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UNIFORM LOCAL BEHAVIOR OF STABLE SUBORDINATORS'

By BERT FRISTEDT
University of Minnesota

Appropriate constant multiples of the function t1/% are “the” “maximal
local lower envelope” and “the” “minimal local upper envelope” for the sample
functions of a strictly stable subordinator of index a. The fact that the
probability of extinction of a Galton-Watson process is less than one if the
mean number of offspring is larger than one is used in the proofs.

1. Introduction. We shall study those increasing Lévy processes (processes
with stationary, independent increments) (7, w) — X(¢, w) = X(#), (¢, w) € [0, 0]
X Q, characterized by
(1) 8e—AX(t) = e—tb}\"‘
for some a € (0, 1) and some b > 0. As is usual, we study a version such that
t > X(¢) is right continuous and has left limits. The Lévy processes satisfying (1)
are called strictly stable subordinators. The other stable subordinators (that is,
increasing stable processes) are obtained by the addition of increasing deterministic
linear functions to the sample functions of the strictly stable subordinators. These
linear functions play a dominant role in the local behavior of the sample functions.
Accordingly, we hereafter restrict our attention to strictly stable subordinators.
Only the constants in the theorems in Section 4 depend on the value of the scaling
factor b; for convenience we assume
(2) ge—AX(t) = ‘e—tl‘(l—a)J\";

a is called the index of the process.
A general problem is to study the behavior of
X(s + 1) — X(s)|
) |
h(|t)

as ¢ — 0 for various functions 4. A probabilistic assertion that is true about (3) for
some s will be true for any other one s. However, a statement that is true with
probability one for some s will not necessarily be true with probability one for all s,
since an uncountable number of null sets, one for each s, are involved.

The “uniform in s” theorems, Theorems 1-3 in Section 4, can not be obtained as
corollaries of the known theorems for fixed s. See Section 6 of Fristedt (1974) for a
survey of known theorems, including uniform theorems of a type different from
those studied here, about the local behavior of subordinators. See Kahane (1974),
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1004 BERT FRISTEDT

Kahane (1976), Jain and Taylor (1973), and Orey and Taylor (1974) for some
related results about Brownian motion.

Our goal is to prove Theorems 1-3 which, though stated in Section 4, can be
read now. Section 3 contains the appropriate lemmas. Section 2 contains some
known facts about stable subordinators.

I do not know whether a true statement is obtained by replacing “r — 0” by
“¢10” in Theorem 3. The constant in Theorem 1 is no larger than the constant in
Theorem 2. I do not know any other relationships among the constants in
Theorems 1-3.

The methods in this paper depend heavily on the stability of the subordinators. I
do not see how they can be used for general subordinators although it does seem
likely that they can be adapted to apply to subordinators whose Lévy measures
have densities that vary regularly near 0.

2. Preliminary facts. The scaling property is that, for any ¢ > 0, the process
t e Vex(ct)

is identical in law to the process X.

A second important fact is that there exists a constant ¢; > 0 such that the
density of X(f) is asymptotic to zc;x ~!*® as x — 0.

For each (¢, w) € [0, c0) X 2, let J(¢, w) = J(¢) = X(¢f) — X(¢t — ). For almost
every w, J(f) = 0 except for countably many values of ¢ and

X(t) = 2, J(s).
Let { By} denote a family of disjoint Borel subsets of [0, o) X (0, o0). For each g
let
Vg = card{¢: (¢, J(?)) € Bg}.

The family {¥;} of random variables is an independent family; ¥} is Poisson
distributed with mean (m X »)(Bg) where m is Lebesgue measure and »[x, o) =
x~“ for each x > 0 (A “Poisson random variable with infinite mean” equals co

almost surely). The case where each B, is a rectangle is of particular interest. Also
of interest is the consequence: the density of the random vector

(max0<,<,.l(t), X(l) - max0<t<lJ(t))

is

©) (x, )P ax ™1 De™F (y)
where the ordinary Fourier transform of the density f, equals
®) 01> exp( —afi(l — %)z~ &z},

Notice that both the density of X(1) and f, are infinitely divisible densities
determined by the Lévy measures

az— 0+ gz
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and
az"M*0gz  if z<x
0dz if z>ux,
respectively.
That the density f,, rather than merely a distribution function, exists and is
continuous follows from the fact that the characteristic function (5) is integrable.
This integrability is a consequence of

(6) afi(1 — cos 02)z= M dz > ¢,|0|*(1 A |6x[>~*)
for an appropriate ¢, > 0, obtained by replacing x by x A |#|~! and bounding
1 — cos fz below by a multiple of |fz|>. The continuity of (x,y)+> f.(») follows
from the Fourier inversion formula and the explicit way that the characteristic
functions (5) depend on x.

