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A CONDITIONAL LAW OF LARGE NUMBERS

By OLDRICH ALFONSO VASICEK
Wells Fargo Bank

It is shown that, when conditional on a set of given average values, the
frequency distribution of a series of independent random variables with a
common finite distribution converges in probability to the distribution which
has the maximum relative entropy for the given mean values.

1. Imtroduction. In statistical mechanics and other areas of physics, empirical
distributions in the phase space conform in many circumstances to the distribution
maximizing the entropy of the system subject to its constraints. The constraints are
typically in the form of specified mean values of some functions of phase. If
P = (py, Py * + » pi) denotes the probability distribution over the state space, the
constraints on p take the form

2,ic=lajipi=c" j=l;2,""r’

and the maximum entropy distribution is the one that maximizes the entropy
function

— Zi.1pi log p;
subject to the constraints.

A principle stating that the empirical distribution possesses the maximum
entropy within the restrictions of the system is due to Gibbs (1902). As a special
case, he proposed the so-called canonical distribution as a description of systems
subject to a single constraint that the average energy has a fixed value,

2,ic- 19P; = ¢,
where ay, a,, - - - , a; are the energy levels of each state. In this case, the maximum
entropy distribution has the form
p; = exp(v + Aa), i=1,2-:k,

which is the form that Gibbs called canonical.

Gibbs offered no justification for the canonical distribution, and the principle of
maximum entropy in general. In spite of its apparent arbitrariness, however, the
maximum entropy principle has since found a number of successful applications in
a wide range of situations, and has led to many new developments in physics. For
an informed discussion, see Jaynes (1967).

In a subsequent paper, Jaynes (1968) presented a demonstration that the distri-
bution with the maximum entropy “can be realized experimentally in overwhelm-
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A CONDITIONAL LAW OF LARGE NUMBERS 143

ingly more ways than can any other.” Therefore, for large physical systems, the
empirical distribution should, indeed, agree with the maximum entropy distribu-
tion.

In this note, a limit theorem is given which provides a foundation for the above
physical principle in the same sense in which the law of large numbers justifies
interpretation of limiting frequencies as probabilities. Informally stated, the theo-
rem asserts that in the equiprobable case, the frequencies conditional on given
constraints converge in probability to the distribution that has the maximum
entropy subject to these constraints.

A generalization of this result is also given, which relaxes the assumption of all
states being equally likely. In the general case, the frequencies conditional upon a
set of conditions converge to the distribution that inaximizes the entropy relative to
the underlying distribution.

2. The limit theorems. Let X = (x,, x,, - * * , x;) be a finite set of k elements
and consider a series X, X, + - -+ of independent identically distributed random
variables with values on X, such that )

) P[X, = x] = 1/k, i=1,2- -,k
Denote by f, = (fu1»fuzo* * * 5 fu)s n=1,2,- - - the frequency distribution of
Xl’ Xz, oty X

i
=2 S d[ X, = ] i=1,2- -,k
where I is the characteristic function. Let (a;) be a given r X k matrix and
(¢cp €3 + * * ;) a given vector. Putp = (py, p, - * - , p) and define
(2 Dy=[p:pe ST agp=c j=12-",r]
where S is the set of probability distributions on X,
S=[p:p>0, i=12"-, k3 p= 1].
Assume that D, # . Define the entropy of a distribution in S by

3) H(p) = —Z_p; log p, PES,
with the convention 0 - log 0 = 0. Denote by p, = (Pg1s P> * * * » Pox) the maxi-
mum point of H on D,

4 max, e p H(p) = H(po)-

Since H is continuous on S and D, is compact, the maximum exists. Moreover, it is
unique by virtue of strict concavity of H on S and convexity of the set D,

THEOREM 1. For every € > 0, there exists 8(¢) > 0 such that for every &,
0< 8 <é(e),
)

Pllfy = pul S&i=12 KISk jaf — ¢l <8,j=12--,r]>1
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as n— oo, where py = (Po1, Pozs * * * »Pox) iS the maximum entropy distribution,
max, e p H(p) = H(py)
This theorem is a special case of the more general conditional law of large
numbers, which will now be stated.

Replace the assumption (1) of the equiprobable case by a general assumption
that
(6) P[Xl=x,.]=q,., i=12--:,k

where ¢ = (9,95, * *, ¢) € S is a given distribution. Assume, without loss of
generality, that g, > 0,i = 1,2, - - - , k. Define the entropy H, of a distribution in
S relative to the distribution g by

@) Hq(P) = _2?-11’1 log(p;/ 9), PES.

Again let D, be the set in (2), D, # &, and replace the definition (4) of p, by the
definition

(8) ma'xp EDqu(p) = Hq(PO)'
Again, the maximum relative entropy point p, exists and is unique.

THEOREM 2. For every e > 0, there exists 8(e) > 0 such that for every &,
0 <8 < d(e),

) P[|ﬁ,,.—po,-|<e,i=l,2,--~,k||2".‘=laj.m.—cj|<8,j=1,2,---,r]—->1

as n— o, where py = (Po1, Poz> * * * »Pox) iS the distribution with the maximum
entropy relative to q,
maxpEDOHq(p) = Hq(pO)’

The maximum relative entropy distribution pj, is easy to find. It is given by
Poi = q; exp(” + 2r'-l>\jqii)’ i = 1, 29 Y k,

where the constants », Ni.j=1,2,+-,r are determined by the condition p, €
Doa

3. Proof of the theorems. Theorem 1 follows immediately from Theorem 2,
since for ¢ = (1/k, 1/k,- - - , 1/k)

H,(p) = H(p) — log k

so that the maximum points in (4) and (8) coincide.

