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PRECISION BOUNDS FOR THE RELATIVE ERROR IN THE
APPROXIMATION OF E|S,| AND EXTENSIONS!

By MICHAEL J. KLASS
University of California, Berkeley

Let S, denote the nth partial sum of i.i.d. nonconstant mean zero random
variables. Given an approximation K(n) of E|S,,|, tight bounds are obtained for
the ratio E|S,|/K(n). These bounds are best possible as n tends to infinity.
Implications of this result relate to the law of the iterated logarithm for mean
zero variables, Chebyshev’s inequality and Markov’s inequality. Asymptotically
exact lower-bounds are obtained for expectations of functions of row-sums of
triangular arrays of independent but not necessarily identically distributed
random variables. Expectations of “Poissonized random sums” are also treated.

0. Introduction. Let S, = X, + - - - + X, be the nth partial sum of indepen-
dent identically distributed (i.i.d.) nonconstant mean zero random variables. A
function K(-) depending on 1-dimensional X-integrals was introduced in Klass [3]
to approximate the n-dimensional integral E|S,|. There it was shown that
E|S,|/K(n) < 2, a bound which is best possible asymptotically. A less precise
lower-bound was derived in Klass [5]. A lower-bound is presented in Section 1 of
this paper which is within a factor of 1 + O(n‘%) of being best possible, and is
therefore asymptotically exact. The proof relies on an integral representation of
any nonnegative real number |x|. Due to a certain convexity property, this
representation affords a sharp lower-bound of E|Sy |, which is then used to bound
E|S,|. (T, is a Poisson random variable with parameter n, where T, is independent

_of the X)’s.) Consequences of these results are discussed in Section 2. These relate
to the law of the iterated logarithm for mean zero variables, generalization of
Chebyshev’s inequality, and a best possible improvement of Markov’s inequality. A
technique for extending theorems involving sums of random variables with finite
variance to those with infinite variance is enunciated. Section 3 extends the method
of lower-bounding E|Sy | to expectations of functions of “Poissonized sums” of
independent (but not necessarily i..d. or finite mean) random variables subject to a
constraint. This result is applied in Section 4 to obtain asymptotic lower-bounds for
situations involving triangular arrays. Section 5 contains some closing remarks
together with a few conjectures.

1. Approximation of E|S,| and E|S7|. Let X;, X,,- - - be a sequence of iid.
random variables. Let S, = X, + - - - +X,. The formula to follow allows com-
putation of E|S,| from the characteristic function of X,. Von Bahr and Esseen [2]
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used a generalization of the formula to upper-bound E|S,|? for 1 < 8 < 2. We
employ it to obtain a lower-bound. By change of variables, letting y = tx, it is clear
that for any real number x,
(1.1) |x| = C,f&(1 — cos tx)t ™2 dt,
where
C, = (fo(1 — cos )e=2dr)™".

Replace x by the random variable S, = X, + - - - + X, and take expectations.
Using Fubini’s theorem, as the nonnegative integrand allows,
(1.2) E|S,| = C,/&(1 — Re Ee™S)t~2 dt

= C,/&(1 — Re(Ee™)")t 2 dt.

This formula holds whether or not the integral is finite.

Closely related to the right-hand side of (1.2) is the integral C,fg’(1 —

Re exp n(Ee™* — 1))t~ dt. A probabilistic relation links the two expressions. Note
that for any random variable Y and any A > 0,

(1.3) exp A(Ee"” — 1) = E exp it2]_,Y,,

where T, Y}, Y,, - - - are independent random variables such that 7 has Poisson
distribution with parameter A and the Y; have the same distribution as Y. Therefore
let T, be independent of X, X,, - - - and have Poisson distribution with parameter
n. Then

(1.4) E|S;| = C,f&(1 — Re exp n(Ee™ — 1))t~ dt.

The method used in this paper enables one to lower-bound E|S;| directly.
Therefore, to approximate E|S,|, it is necessary to relate the magnitude of the
expectation of |Sz| to that of |S,,|.

PropPoSITION 1. Let T,, X, X5, X3, - + - be independent random variables, where
the X;’s are identically distributed having expectation zero and T, is Poisson with
parameter n. Let S; = X, + - - - +X,. Then

_,n"
(1.5) E|Sg) > E|s,,|(1 —e "F)
and :
_af 1"
(16) E|S;| < E|s,,|(1 +e "(F - 1))

REMARK 2. It seems likely that E|Sz.| < E|S,| for all n > 1 and all X-distribu-
tions. Such an inequality is easily proved if n is odd and the X;’s are symmetric.
However, L. A. Shepp has pointed out that the inequality fails for n = 2 if
PX=1D)=PX=-1)=1.

