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A NOTE ON DOMAINS OF PARTIAL ATTRACTION

By R. A. MALLER
Australian National University and C.S.I.R.O.

We attempt to relate the domains of partial attraction for sums of ii.d.
random variables to some properties of a generalised regular variation. We give
a new characterisation of the domain of partial attraction of the normal
distribution and new sufficient conditions for a distribution to belong to a
domain of partial attraction.

1. Introduction and results. Let X, X,, - - - be independent and identically
distributed random variables with distribution F, and let S, = X, + X,
+ - -+ +X,. We say that F is in a domain of partial attraction, written F € D, if
there is a sequence n; of integers and constants 4; and B, B; > 0, B; » + oo, for
which (S,,/B;) — A4; converges in distribution to a nondegenerate (infinitely divisi-
ble) random variable. If the limit random variable is normally distributed, we say
that F is the domain of partial attraction of the normal distribution, written F €
D,(2).

The domains of partial attraction constitute a generalisation of the domains of
attraction, which are the distributions for which the whole sequence (S,/B,) — 4,
converges to a nondegenerate random variable. The domains of attraction can be
described in terms of regularly varying properties of the tail sum, P(|X| > x), and
the truncated second moment, ¥V(x) = [** u’dF(u), of F; here X is any random
variable with distribution F. In particular, F is in the domain of attraction of the
normal distribution if and only if x*P(|X| > x)/V(x)—>0 as x — + oo (Lévy,
1937, page 113), and this condition is equivalent to the slow variation of ¥(x); i.e.,
V(xA\)/V(x) —> 1 as x - + oo for each A > 0 (Feller, 1971, page 283). Lévy (1937,
page 113) showed that F € D,(2) if and only if lim inf, , +oXP(X| > x)/V(x) =
0.

Doeblin (1940, 1947) examined the domains of partial attraction and related
problems by classical methods; his results were extended by Mejzler (1974), who
looked at the case where the subsequence n; for which (S, /B;) — 4; converges
satisfies lim inf; , , ., n;/n;,, > 0. More recently Simons and Stout (1978) gave two
new characterisations of D,(2), and some related results, as a by-product of their
studies on invariance theorems. In this note we attempt to show that D, and D,(2)
can be related to some properties of a generalised type of regular variation of the
tail of the distribution. We give an equivalence for D,(2) (Theorem 1 below) which
has no counterpart for the domain of attraction of the normal distribution. A
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property analogous to the slow variation of ¥ which might have been expected to
characterise D,(2) is liminf,_,, V(xA\)/¥V(x) =1 for A > 1; we show that,
although this is necessary for F € D,(2), it is in general not sufficient. In Theorem
2 we give a necessary condition and a sufficient condition (but not one that is
necessary and sufficient) for F € D,. Applying this result, we then derive easily
two moment conditions for D, and D,(2) originally due to Lévy. As another
application of our methods, we give in Theorem 3 a simple proof and extension of
a result of Gnedenko. '

Our methods are basically the classical ones for convergence of sums of random
variables as used by Doeblin (1940) and Gnedenko and Kolmogorov (1968),
supplemented with some of the techniques of the theory of regular variation. The
sufficiency part of Theorem 2 relies on a result of Drasin and Shea (1972) giving
“Polya peaks” of the second kind for a monotone function.

We remark that the class D,(2) has been prominent in work by Rogozin (1968),
Heyde (1969) and Kesten (1972). The theory of regular variation, along with some
generalised aspects, is discussed by Seneta (1976).

THEOREM 1. F € D,(2) if and only if lim inf,_,, P(X| > xA)/P(|X| > x) <
A 2for A > 1.

The sufficiency of the condition for F € D,(2) in Theorem 1 is implicit in Feller
(1969, Theorem 1) where it is not, however, related to the concept of partial
attraction. Define a function Q@) for A > 1 as follows: Q(1) =1; Q(\) =
lim inf,_, ,  P(X| > x\)/P(|X| > x) if P(|X| > x) > 0 for x > 0, Q(\) = 0 other-
wise, when A > 1. In the next theorem, the necessary condition for D, was proved
by Doeblin (1940, Theorem VII).

THEOREM 2. If F € D, then lim,_,, Q) = 0. If lim,_,, ,, — log Q(A)/log A
> 0, then F € D,.