Throughout, c¢,, ¢,, - - - , ¢;; will denote appropriate positive, finite constants
(depending on «); initial assertions involving them are assertions that positive
constants exist making the assertions true.

3. Lemmas. The salient features of this paper are Lemmas 1, 2, 6, and 7.
Theorems 1-3 in Section 4 are easy consequences of these lemmas. Were we able
to replace “t — 0” by “¢/0” in Lemma 7, there would be a “natural Theorem 4”
appearing in Section 4. I do not know if such a modification of Lemma 7 is
possible. The lack of left continuity of X implies that “z — 0” can not be replaced
by “110”.

Lemma 3, possibly of independent interest, and Lemma 4 are needed for the
proof of Lemma 5, also possibly of independent interest, which is used in the
proofs of Lemmas 6 and 7. I guess, but do not know how to prove, that the factor
log y can be removed from Lemma 3.

LemMa 1. 0 < info_, lim sup, ((X(s + ©) — X(5))/t'/* with probability one.

PrOOF. Fix ¢ such that exp(—1/4c%) =§. For positive integers M < N we
define subsets 4,, y of {0, 1}V : 4,, ,, = {0, 1}* and, for N > M,
Ay n = {(av' cesay)(ag e ’aN—l)EAM,N—l and

J(u) GE[CZ_(N“)/“, 2~ W=2/%)y  forall

ue (2N +3N 127,27V 4+ ¥ 427},
Since the events ‘

{w:J(u,0) & [c_2_("")/"‘, c2~(=2/%)  forall
we (2" + Zjia2 20D + 37, 027
each have probability
exp[27"(2" e~ — 2n—2c—a)] =1
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and are independent for various » and n-tuples (a,, - - - , a,),
P{w:(ay- -, ay) € Ay p(w)}) =37V,
Hence,
b(card 4y, ) =2V3" V"M 0 as N oo.

From Fatou’s lemma and the fact that card 4,, y(w) is a nonnegative integral
random variable we conclude that, for almost every w and every M, there exists
N(w) such that 4, x,(w) = G. Fix such an w.

Let s = 2}';,:5.2‘1', where a; = 0 or g, = 1, be an arbitrary member of (0, 1].
There exists n € (M, N(w)] such that, for some

u €(27" + 37,827,277 + 31 a27],
X(s +27¢7D) — X(s) > X(27""V + 27_1a277) — X(27" + 3%_,a27)
> J(u) > 27" D/e
Let M — oo to obtain an infinite sequence of »’s for which this calculation is valid.

Hence, with probability one,

X(s + 1) — X(s) S e
tl/a

| X(s + 1) — X(s)|
Itll/a :

infy_, ,lim sup, 10

LeMMA 2. 0 < supy,,lim inf,_,

ProoOF. Since
|X(s + 1) — X(s)]
|1/

Supy < lim inf,

depends only on the small jumps, Kolmogorov’s 0 — 1 law can be used to show
that it a.s. equals a constant belonging to [0, co]. (See Fristedt and Pruitt ( 1972) for
details of such an argument.) We begin the proof that it is positive with positive

probability by choosing ¢ so that exp(—1/16¢*) =3. y
For each nonnegative integer N we define a subset By of {0, 1}": By = {empty

sequence} and
By = {(bl" o, by): (b, by_)) EBy_; and
J(u) € [c2‘(”‘2)/“, c(%)l/aZ‘(”‘z)/“) for some
we(-27"+ 3527, B527]  and
J(v) € [c(%)l/“é‘(”‘z)/“, c2‘(”‘3)/“) for some

o€ (27N + SL,527, 27D + 3 b2 ).
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For N > 1,
P((by, - - - by) € By|(by,+ + -, by_y) € By_y)
= {1 - exp[ —27N(2N e — 2N—2c—a(%))]}