PROOF OF ProposiTION 1. Since EX; =0, both |Sy|,|S,|,|Ss],- - - and
c Skl ks |Se—yl/k — 1, - - -, |S,|/]1 are submartingale sequences. Hence
E|S|| <E|S,)|<--- and - -+ < E|S|/k < E|S,_y|/k—1<--- <E|S/L
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The expectation of | Sy | is computable as
E|S1;,| = 23-1P(T, = k)E|S]
_an* n*
= 2%-1€ "‘k—!E|Sk| + 2?—n+19_nﬁE|Skl-

To obtain the lower-bound, note that

k—1

n—kE|S|>E|S|—n— for 1<k<n
Kt 1ok "k = 1)

and
nk nk
—k—!'-EISkI > EISnI‘k—!- for k > n.

Inserting these smaller quantities, E|Sy| > E|S,|Z%0, jx,e "’ /j!, which gives
(1.5). The upper-bound is similar:

n* n*
—k—!-ElSkl <E|Sn|F for 1<k<n

and
nk nk=1
—E!—ElSkl <E|S,,|—(k—_T)!~ for k> n.
Thus
n* e ™"
E|S;| < EIS,,I(E‘,’S_,e‘"—ET TR )

~which equals the right-hand side of (1.6). [J

REMARK 3. Observe that lim, ., E|S,|/E|Sy| = 1 (provided P(X, = 0) < ).
Thus, for asymptotic purposes, any lower (upper) bound of E|Sy | is essentially a
lower (upper) bound of E|S,|. This phenomenon is not unique to the function
Sf(x) = |x|. In fact, given any nonnegative symmetric function f(-), nondecreasing
on [0, o) and satisfying

(1.7) lim, ., lim supx_mjf(—%—:cx)) =1,
we have

. Ef(S,) _
(1.8) llmn_)co Ef(ST") =1,

provided that 0 < Ef(S,) < oo for some n. (Here we do not assume that X, has
finite expectation but we do retain the other previous assumptions.)

The requirement that f(x) not increase at exponential rate as x — oo is crucial.
Without it (1.8) is no longer valid. The proof of (1.8) is somewhat tedious and
involved. The technique is based in part on the methods to be found in Klass [5].
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Since the result itself is not central to the concerns of this paper, its proof will be

omitted.

Lemma 4 (below) provides a technique for generating a sharp lower-bound of
E|Sz|. An appropriate extension of this method will subsequently be used to derive
approximations in more general contexts.

LEMMA 4. Let X be a random variable such that
(1.9) nE(XZ/\IXl) = 1.
Then
(1.10) f&(1 — Re exp n(Ee™ — 1))t~ 2 dt
> inf,_ f3°(l - exp(M))t“z dt.

x? /A x
(a A\ b denotes the minimum of a and b).
PROOF. Letting dv(x) = n(x? A\ x) dP(|X| < x), observe that »(-) is a probabil-
ity measure on (0, o0).
Re exp n(Ee™ — 1) < |exp n(Ee™™ — 1)|
= exp nE(cos tX — 1)
cos tx — 1
=exp [—dv(x
p f 0 X2 /\ x ( )
-1 . .
<8 exp( %) dv(x) (Jensen’s inequality).
x°/N\ x
Combine this inequality with an application of Fubini to obtain

(1.11)  f&(1 — Re exp n(Ee™ — 1))t~ % dt

o oo cos tx — 1 _
> fO fO (1 - exp(—m))t 2dV(.X) dt

= f3°(f3°(1 - exp(—cﬂs—%\:—l))ﬁm dv(x)
X

X

> inf,., f3°(l - exp(—chi%\—_;l))t_z dr.

Equality in (1.10) is achieved by a symmetric random variable X such that
P(|X|=1)=1- P(X =0)=1/n, as may be deduced from Proposition 5 (be-
low).

Let

-1
(1.12) g.(x) = f3°(1 - exp(%))t‘zdt.

Then the right-hand side of (1.10) equals min{inf,_, ., g,(x), inf,,,, g,(x)}.
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We will show that

(1.13) g,(x) ~ on (0, )
and

(1.14) g,(x) N on (0, o).
Consequently,

PROPOSITION 5.

cos tx — 1
x? VAR

Verification of (1.13) is not difficult: by change of variables to y = tx,

(1.16) 8i(x) = 5121 - exp( 2= )y .

A standard application of dominated convergence shows that g,(+) is differentia-
ble on (0, o0) and may be differentiated under the integral sign. Thus

@17 g = g1 - (1 - 22 e 2212 4

Since e* > 1+ u for u > 0, the integrand in (1.17) above is positive for
y & {2km :k=0,1,2,-- -} and nonnegative otherwise. Hence gj(x) > 0 and
therefore g,(-) is strictly increasing.

A more subtle argument is required to prove that g,(-) decreases.

(1.15) inf, f3°(1 - exp( ))1‘2 dt = [£(1 — exp(cos t — 1))t~ 2 dt.

PROPOSITION 6.