If the nonincreasing function Q(A) is zero for some A, > 1 (and hence is zero for
A > )y then we interpret —log Q(A) and lim, ,, . — log Q(A)/log A as +o0;
Theorem 2 is formally correct in this case since F € D,(2) by Theorem 1. (If
P(X| > x) =0 for some x > 0, F is in the domain of attraction of the normal
distribution). If Q(A) > 0 for A > 0, it is easy to check that for A, u > 1, Q(Apn) >
OMN)QO(p), so —log Q(e") is a subadditive function. Hence by Hille and Phillip
(1957, page 244) the limit lim,  , . — log Q(A)/log A exists (and is nonnegative).
The requirement in Theorem 2 is that this limit be positive, and this is clearly
equivalent to the condition that there is a p > 0 such that for every ¢ € (0, p) a
constant Ay(e) > 1 exists for which Q(A) < A~™°*¢ whenever A > A; ie., it is a
restriction on the rate of increase of Q. It seems a reasonable conjecture, which we
.have not been able to establish, that this requirement can be replaced by the
simpler condition lim,_, , Q) = 0.

Translating a result of Matuszewska (1962, page 320) to our notation shows that
log Q(\)/log A < lim inf, ,,  log P(|X| > x)/log x for A > 1, if P(X|>x) >0
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for x > 0, while it is easy to see that for a > 0, E|X|* < + oo (equivalently
[Px*P(|X| > x) dx < + o) implies lim inf, ,,  log P(|X| > x)/logx < — a.
Thus we have the following heirarchy of conditions, each of which implies the next,
and hence, by Theorem 2, that F € D,:

() E|X|*< + 0, a > 0;

(i) lim inf,_,,  log P(|X| > x)/log x < — a;

(iii) Q) = lim inf_,, P(X| > xN)/P(|X|>x) <A7*forA > I;

(@iv) lim,_,, , — log Q(A)/log A > a.
We note further that if (iii) holds for every a < 2, then it holds for @ = 2. Hence as
an immediate consequence of Theorems 1 and 2 we have the:

COROLLARY TO THEOREM 2. If E|X|* < + oo for a > O then F € D,. If E|X|*
< + oo for every a € (0, 2) then F € D,(2).

The results of the corollary were deduced by Lévy (1937, pages 213 and 117).
Thompson and Owen (1972) proved the special case, that when a« > 1 and
E|X|* < + oo, then (S, /B;) — A; converges to a nondegenerate random variable
when B, = EVA[S, |ﬂ for any B8 € (1, a). A direct proof of the fact that (i) above
implies (iii) can be obtamed from Lemma 6 of Maller (1977). A sufficient condition
for D,, given by Simons and Stout (1978), is that lim,_,, . lim Sup,_, + o P(X| >
x\)/P(X| > x) = 0; this can be shown to imply that E|X|* < + oo for some
a>0.

It is interesting to notice that an upper bound on, e.g., lim inf, ,, P(X]| >
xA)/P(X| > x) for A > 1 is equivalent to a lower bound on the ‘limsup’ of the
same ratio for A < 1; if we recall that the limit of a distribution in D, is an
infinitely divisible distribution with a normal component 0% > 0, we can apply this
observation to prove

THEOREM 3. The following are equivalent:
@) F € D,(2);
(ii) F is in the domain of partial attraction of a distribution with finite variance;
(iii) F is in the domain of partial attraction of a distribution with nonzero normal
component.

The equivalence of (i) and (i) above was also proved by Gnedenko (cf.
Gnedenko and Kolmogorov (1968, page 189)).

We conclude with some counter examples constructed like one due to Feller.
Choose a symmetric distribution with P(|X| > x) = ¢, for 2% < x < 2", where
¢,|0 as n — + 0. Let x, = 2%" and take any A > 1; then if n, is so large that
22° > A, the interval [x,, Ax,] is contained in [2%, 22"“) [2%, 2%".2%), for n > n,
Smce P(|X| > x) is constant on this interval we have

V(Ax,) — V(x,) = —f"""u2dP(|X| >u) =

so lim inf,_, . . V(xA)/ ¥(x) = 1 for A > 1. Following the proof of Theorem 1 we

show that this is a necessary condition for D,(2)—but it is not sufficient. To see
this, let ¢, = n~'. The maximum difference that P(|X| > Ay,) and P(|X|>y,)
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can attain occurs when y, = 2" — 1, so that P(|X| > Ny,) = n~, P(X| >y,) =
(n = )", ultimately. Thus lim inf, ,,  P(X| > x\)/P(X|>x) =1 for A > 1,
so F & D,(2); in fact by Theorem 2, F ¢ D,. We remark that the integral
2f5uP(|X| > u) du is larger than V(x), and it is true that F € D,(2) if and only if
lim inf, ,, . [SP(|X| > u) du/ [2uP(|X| > u) du = 1 for A > 1. (In fact this con-
dition is easily seen to be the opposite of Simons and Stout’s condition Al” for
F & D,(2).)