.{1 - exp[ —2‘”(2”‘%‘“(%) - 2”‘3c‘°‘)]}

= {1 —exp(—1/16c*)}* = {1 — (%)}2 =%

If (by,- -, by_1, by) € By, and therefore (b, - -, by_,) € By_,, call
(bys -+, by) an offspring of (by, - - - , by_,). Since there are two choices for by,
the preceding calculation shows that the expected number of offspring is 2(%) =3
> 1. The fact that jumps of different sizes or of the same size and occurring in
disjoint time sets are independent enables us to interpret B, as the Nth generation
of a Galton-Watson process. Since 2 > 1, with positive probability a sequence
(by, by, - - + ), depending on w, exists such that (b, - - -, by) € By for each N. Let
s = 32,527, For all ¢ for which |¢| < s there exists an N such that 2=¥~V < 4]

<27 W™ Danda
ue(=27N+ 3V 527, SN 5277 0 (27N + 2527, 27D + S b2 ]
such that
[X(s + £) — X(s)| > J(u) > 2= N=D/« > ¢|g"/,
Hence,

[X(s + 1) — X(s)|

t—0 i Itll/a >c.

lim inf

The fact that X(s,) — X(s,) is larger than J(u) for every u € (s,, s,] was useful in
the proofs of Lemmas 1 and 2, but adds difficulties to the proofs of Lemmas 6 and
7. We overcome these difficulties by proving Lemmas 3, 4 and 5.

LemMMA 3. Ifx >y V1, then

£(») < es(1Vlog y)y =+,
where f, is the density with the characteristic function (5).

ProOF. Let g denote the density of X(1). We need only show that
[fe — 8l(») < cy(1Viogy)y 1+
for x > y v 1. By the Fourier inversion formula
211, = 8I(9) = |[=e™** 7T (exp[ af2(1 = )z 0+ 4] — 1) B,

Write e %% df = (iy)~'d[1 — e~**] and integrate by parts to obtain the upper
bound

) yUFe N = e s — ez i
+e,0° 7N 21 — e%)z7 %D gz} .
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To obtain the desired upper bound for (7) use:
I1—e | < ()2
1 —e?| <2,
|[Pe= Pz 7% dz| = 07| [Le 0 dv| < cgf ~(0* A x™),
and x >y V1.
LemMMa 4. Ify > x V 1, then
£(») < eoy 7 x73 v (x1""log x) ],
where f, is the density with the characteristic function (5).
Proor. Integrate the Fourier inversion formula by parts using
e df = (—iy)~' de= ™,
integrate by parts again using
e df = (i)' d[1 - e ?],

and use the inequality (6) to obtain

®) L) < y7EN = e ®lem Tine ]
. {clolfgei"’z_“ dz[* + c,,|fze? 2 dz]} do.
To obtain the desired upper bound for the right side of (8) use: y > x Vv 1,
[1—e™™] < () A2,
|[Ze®z =% dz| = 97| [8%0~* dv| < c1p(x! 7% A 7T,
|[[ze® !~ dz| = 92| [8% v~ dv| < cj3x' " (x A O,
and the substitution w = x?~*/2 when integrating over § € [0, x ']
LEMMA 5. For each ¢ > O there exists a k such tﬁat
9) P(sup{J(#) : 0<t <1} <z - k|X(1) =z) <e
for almost every z.

ProoFr. Using (4), we write the left side of (9) as

affF~RVOox—(+adexn(— x~)f (z — x) dx

g(2) ' ’
where g denotes the density of X{(1). Accordingly, we need only show
(10) zotlz—ky=(+exp(—x~*)f (z — x) dx -0

as k — oo, uniformly in z > k. We use (z/2) A (z — k) to divide the integral into
two parts.
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For one part we may assume that z > 2k > 2e and we use Lemma 3:
2L dx < efigff(z - x) dx
< eysf5 log(z — x)](z — x) 7O+ dx
<csf@(logw)w™ 1+ dw -0

as k — oo.
For the other part of (10) we use Lemma 4:

za+1f6/2. - dx
< cl6z""1f(‘,/2[x‘% V (x!'"*log x)]x‘(”‘")exp(—x“") dx
< cppz 10-0Aal(] v Jog 2) 0

as k — oo, uniformly in z > k.

Various theorems that, roughly speaking, say that for a subordinator X, X(¢) and
sup{J(s): s < t} behave similarly are in the literature. The preceding Lemma 5 is
another such result.

LEMMA 6. info, ¢ lim sup,_o|X(s + 1) = X(9)|/]7]'/* < co.

PrOOF. We see, as in the proof of Lemma 2, that we need only prove the
apparently weaker statement obtained by replacing “with probability one” by
“with positive probability” in Lemma 6. We may assume that, for every w no two
jumps have the same size.