© costx — 1 -2 _ 1,0 2
(1.18)  f§ (1 - exp(———-z——))t dt =5/l — exp(— o 02) dv,

X

so that gy(x) N on (0, o).

Proor. To utilize the periodicity of cos y, change variables to y = zx. Thus

fg’(l - exp(git—-xz;l))t_2 dt = xf3°(1 - exp(%))y‘2 dy

X X
X cosy — 1 _
VN (W TERN
X

37 (22 ot e

By a standard application of complex analysis (or a consultation of Abramowitz
and Stegun [1], page 75, formula 4.3.92),

(1.19) ©  (y+27k)2=2"1(1-cosy)”’
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Therefore

1 — exp( cosyz— 1 )

x . x
g2(x) - Z/—'II 1 — cos y dy
l—exp( cosyz— 1)
X . x
_ffo 1 — cosy b-

We change variables twice more. First let w = (1 — cos y)~!. Then

dw = — (1 —cosy) %siny dy

—w2(1 -(1- w")z)% dy
= —w(w — 1)% dy

so that

» 1 —exp(—w™x7?)
1

2 Qw — 1)

g,(x) = %f aw.

355

For fixed x > 0 let v = x(2w — 1)2. Then v2/x2 = 2w — 1 s0 that dw = vx 2 db.

Hence g,(x) =3 /3(1 — exp(—(2/(x? + v?)))) dv.

To see that g,(-) is strictly decreasing, observe that the integrand on the

right-hand side of (1.18) is strictly decreasing as x increases. []

THEOREM 7. Let X, X, X,, - - - be i.i.d. nonconstant mean zero random vari-
ables. Let T, be a random variable independent of the Xj’s, which is Poisson with
parameter n. Let S, = X, + - - - +X,. For y > 1 let K(y) be the unique positive
real number satisfying
(1.20) YE((X/K(»))* NIX/K(»)]) = 1.

Then
(1.21) K(n)E|Y, - Y,|/ (1 + e"‘(% - 1)) < E|S,| < 2K(n)
and
1\4
2
(122) K(nE|Y, - Y,| < E|S;| < (1 + (1 + ;) )K(n),

where Y, and Y, are independent Poisson random variables, each having parameter

A =1. The quantity E|Y, — Y,| equals 673%.
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PrOOF. Due to the integral representation of | X/,

E|Y, — Y| = Cf&(1 — Re E(e™Ve™"¥2)) =2 gy
= C,f&(1 — Re Ee"™iEe™"Y2)t~2 gt

le3°(l — Re exp(( eitz— l) + (""‘—_"12;1)))t‘2 dt

= CfP(1 — exp(cos t — 1))z~ 2 dt
< C,f3(1 — Re exp n(Ee™/%™ — 1));=2 gt

(by (1.15) and (1.10))
= ElSl/x) (by (1.4)).

This establishes the left-hand side of (1.22). The lower-bound in (1.21) now follows
by application of (1.6). The right-hand side of (1.21) was proved in Klass [3],
Theorem 2.1. Essentially the same technique as used in that paper will be used to
prove. the right-hand side of (1.22). Fix b > 0. Let S,(b) = 27_,X,/(|X;| < b) and
U,(b) = Z7_1X;1(|X;| > b). Let 7 be any nonnegative integer-valued random vari-
able such that Er? < oo and {7 = n} is independent of the Borel field generated
by Xy, ---,X, Note that 0 = ES, = EXI(|X| < b) + EXI(|X| > b) so that
(EXI(X| < b)) = (EXI(X| > b)) < (E|X|I(X| > b))
E|S,| = E|S,.(b) + U(b)|
< E|S,(b)| + E|U,(b)]

1
< (ESXb))* + EZ;_ 1| X|I(|1X)| > b).
By Wald’s equation, the second quantity equals ETE|X|I(|X | > b). Using indepen-
dence,
ES-rz(b) = flc=lP(T = n)ESn2(b)

= 22, P(r = n){n Var XI(|X| < b) + (nEXI(|X| < b))’}

< ErEX?(|X| < b) + E-(E|X|I(|X| > b))
Let = T,. Then Er = n and Er*> = Var T, + (ET,)* = n + n% Next, let b =
K(n). By construction,

K*(n) = nEXI(|X| < K(n)) + nK(n)E|X|I(|X| > K(n))
=\, K*(n) + (1 — A)K%(n).