PRrROOF OF THEOREM 2. Let ¢ > 0 be fixed, and put

(10 V=[p:PES|p—pPul <ei=12--" k]
where p, is given by (8). For each § > 0, define
(11) Dy=[p:pES|Siam—¢|<8,j=12--,r]

Define uniquely a point pg by
(12) maxpED,,Hq(p) = Hq(Ps)-
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Introduce a topology on S by the metric
d(u, v) = max, ¢, ;|u; — v, u,v € S.
We will first prove that
(13) limg_o+ps = po-
Let the set { ps, 6 > 0} be directed by the relation 8, < 8, if §, > §,. Since S is

compact, the directed set { p;} has at least one limit point. Let p* be one such limit
point. Choose an arbitrary § > 0 and put

n= %8/2_;-12,;=llajil’ f= %8'
There exists §”, 0 < §” < &’ such that
maxl<i<k|p8”i = p* <.
Then
lzlf-laj it - cjl < |2lf=1aji(1’i* - Ps"i)l +|2’f-1ajiPa"i - C,'

< S ja;] + 87 <8, j=1 e,
and therefore, p* € Dj. Since this is true for every § > 0, it follows that
P* € Dy = Ng~oDs.
Now H,(ps) > H,(p,) for every § > 0. Since H, is a continuous function, the same
is true for the limiting point,

H,(p*) > Hy(p)

But p, is the unique maximum point of H, on D,, and therefore p* = p,. Thus, p, is
the only limit point of { p;}, which proves (13).
It follows that there exists 8(¢) > 0 such that for every 8, 0 < & < 8(¢),

(14) |Psi — Poil < %5’ i=12--,k

Let & be selected arbitrarily from 0 < & < 8(¢) and fixed. Put W = S — ¥ where V'
is given by (10), and denote the adherence of W by W. Put

h = max, ¢ 7 p,H,(P)-
Since
max, e p, Hy(p) = H,(ps),
and p; & W by virtue of (14), it follows that
h < H,(ps)
Put
W =3(h + H,ps))
so that
(15) h<H,
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and define
R=[p:p€S,H(p)>V]
Let
B=RnNVnN D
We will now show that B contains an open set.
Let 0 <&’ < 4 and put
sn = (1 = A)ps + Aps,, 0<A<L

The point s, is an interior point of D, for every 0 < A < 1. To prove that, choose

n =& - 8/)/2;-12’;-1|aﬁ|'
For every p = (p, P2, * * * , Px) such that
|Pi"37u|<"b i=132,"'3k
it is true that
Izlf-laj' i C,| <nZiilal + (1 - A)lzk-lajip&' - c/|
+>\|Elf-laﬁps'i - ‘}'

SAE-8)+(A=N8+N'=8,j=1,2,---,r
so that p € Dj. Thus, s, belongs to the interior of D, for every A, 0 < A < 1. Since
Ps is an interior point of V" and, by continuity of H,, also of R, the point s, will be
in the interior of both ¥ and R if A is sufficiently small. Thus, such s, is an interior
point of B, and consequently B contains an open set, say C.

To summarize our results so far, we have proven that there exists an open set C
such that

CcVn D,

H(p) >k  forevery p € C,

and

H(p) <h<k  forevery pE€ W N D
Now

, , 1
Pllfy = pal <& i=12" KIS 1afy — ¢l <8j=1,2--,r]= 1+g
where

g =3 n! gingtha . . . gl
" f"ewnb"("fnl)! (nf! - - (! v *

n!
q”ﬁllq"fﬂ o o e q"j;-k.
/Ef"EVnD" () (fi)! - - - (af )t 7t 2 g




A CONDITIONAL LAW OF LARGE NUMBERS 147

We will make use of the inequality
1
(16) n"e " < n!<3(n+1)2n%™"
valid for n > 0, where we define 0° = 1 in agreement with the earlier convention
0.log 0 = 0. The inequality (16) is easily established from the Stirling formula.

Then

i -n - - Wz o o .
g < Zpewnpd(n + 1)2n"(nf,,) Y\(nf,,) e (nfy) i . g rngghe o
_1 _1 _1
/S pevond ™ e + D7 g + D7 (afy + D7
" (nf) P (nfg) T ()~ " qingghe - - - g

< ¥ (n+ 1)(k+ 1)/22f" ewn D,CXP(”Hq(fn)) / zj;,e vn D,exP(”Hq(fn))

<3F*(n+ 1)(k+l)/22ﬁ,e WnD,exP(”Hq(fn))/zf,,ecexP(”Hq(fn))

. . o FLa i € W0 D]
< ¥+ DO exp(—nlH — )T

and therefore

# £, e s
(17) g, <3*'(n+ 1)** D 2exp(—n(h' — h))_&%%é?%

where #[Z] denotes the number of elements of a finite set Z. Now

#(f,: £, €S]

#[f,: f,€C]
converges with n— co to a finite limit u(S)/u(C) where u(S), w(C) are the
volumes of S, C, respectively, by (k — 1)-dimensional Lebesgue measure, and

w(C) > 0. Since A’ — h > 0, the right-hand side of (17) converges to zero as
n — oo, and consequently

Pllfy = pol <& i=1,2- - K|S afy — | <8,j=1,2---,r] 1,

which completes the proof.
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