, gives o7. In (1) we solve a system of
(r — 1) equations in r — 1 unknowns, but then it is necessary to perform one
integration operation.)

PrROOF. Similar to the first paragraph in proof of Theorem 2 we can show the
uniqueness of the solution of system of equation (7).

Let B,’s be defined through (6), and the polynomial P be defined by P(f) =
Sierdie 9, Since f~! € L, and since T has finitely many points, we have
Sierl B> < 0. Hence, B, k € T¢, uniquely determine the function X7
B.e~®® in L,. Moreover, from (6) and (7) it then follows that

(9) f_l(o)P(o) =1- zkeTcB'ke—i(k,ﬂ) a.e. o
or equivalently
(10) P(8) = f(O)[1 — SierBe™®P]  ae o

The infinite series 1 — 3, B¢ "®® converges in L,. Since f is in L, then
1 — SierBee®? converges in L, . From the isomorphism between the time
and spectral domains it follows that x, — 2, c 748, X, Which corresponds to 1 —
SecrBie " ®?, converges in §(x). Obviously, =, 7B, € 97. Moreover, for
[ € T*, using (10) we have

0= an}?(H)e_‘(”") do = fT"[l - EkeTc,Bkei(k’0)]f(0)e_‘("0) do.

Hence,
Jz[1 = SherBee " C D] f(8)e' " do =0, €T

This implies that x, — 2 jETc{Ekka_ x, in §(x). Hence, Prxoy = 2 v e 7B Xy
(b) The series =B "®? may not converge under the mere assumption
f~! € L,, and hence formula (9) may not be correct. However, f ~lpisin L, and
its kth Fourier coefficient vanishes for k € T \ 0. This is because by (7) for/ € T
we have
anf—l}?e—i(l,l)) do = zkerkanf—1e—i(k,o)e—i(1,o) do
= 2kerkanf_lfr’—ia—k"‘)) do
=ZierdCx=1,1=0
=0,/ €T\O.

To indicate this fact, as it is customary, we will write

(11) FTP =1 = SeerBe®O.
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Note that f~'P € L, ;. Moreover, [ Pf~Yfe > do = 3, c7d [ e"* " do = 0
if/ € T ie, Pf'Le®®in L, ;for I € T* or equivalently

(12) Pf7'le”™@® in L,, for [ €T

Let O, = the space spanned by e *“#, | € T*, in L, ,. From [13] we have that
Mz = {Q/f, Q = 2, erare” "®?}. From this or relation (12) it follows that

(13) Pf' e oL,
We claim that 1 — Pf~! L 91;. For this it suffices to show that 1 — Pf~' L Q/fin
L, ; with Q = 3, . rop e~ ® 9, But

[ (- pf—l)/(—?-) do=(,(1- B ) Qdo

=Sierafr (1 - Pf e ™ ®Dds =0
by (11). Hence, 1 — Pf~! L Oz . Since N, is closed this implies
(14) 1— P! e M.

By (13), (14) and the isomorphism theorem between the time and spectral domains,

we conclude that
R P\ [P |P[?
|I> = (-—)/(——-)do= — do
[1Xoll” = /1, AW I,

P - P _,
=an7Pdo=2k€Tdkan7—e (k’o)do

= ‘?o = dy,
where in the fifth step relation (11) is used. This completes the proof.

If in the above theorem a,, k € T are defined I, crdc, = 1, ZicrdCi_,
for [ € T\0, and if we set B, = — 2,cpdc_, for I € T¢, then of =
S| Zkerdee” ®PPf " do = dy and Prxy = Z,crBX, which conforms more
closely to the work of several authors.

In case T = {0} Theorem 4 takes a simple form which we state below.

5. Corollary. With our earlier notations let T consist of only the element 0.
(@) iff €L, and f~' € L, then
(15) POxO = _ngk#ogka’
with )
| ¢ = fT"e_“(""”f‘1 do.
(b) If we merely assume that f~' € L, then

(16) 3 =[fgf " do] "
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PROOF. B, = — 3,crdic,_; = — dyc;, 50 B, = — dy¢,. Moreover the system

(7) reduces to dyc, = 1. Hence, 62 = d, = ’ =[frf! do]™"and B, = — 02,

6. Remark. We briefly remark on the history of formula (16) and its exten-
sions. Formula (16) for the n = 1 case is due to Kolmogorov. Again for n = 1, but
for g-variate processes of full rank the analogue of (16) was obtained by Masani
[3]. For nonfull rank g-variate processes the extension of (16) is contained in [9] for
n=1; [11] for 1 < n < o0; [13] for g-variate processes over any locally compact
abelian group. For the n = 1 case Yaglom [14] extended (16) to cover the non-
minimal univariate processes. Also for the n = 1 case Rozanov [5], [6], [7] has
studied the question of best linear interpolation problem. Rozanov obtains an
expression for the functions in L, ; which corresponds to Prx, and x, — Prx,.
However, explicit results such as our (5) or (8) are not contained in his work.
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