Since the distribution of sup{J(#): 0 < ¢ < 1} is continuous, A(x), for x > 0, can
be defined so that

P(sup{J(1): 0 <t < 1} > h(x)|X(1) = x) =3
for almost every x. According to Lemma 5,
(11) x — h(x) < cq.

For each nonnegative integer N we define a subset By of {1, 2}": B, = {empty
sequence} and

By, = {(b1,~ <y byyy) i (b, -, by) E By and the pair’
(u,2) €(SV. 547, 4 + 3V 547 x (0, 0)  defined by
J(u) =z =sup{J(1) : Z)_ b4 <1 <47V + 3N b4~}  satisfies
u @(SVH'bA~7, 4~ N*D 4 3HHIp4~7] - and
> 4 W@ X+ 3X,847) - X(EN1047)]))

Thé random variables u and z, appearing in the definition of By, are indepen-
dent, u is distributed uniformly in

(ZX. a7, 47N + =N b4/,
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and the pair
(@2, X4 4 S ) - X(547)]
has according to the scaling property, the same distribution as the pair
(sup{J(1): 0 <t < 1}, X(1)).
Hence,
2

P((brs -+ * s bys1) € Byyil(by, - - -, by) € By) = (% =%

and
g)(bl, “e by, 1) € By, and (bl, c, by 2) € BN+1|(b1’ R bN)
€By)=(3)z) =%

Accordingly, we may regard B, as the Nth generation of a Galton-Watson process;
(bys - - - 5 by, by, ) is an offspring of (b, - - -, by) provided (by, - - -, by, by41)
€ By,

Since the mean number of offspring of any individual is () + (&) =2> 1,
there exists, for each w belonging to an event having positive probability, a
sequence (by, by, + - - ) such that (b, - - - , by) € By, for each N. For such an w let
s =3%,b47.

For 4= W+*2 < |¢| <4 W+D both 5 and s + ¢ are members of

[ 1647, 47 + 1. b4~
and, hence by (11),
X(s + 1) = X(s)] < X(47" + ZL1ba7) = X(ZL147)
< 4“”‘1)/"‘[)2 - h(»)] < 4= WN=D/ae o < 641/% |t]'/*
where
y = XD+ Ba) - X(Z8a7)
Accordingly,
|X(s + 1) — X(s)|
|17

LEMMA 7. supg_, lim inf,_o|X(s + ) — X(s)|/|t|'/* < oo with probability 1.

infy_, . ,lim sup, < 64'% .

Proor. For each sequence (a,, - - -, a,) in {0, 1}" we define a random interval
I(a,- - - ,a,) =[Y(a1, creua,), Z(ay - ’an)]
via:
I(empty sequence) =[0, X(1)];
Y(a;,- -+ ,a,0)=Y(a, - -,a,);
Z(ay, -+ ,a,0)=sup{x € RX : x < (Y(ay,- - ,a,) + Z(ay, " - -, a,))/2}

(R denotes range);
Y(ap, -+ ,a,1)=inf{x € RX : x > (Y(ay," - - ,a,) + Z(ay, - -+ , a,))/2};
Z(al, .« e ,an, 1) = Z(al, .« e ,an)‘
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Let ¢ = 12'/%k with k given by Lemma 5 for & = 1. For positive integers M < N we
define random subsets 4,, 5 of {0, 1}7: Ay pe = {0, 1} and, for N > M,

Au,n = {(al” “rhay):(ay - ay ) €Ay y_, and
Z(ay, - -+ ,ay) — Y(ay, - - -, ay)
> c([X_l(Z(al, cesay) - X (Y(ay, - e, aN))]/z)l/a},

where X ~'(x) = inf{¢ : X(¢) > x}.
Our first objective is to show that, for N > M + 2,

P(ay, -+ ay_ay) € Ay, nl(ay, - - ay_y) € Ay n-1) < 37,
hence, that
P((a),- - ,ay) € Ay, n) < 3-(=M=D
and, therefore,
(12) b(card Ay, ) < 2V3"WN-M-D_,0 a5 N 0.
Fix ay € {0, 1}. Suppose that
max{J(1) : X "(Y(ay, - - - ,ay_)) <t <X~ (Z(ay, - -, ay_1)}
(13) >Z(ay - - ,ay_y) — Y(ay, - - ay_y)
_‘312_1/“[/\,_1(2(“1’ cceay ) - X (Y(ay, - - -, aN—l))]l/a
and that ¢, for which the maximum in the left side of (13) is achieved satisfies
X' (Z(ay, - - -, ay_y) — X '(¥(ay, - - -, ay_1)
6
(14) <tey—X"'(Y(ap- -+ ,ay_y) if ay=0
<X N Z(ay, - ,ay_) —t, if ay=1