Combining these results, it is easily seen that for + = T, and b = K(n),

ES2(b) < Kz(;,)()\" + (1 - >\,,)2(1 + ! ))

and
ErE|X|I(|X| > b) = (1 — A\,)K(n).
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Therefore,
siss) < k(1 =3+ (o + 0 =271+ 2)))

= K(n)g,(A,) < K(n) supgercy 8,(A)-

1
Since g,(A) < 0for 0 < A < 1, supycrc; 8,A) =g,(00 =1+ (1 + ;)fl. O

ReMARK 8. In Klass [3] (Theorem 1.1) it was asserted without proof that
K(n) < 3E|S,| and that lim sup,_, ., K(n)/E|S,| < 2.25. Theorem 7 substantiates
a stronger result and the bounds given are asymptotically exact. For example, let X
have mean zero, be bounded below, and have positive tail satisfying P(X >y) =
1/y log?y for y >e. Then, letting b, = nE(|X| — b,)*, b, ~ K(n) and so by
Theorem 5 of Klass-Teicher [6], lim,_,,, E[S,|/K(n) = 2. Since E|S,| ~ E|Sy | we
also have lim,, , E|Sy |/K(n) = 2. The lower-bound is most easily obtained from
triangular arrays. Simply let X,; be ii.d. symmetric random variables for j =
1,2,- - -, such that P(|X,| = 1) =1— P(X, = 0) = 1/n. Then nE(X; A\ |X,))
= 1. Furthermore, S, = ZJ.T;,X  has the same distribution as Y, — Y,. Therefore
E|S,r| = E|Y, — Y,|; whence the lower bound of (1.22) is achieved for each n.
Recalling Proposition 1, lim,_, , inf x. gx—oy E|S,|/K(n) = E|Y, — Y,|.

A single distribution can be constructed such that lim inf, . E|S,|/K(n) =
E|Y, — Y,|. Let 0 <a, <a, < - - - be a sequence of reals such that a,,,/a, -
0. Assume that Ef_lan‘% < 1. Let X be a symmetric random variable taking
values in the set {0, +a,, *a,, - - - } according to the probabilities P(|X| = a,) =
a,,'%. Let j, be the greatest integer not exceeding a?. Then j, EXYU(X| < a,) +
Jn%E|X|I(X| > a,) ~ a} so that K(j,) ~ a,. S; / K(j,) converges in distribution to
Y, — Y,, and, more to the point, E|S, /K(j,)| = E|Y, — Y,|.

By intermingling the distributions given in the first and third examples, one can
construct a mean-zero X-distribution such that

E|Y, — Y,| = lim inf E|S,|/K(n) < lim sup,_, , E|S,|/K(n) = 2.

n—oo

The same inequalities hold if E|S,| is replaced by E|Sr|.

REMARK 9. To evaluate E|Y; — Y,| “directly,” it is necessary to compute a
double summation. There is an equivalent method which requires but a single
summation. Let W, W,,- - - be iid. symmetric random variables such that
P(|W,| = 1) = 1. Note that

E[S345 W) = B[z, )| = 2ka (3 ).

Let T be independent of the W’s and be Poisson (1). Then since Y, — Y, and
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EjT_, W, have the same characteristic function,
_ E|Z_ W)
E|Y, - Y| = B[S, W) = e”'5p, —L
kaH(2K) 1+ 1720
2k - 1)!

= e ISP_ 47Kk TH1 + 1/2(k + 1)).

=2e7 137,

2. Consequences of Theorem 7. Theorem 7 has two corollaries which may be
of interest. The first relates to the law of the iterated logarithm for sums of i.i.d.
mean-zero variables.

CoROLLARY 10. Let X,, X,, - - - be ii.d. nonconstant mean zero random vari-
ables. Let S, = X, + - - - + X, and let the constant C be determined by the relation
2.1 1i S C

. im sup,,_, = Cas.

* (IOg IOg n)ES[Tu/log log n]

Then C < o0 iff 3, P(X > (log log n)ES; /105105 n) < 0. When C < oo,
(2.2) 1 < C<3/E|Y,— Y,| < 446.

PrOOF. This follows from Klass [4] (Theorem 2.5), the fact that E|S,| = 2ES,*,
and the fact that .673% = E|Y, — Y,| < lim inf,  E|S,|/K(n) < lim
SUp,_, . E|S,|/K(n) < 2 where K(-) is defined as in (1.20). []

The next corollary may be regarded either as a method of lower-bounding E|S,|
in terms of the 1/nth quantiles of the |X|-distribution or else as a method of
upper-bounding a tail probability.