It is easy to see that the above example has lim SUP, L+ o V(XA)/V(x) = + o
for A > 1; the condition lim sup, ,, ¥ (xA)/¥(x) < + o for A > 1 appears in
Feller (1968, page 345).

By varying ¢, in the above example, other interesting behaviour can be obtained;
€.g. ¢, = 27" has lim inf,_,, (P(X| > x\)/P(X| >x) =1 for A > 1,¢, =2°2""
has lim inf, ,,  P(|X| > xA)/P(|X| > x) = 0 for A > 1. The latter also has a finite
variance, so F is in the domain of attraction of the normal distribution—but
clearly lim sup, , , ,P(|X| > x\)/P(X| > x) =1 for A > 1 in all these examples
(see Feller (1971, page 288) for a similar result).

It is not hard to show that F € D, implies lim inf, _, ,  x*P(|X| > x)/ V(x) <
+ 0; but since x*P(|X| > x)/ V(x) - + oo is equivalent to the slow variation of
P(|X| > x) (Feller (1971, page 283), the case ¢, = 27" above shows that it is
possible to have lim inf, , ,  x?P(|X| > x)/ V(x) < + oo, with F & D,.

2. Proofs.

PROOF OF THEOREM 1. We use the abbreviation H(x) = P(|X| > x) for x > 0.
Note first that if EX? < + oo, Theorem 1 follows from the corollary to Theorem 2.
Hence we need only consider the case EX* = + oo, equivalently, | oxH(x) dx =
+ co. We take Lévy’s condition as known, and show that lim inf,_, oH(xN)/ H(x)
< A72 for A > 1 is equivalent to it. In fact, suppose this fails; then, letting
QM) = lim inf, ,  H(xN)/H(x) for A > 1, there is a A, > 1 for which oAy >
Ag2. Given ¢ >0 and A > 1 choose Xo = xo(e, A) so large that x > x, implies
H(x\) > [Q(\) — e]H(x). Then (the following argument sharpens the result of the
lemma on page 82 of Doeblin (1940)):

JouH(u) du = [suH(u) du + [% uH(u) du
< o[ fouH(u) du] + [ uH(uN) du/[QQ) — ¢]
< o[ f5uH(u) du] + A~ [5uH(u) du/[ QM) — ¢]
+A"2PuH (u) du/[ Q(A) — €]
so that, since H is nonincreasing .

QM) — e <o(1) + A72 + A"2(A2 — 1)x?H(x) /2 5uH (u) du
and
lim inf

x—>+ 00

x*H(x)/2fguH(u) du > [N*Q(\) — 1]/ (A% = 1), for A > 1
> 0,for A = A,
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But this means lim inf,_  x2H(x)/V(x) > 0, contradicting Lévy’s condition.
Conversely, suppose lim inf, , , , x*H(x)/V(x) >a >0, so that lim inf,_, , . x*H(x)/

2fquH(u)du > b =a/(a+ 1) >0.ThenforA > 1, > 0,e <b, and x > xe, A),

uH(u) du
4 2[oyH(y) dy

A (ux)zH(ux) ﬂ
"2/8yH(y) dy u

> exp[2(b — e)log A] = A*®~9.

MuH(u) du/ [5uH (u) du = exp 2%

= exp 2f

Using this result and the definition of b, for x > x,
(b — &)2fPuH(u) du < NXx*H(x\) and 2A2®~9) [5uH(u) du < 2[5uH(u) du
so by the monotonicity of H,

A2-952H(x) < N2C~927%uH(u) du < Nx*H(x\)/ (b — ¢)
and
lim inf,_,  H(xA)/H(x) > bA*~2 for A > 1,

which contradicts lim inf,_, . H(xA)/H(x) < A~2 for A > 1. This proves Theo-
rem 1.