The events described by (13) and (14) are conditionally independent given A M N—1-
The probability of (14) given A, y_, is 2. That the probability of (13) given
Ay, n—y is greater than % follows from the scaling property and a slight modifica-
tion of Lemma 5. The modification is required because a possible jump at the time
X YZay,- -, ay_,)) is being ignored. That ignoring is appropriate since
Z(ay, - - -, ay_,) is the left limit of the process at the time X ~'(Z(a,, - - - , ay_))).
If (a, - ,ay_,) € Apy y_1, N > M + 2, and (13) holds, then '

max{J(#) : X "(Y(ay, - - -, ay_))) <t <X N (Z(ay- - - ,ay_y))
_>[Z(av cecsay_y) — Y(ay, - ’aN—l)]/z

and, hence,
to=X"NZ(ay,- - ,ay_,,0) = X (Y(ay- - -, ay_y, 1))
Accordingly, if (@, -+ ,ay_,) € Apy y_1» N > M + 2, and (13) and (14) hold,
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then
Z(ay, -+ ,ay_,ay) — Y(ay, - - -, ay_y, ay)

< Clz_l/a[X_l(Z(av cresay) - X' (Y(ay, - aN—l))]l/a

< C[[X_I(Z(al’ “csay_pay) = XN (Y(ay, L ayy, aN))]/z]l/a

and, hence, (a;, - - - , ay_,, ay) & Ay, 5. Therefore,
P((ay,+ -+ ay_y,ay) € Ay pl(ay, - - - ay_y) € Ap n—1)
<1-(2)(%) =4, asdesired.

From the now-proven (12), Fatou’s lemma, and the fact that card (4,, y) is
integral valued, we obtain for each M and almost every w the existence of N(w)
such that 4, y(, = 2. We let M — o to obtain for almost every w and every
s € (0, 1) an infinite sequence of n’s such that

Z(ay - -,a,) — Y(a, - -, a,)
<c([X~ U Z(ay- - ,a) - X (Y(a,- -+, a,))]/2)""
and
(15) se€[X "' (Xay - -+, @), X" (Z(ay - - -, a))).
If 5 is at least as close to X ~!(Y(ay, - - * , @,) asitis to X "/(Z(a,, - - - , a,)), then
Z(ay - ,a,) — X(s) <Z(ay,- -+ ,a,) = Y(ay, -, a,)
<c(XYZ(ap- - ,a,) — s)l/a.
For u less than but sufficiently close to X ~'(Z(ay, - - - , a,)),
X(u) — X(s) < Z(ap, - -+, a,) — X(s) < c(u — 5)"/*.

If s is closer to X ~!(Z(ay, - - + , a,)) than it is to X ~!(¥(a,, - - - , a,)), then

X(s) — X(X"(Y(a,, T an))) = X(s) — Y(ay, - -+, a,)

<Z(ay- - .a) = Yy ,a) <c(s = X (¥ -+, a)""

If s = 1, the interval in (15) may be taken to be closed. The proof of Lemma 7 is
complete.

4, Theorems. In each of Theorems 1-3, X is a strigtly stable subordinator of
index a € (0, 1). The constants depend on the scaling factor as well as on the index
a but not upon I, an arbitrary subinterval of (0, c0) having positive length.

THEOREM 1. With probability 1,

X(s + 1) — X(5)

Ry = ¢;9 € (0, o).

inf ¢ /lim sup, o
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THEOREM 2. With probability 1,
|X(s + 1) — X(5)|

inf c lim sup,_, e = ¢y € (0, 0).
THEOREM 3. With probability 1,
sup, ¢ lim inf, [X(s + 0 = X()| _ ¢, € (0, ).

Itll/a

Proor. The presence of a general I, rather than (0, 1], causes no problems.
That the quantities of interest lie in (0, o) follows from Lemmas 1 and 6 in the
case of Theorems 1 and 2 and Lemmas 2 and 7 in the case of Theorem 3. That they
are not random is a consequence of Kolmogorov’s 0 — 1 law (see the beginning of
the proof of Lemma 2).
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