CoROLLARY 11. Let X, X,, X,, - -+ be ii.d. nonconstant mean-zero random
variables. Let S, = X, + - - - +X,. Then
(23) P(X| > r,E|S,)) < 1/n,

where r, = (1 + e "(n"/n!) — 1))/E|Y, — Y,| and Y, and Y, are independent
Poisson random variables, each having parameter A = %

Proor. Since r,E|S,| > K(n),

nP(|X| > r,E|S,|) < nP(X| > K(n))
nE(|X|/K(nm)I(|1X| > K(n))
(Markov’s inequality)
< nE((X/K(n)* A1X/K(n)])
= 1 (by construction of K(n)). 0

n N
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ReMARK 12. Corollary 11 generalizes Chebyshev’s inequality to random vari-
ables with finite mean. Let S, = X, + - - -+ + X, be a sum of independent mean-
zero random variables with finite variance. Consider any theorem about the
behavior of S, whose statement involves the quantity (Var S,,)%. How is (Var S,,)%
to be interpreted? Suppose it represents some constant times the median (or other
quantile) of |S,|. Because med|S,,| is a/ways defined and finite, one expects that it is
often feasible to extend such a theorem to random variables without finite vari-
ance. Both the proof and utilization of such a result would seem to require
approximation of med|S,|. When this is difficult, E|S,| or, more generally,
fTNEAUS,])) (some suitable function f) is often a convenient and adequate sub-
stitute. Previously, this idea was used (though not explicitly enunciated) on
o(n log log n)% = (log log n)(Var(S, /i 10g ,,))% to suggest an appropriate generaliza-
tion of the law of the iterated logarithm (see Klass [3] and [4]). We now show how
application of this idea leads to the conjecture of Corollary 11.

Suppose that the X;’s are identically distributed with finite positive variance o
Chebyshev’s inequality gives

(2.4) P(1X| > (Var 8,)7) = P(|X| > on?) < EX*/no® = 1/n.

Now when Var X = oo this inequality lacks content. However, according to our
“folk theorem,” the extremes of the above inequality remain valid for sums of
arbitrary ii.d. mean-zero variates provided one replaces (Var Sn)% by an ap-
propriate multiple of E|S,|. Corollary 11 proves just this fact; namely, P(|X| >
r,E|S,)) < 1/n.

Another heuristic argument can be forwarded to motivate inequality (2.3):
imagine a gambling situation. Suppose X, denotes one’s winnings during the jth
repeated game (i.i.d. trials). Then E|S,| = E|S, — 0| represents the expected
amount one’s fortune will change after n games. Inverting the statement, normally
it takes about n games for one’s fortune to change by amount a = E|S,|. There-
fore, the chance that one’s fortune changes by at least some suitable multiple of
E|S,| in a single trial (game) cannot greatly exceed 1/n. Since |X| represents the
amount one’s fortune changes in a single trial, an inequality of the form P(|X| >
r,E|S,]) < 1/n must hold for some suitable and uniformly bounded real number

r,.

ReEMARK 13. Corollary 11 is an improvement of Markov’s inequality of best
possible type. For example, let r be any positive constant less than 1/E|Y, — Y,|
and let X be distributed as in the third example-of Remark 8. Then lim
sup,_., nP(X| > rE|S,|) = 1. As another illustration of the sharpness of Corollary
11, let X be a stable random variable of index 1 < a < 2 (or else just in the domain
of attraction of such a distribution). Then there exists an ¢ > 0 depending on X
such that e < nP(|X| > r,E|S,|) <1 for all n > 1. By comparison, Markov’s
inequality gives nP(|X| > r,E|S,|) < nE|X|/r,E|S,|, which tends to infinity as
n — oo. Corollary 11 gives a tighter bound than Markov’s inequality only because



360 MICHAEL J. KLASS

it assumes more information. Markov’s inequality bounds P(|X| > ¢) for all # > 0.
Corollary 11 bounds P(|X| > ¢) subject to the constraint ¢ > r,E|S,|.

3. Extension to functions of random sums. The lower-bound for E|Sy| based
on Lemma 4 can be generalized in two ways. We extend the result by admitting
nonidentically distributed variates and by using functions f(-) other than f(x) =
|x[-

Let u(-) be any positive o-finite measure on (0, o) satisfying
(3.1) e A\ 1du(r) < oo.

Define
(32) F={f():f(x)= /(1 — cos tx) du(t) and p(-) satisfies (3.1)}.

Condition (3.1) ensures that every function f € ¥ is finite-valued. In addition,
note that each f € ¥ is nonnegative, symmetric, and continuous, with f(0) =

Many familiar functions belong to ¥. For example, if 0 < 8 < 2, fg(x) = |x|® €
% . To see this, merely confirm the integral representation given below by changing
variables to y = tx.

(33) |x|# = Caf&(1 — cos tx)t~'~# dt 0<B<2

where Cp = (fg°(1 — cos )¢ ~'"# df)~!. Contour integration shows that Cp =
2I'( B + 1)(sin #B8/2)/m, where I'(-) is the gamma function.

Some notation will be helpful Given any random variable Y, let ¥ denote
O =1Y;, where Y, Y, Y,,- - - are ii.d. and T is a Poisson random variable with
parameter A = 1, which is 1ndependent of the Y;’s

THEOREM 14. Let h(+) be a symmetric, nonnegative continuous function, zero only

at zero. Let X, X,, * * + , X, be random variables such that
(34) 7-1ER(X;) = 1.
Suppose that X " X 200, )?,, are independent. Let f(x) = | &(1 — cos tx) du(t) be-
long to F. Then
5 . Z.

(3.5) Ef(S1_\X) > 1nfx>0f3°(1 - exp( °°sh (") )) dp(?).

PrOOF.
(3.6) Ef(Zm_\X) = [&(1 — Re I}, exp E(e™ — 1)) du(1)

> (1 = lexp Zj_,E(e™ — 1)]) du(1)
= [2(1 — exp =7_,E(cos tX; — 1)) du(?)

= s (1 - exp I st () (),

where dv(x) = h(x)Z}_, dP(|X;| < x). Since h(x) > 0, » is a positive measure. Due
to condition (3.4) and the fact that 4(0) = 0, » is a probability measure on (0, o).
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Arguing exactly as in Lemma 4,

fl1 - e Ji Lo () ) > int ji (1 - et ) auto).
0

REMARK 15. Typically, the function f(-) and random variables X, - - - , X, are
given. To apply Theorem 14 it is then necessary to construct a function A(-)
satisfying (3.4). This can be done as follows. Assuming that f(x) is strictly
increasing on [0, o), for each x # 0, (x/b)* A (f(x)/f(b)) is strictly decreasing in
b > 0. Owing to the continuity of f(-) and the fact that f(0) = 0, whenever
0 < 37_,Ef(X;) < oo there exists a unique positive number K, such that

(3.7) = E((X/K) A (X)) /(K,)) = 1.
Now a lower-bound for Ef(Z}_ l)?j) can be given; merely invoke Theorem 14, using
h(x) = (x/ K} N\ (f(x)/A(K,)-

REMARK 16. Theorem 14 can be improved somewhat if f(x) = |x|? (0 < B <
2). Letting K, satisfy (3.7) and scaling, Theorem 14 gives

n B . wl1 costx — 1\ _i_g
ElZ".(X,/K,)F > Cpinf, [3 (1 exp(————-——xz/\ =) d.
Change variables to y = zx and differentiate w.r.t. x to see that [g°(1 — exp((cos tx
— 1)/xP))t~'~# dt increases as x increases on (0, ). (The complete derivation
parallels that of (1.13), which required use of (1.16) and (1.17).) Hence

n o . o costx —1\\ _,_
(38) E[Si.K[F > Cy(K,)" infor, oy [3 (1 - exp(——xz—))t 18 gy,

It can be shown (see J. Reeds [8]) that for all 0 < 8 < 2 the infimum in (3.8)
occurs at x = 1, as was proved for 8 = 1. This leads to an extension of Theorem 7
via generalization of (1.6) of Proposition 1. Specifically, fix 1 < 8 <2 and let
X, X,, X,, - - - be ii.d. nonconstant zero-mean random variables such that E|X |ﬁ
< 0. Define S,, T,, Y, and Y, as in Theorem 7. Note that {|S,|?}¢-, and
(1S, /k|#}._ ., are both submartingales. Hence E|S,|? < E|S,|# for k < n and
E|S,|? < (k/nyE|S,|? for k > n. Argue as in Proposition 1 to obtain E|Sy|? <
E|S,|P(1 + e~ "((2n"/nY) — 1 + ZZ_,(n*~"/k!))). Therefore

n k—1
65) Els i > (ke - v/ (1 e (2 - e sg, M)

Inequality (3.9) is within a factor of 1+ O(n_%) of being best possible, as
consideration of the analogue of (1.5) used in conjunction with Stirling’s approxi-
mation verifies.

4. Asymptotics. Theorem 14 can be applied to triangular arrays. Let
4.1) %, = {f € F : f(*) is strictly increasing on [0, )}
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and
4.2) %, = {f € 9, : 3a > 1such that f(2x) > af(x) for all x > 0}.

Certain properties of the functions in these collections will be needed and so are
recorded below.

ProOPOSITION 17.  Let f(x) = [§°(1 — cos tx) du(t). Then

(4.3) f(x) > x¥(1 —cos ) f¥/™M2du(t) if fEF
and
(44) fx) > (1= sin )fg dut) i [E€F,
Finally, suppose f € %,. Then for every € > 0 there exists b > 1 such that
4.5) Joyx () < ef(x)  forall x +#0.

PROOF OF (4.3).
f(x) > [¢/M(1 = cos tx) dp(r)
> inf, <, y T2(1 = cos y)[§/™%x? du(r)
= x}(1 — cos 1)[&/™e? du(¢).
PrOOF OF (4.4). We may assume x > 0.

f(x) > (1/x)[5/(») &y

= /5 Sl_%way dau(t) (by Fubini)
- sp(1 - ) awto)
> sl - ) o)

> (1 — sin 1)[{7, du(?).

PrOOF OF (4.5). Select a > 1 such that f(2x) > af(x) for x # 0. Fix ¢ > 0.
Choose n > 1 so that a ™" < ¢(1 — sin 1). Let b = 2". Clearly f(x/b) < a™"f(x).
Thus

S du(®) < f(x/b)/ (1 = sin 1) (by (4.4))
<a "(x)/ (1 —sin 1)
< gf(x). i

The main theorem of this section is based on an approximation lemma whose
proof is facilitated by the next result.

- PROPOSITION 18. For eachn' > 1let Y,,- - -, Y, be a sequence of independent
random variables. Suppose that for each € > 0 there exists a, (which depends on ¢)
such that

(4.6) max, ;< P(|Y,| >¢) <a,—>0 as n—oo.
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Then, given positive reals b,, b, and b, there exists €, = &,(b,, b,, bs) such that for all
|u| < bjyandall 1 < j <k,

4.7) (E(sin uY,))I(| Y] > b))’ < &,E(1 — cos uY,),
(4.8) (E(1 = cos uY,,j))2 < &,E(1 — cos uY,),
and

(49) (E sinuY,I(|Y,| < b))’
< 2WEY I(|Y,| < by)) + (6,/DWEY2I(|Y,,| < by),
where €, — 0 as n — 0.

ReMARK 19. Condition (4.6) is the well-known (Loeve [7], page 302) uniformly
asymptotically negligible (u.a.n.) condition. It ensures that no single variable Y,; will
dominate the sum S, = 3%, Y, unless S, itself is negligible.

Proor. First we verify (4.7). By Cauchy-Schwarz
(E sin Y, I(|Y,| > b))’ < P(|Y,| > b))E sin® uY,,
= P(|Y,;| > b,)E(1 — cos uY,;)(1 + cos uY,)
< 2a,E(1 — cos uY,).
According to Loeve ([7], page 302), the u.a.n. condition implies that

lim,_, , SUpy, <, Max, ;< (E(1 — cos u¥,) + wEY2I(|Y,| < b)) = 0.

This proves (4.8) and will be used in (4.9). Observe that for any twice continuously
differentiable function gq(-), g(x) = q(0) + ug’'(0) + [4/3q”(w) dw dv. Therefore

(E sin u¥,)? < (luEYy| + [/3E(Y,) dw do)’
< 2(uEY}) + 2(“7215( Y,;j)z)2
< 2uEY,) + (e,/2)u*E(Y)?
for some appropriate ¢, which tends to zero as n — co. []

Now for the lemma.

LemMMA 20. (Asymptotic approximation lemma). Let f(x) = [5(1 —
cos tx) du(t) belong to F,. For each n > 1 let Y,,- -, Y, be a sequence of
independent random variables which satisfy the u.a.n. condition (4.6). Suppose Jurther
that for some constant 0 < ¢ < oo independent of n,

(4.10) S EYSI(Y, < 1) <c
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and that
(4.11) lim,_,., Sk (EY,I(|Y,| < 1))*=0.
Then for any real numbers b > 1 and K,, > 0,
(4.12) lim inf, ,,(1/f(K,))/5/%(1 = Re Iz, Ee"S7) du(2)
> lim inf, ,_ (1/A(K,))/5/%(1 — ., exp(E cos iK,Y,; — 1)) du(?).
Moreover, if f € %, then
(4.13) liminf,_, EA(Z%.K,Y,)/f(K,)
> lim inf,_ (1//(K,))/&(1 — ke, exp(E cos tK,Y,; — 1)) du(?).
REMARK 21. Condition (4.11) may be thought of as an antidegeneracy condi-
tion. It ensures that whenever =% | EY2I(|Y,;| < 1) is not negligible, S Y, 1(Y,
< 1) retains some randomness and does not degenerate about its expectation. The

conclusions (4.12) and (4.13) remain valid if the two conditions (4.10) and (4.11)
are replaced by the single condition: for every € > 0 there exists a, — 0 such that

(4.19) S (EY, (Y, <e)) < a2 EYZI(Y,]| <e).

ProOF OF LEMMA 20. Assuming (4.12), the second assertion (4.13) follows
directly from (4.5) and the fact that Ef( Y,) = /&(1 — Re [[j Ee™") dp(t)
We therefore prove only (4.12). Write ¥, I(| YV <D+7Y, I(| Y, |>1)=

+ Y. Fixb > 1and let u = ¢K,. Due to Proposmon 18, there exists ¢, > 0 such
_ that for all |u| < b,

(4.15) 43k (E sin uY,)’ < e,S% E(1 — cos uY,),
(4.16) 255 ((E(1 — cos uY, )) g2k | E(1 — cos uY,)),
and

(4.17) Sk \(E sin uY,)* < 25k (uEY,) + (6,/2) ke w?E( ).

Furthermore, ¢, may be chosen so that
712
(4.18) 425?"_,(EY,,J~) < e,

Observe that for any complex number z sufficiently close to 1 (|]z — 1| < .5 will
do)-there exists a complex number 9 of modulus at most 1 such that z = exp(z — 1
+ 6(z — 1)*). The u.a.n. condition (see Loéve [7], page 302) ensures that f,(u) =
E exp iuY,; converges to 1 uniformly in [u| <band 1< j <k, asn— co. Writing
f,(w) in exponential form and suppressing the dependence of §,; on u, we lower-
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bound the integrand in (4.12) thusly:
1 — Re Il f,(u) =1 — Re % exp(f,,j(u) =1+ 8,(f,;(u) - 1)2)
1 — Re exp Ef"_,(fnj(u) =1+ 6,(f,;(u) - 1)2)

1 - exp(Zf;l(E cos uY,, — 1) + 2k (E(1 — cos uY,,j))2

\%

+3Zk (|E sin uY,| + |E sin uY,,’ij)z)

1 - exp(Zf"_l((E cos uY,; — 1) + (E(1 — cos uY,))*

\%

+2(E sin uYn’j’.)z)
+25% \(E sin uY,:j)z)
> 1 — (exp(1 — g,)=k | (E cos uY,, — 1)) exp 2?”_1(4u2(EY,:j)2
+e,u’E(Y,,)’) (by (4.16), (4.15) and (4.17))
> 1 — exp((1 — &)=k (E cos uY,; — 1)) exp g,u*(1 + ¢)
(using (4.18) and (4.10))
> 1 — exp((1 — &,)2k (E cos uY,, — 1)) — 2¢,u*(1 + ¢),

provided n is sufficiently large. Next, since

1 —exp(a(l — &)

1[=0,
l —expa

lim,_,  sup, <0

there exists §, — 0 such that for all |u| < b,
1 — exp((1 — )=k (E cos uY,; — 1)) > (1 — §,)(1 ~ exp =% ,(E cos u¥,; — 1)).
Therefore

lim inf, |

f5/%(1 — Re Tl £,(1K,)) — (1 — 8,)(1 — %, exp(E cos K, Y, — 1))
> lim inf,,,, — (2¢,(1 + ¢)/f(K,)) [/ *°K} du(t)

> —5b%(1 + c) lim sup,_, ., &,/(K,/b)/f(K,)
(from (4.3))

ap(t)

=0 (since f is nondecreasing).

Inequality (4.12) is an immediate consequence. (]

THEOREM 22. Let f(x) = [$(1 — cos ix) du(t) be any function in %, such that
f(x)x~? is nonincreasing. For each n > 1, let X, - - -, X, be a sequence of
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independent random variables such that 0 < 2}"'=1Ef(X,,j) < o0. Let K, be the unique
positive real number satisfying

(4.19) S E((X,/ K A (F(X,)/A(K,)) =
Suppose that
(4.20) lim,e, o S \(E(Xy/K)I(X,] < K,)) =0
and that, for every ¢ > 0,
(4.21) lim, ,, max,; o, P(|X,| >eK,) =
Then
(422) liminf,_, EA(Z% X, )/f(K,)
> lim inf, ., infx>o(1/f(Kn))f3°( 1 - exp— Kn_?/s\’}‘(;)/l A ) du(t).
ProoF. LetY, = X, /K,. Clearly,  satisfies (4.6) and (4.11). Moreover, since

(x/ K,y < f(X)/f(K ) for |x| <K
S E((Xy/ K A (A%, )/f(K MI(X,| < K,) = S5, EYZI(Y,| < 1),

Hence (4.10) holds with ¢ = 1. Therefore we may invoke the asymptotic approxi-
mation Lemma 20. To complete the theorem, apply Theorem 14 to the X,;’s, using

(%) = x’K,2 N f(0)/A(K,). T

5. Concluding remarks and conjectures. The lower-bound in (4.22) is sharp.
Furthermore, it is not difficult to show the existence of a finite, positive real
_ number x, which achieves the infimum over x > 0 of

cos ixK, — 1

PN (f(xK,)/A(K,))
It seems possible that x, always equals 1.
Certain results for finite » are indicated. Henceforth suppose, in addition to
(4.19), that X,,,, - - -, X, are i.i.d. Whenever X, is symmetric and k,, is either odd
or sufficiently large, Efx j_,X,,j) > g(x,, K,). It seems natural to conjecture that
this inequality holds for all k, > 1 irrespective of whether X, is symmetric. Even if
true, however, equality is not achieved for any finite k,. To obtain the exact lower
bound for finite n, the extremal X,,; distribution must be constructed. Going out on
a limb, I conjecture that (at least if » is sufficiently large) it may be found among
the symmetric distributions which assume at most three values — xK,, 0, xK,. An
argument based on convexity (akin to the proof of Lemma 4) verifies the conjec-
ture whenever X, is symmetric and %, is even.

g(x, K,) = f8°(1 - ) du(?).
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