REMARKS. (i) If F € D ),(2) then by Gnedenko and Kolmogorov (1968, page
128) there are sequences n, — + o, x; > + oo, for which nx; A V(xA) —
[, dF(u)f} > 1 as i— + oo for A >0. When EX?= + o we have
[fx, u dF(u)P? = o[V(x)] as x - + oo (cf. Lévy (1937, page 111)) so n; X2V (xA) -
1 for A >0, V(xA)/V(x;)—>1 for A >0 and liminf,  , V(xA)/V(x) =1 for
A > 1. When EX? < + oo this also holds since then V is slowly varying, i.e.,
V(x\)/V(x)—1 for A > 0.

(ii) We note that if F & D,(2), Theorem 1 actually gives a result stronger than is
required, namely that lim mfx_”wH(x}\)/ H(x) > bA%*~2 for A > 1. This fact is
used in the proof of Theorem 3. It is easily seen to be implied by (and hence is
equivalent to) condition A1”” of Simons and Stout (1978). We also mention that
Theorem 1 is a special case, greatly simplified by the monotonicity of H(x), of
Theorem 2 of Maller (1977).

PROOF OF THEOREM 2. If F € D, then by Gnedenko and Kolmogorov (1968,
page 116) there are sequences n; — + 0, x; > + oo and canonical measures N and
M for which n[1 — F(xA)]— NQ\), n,F(— x\) > M(—A) for A > 0, A a point of
continuity of N and M. Thus if T(A) = NQA) + M(—A), n,H(xA) > T(A) as i —>
+ oo at points of continuity of 7. That N and M are canonical measures means
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N(+ ) = M(—o0) =0, so T(+ o) = 0, and if the limit is not normal or degener-
ate, there is a Ay > 0 for which T(A;) > 0. This means
lim inf, ., , H(xMg"")/H(x) < lim inf, , , . H(N/H(yA0) < T(\)/ T(Ag)
—>0asA— +o0.
If the limit is normal then F € D,(2) and lim,_, ,  lim inf,_ , H(xA)/H(x) =0
by Theorem 1. (This argument is essentially due to Doeblin (1940)).

Conversely, suppose lim, _, ,  lim inf, |, JH(xA)/H(x)=0.1If F € D,(2) then
F € Dy, so suppose F & D,(2). Then EX? = + oo and lim inf,_ , . x?H(x)/ V(x)
= a > 0. Suppose first that we can find a sequence Xx; > + oo for which lim
SUp;_, 4+ o H(xA)/ H(x;) >0 as A— + oo, and let n, be the integer nearest to
1/H(x;), so nH(x;) > 1, and lim sup,_, nH(xA) >0 as A > + oo. By Helly’s
selection theorem, we can take further subsequences if necessary to make
n[l — F(xM)]— N(A) and n,F(—xA) - M(—)), at points of continuity of the
limits, where N and M are nonincreasing functions on (0, o). We have N(+0) =
M(—o0) =0, since lim sup, , , ,n[1 — F(xA) + F(—x\)] = lim SUp;_, 4+ oo H(x,N)
—0 as A—> + c0. We can also make nx;”2V(x,\) converge to a nondecreasing
function of A for A > 0, so 02 exists, where

%= limy o, lim sup,-_,ﬂonix,.'zV(x,)\) = limy_, ., lim in_ﬂ_,+°°nixi‘2V(xi)\),
and o is finite, because ¥ is nondecreasing and Lm SUD;_, 4 oo%; 2V (x;) <
a~'lim sup,_, , . m H(x,) = a~'. We finally want to check that N(\) and M(—]) are
finite for A > 0. Letting T(A) = NA\) + M(—)), all three being nonincreasing

functions taken as continuous at 1 for simplicity, we have TN < T(1) =
lim, , , ,mH(x;) = 1, when A > 1. Note that, on integrating by parts,

lim sup,_, , ,2m,x,”[§uH(u) du < lim sup;_, , .nx"V(x,) + lim, ,, nH(x,)
<al'+1,
so by Fatou’s lemma, if 0 < A < 1,
1+ a™' > liminf,_, | 2nx7 (5 uH(u) du > 2f3u lim inf,_, , _n,H(ux,) du

i— + 00
= 2/MuT(u) du > N°T()),

proving that T(A), and hence N(A) and M(— ), are finite for 0 < A < 1, and hence

for A > 0.

The conditions of Gnedenko and Kolmogorov (1968, page 116) are now fulfilled,
since we can ignore the centering terms [[% XM dF(u)]* when EX? = + oo, as we
saw in the remark following Theorem 1. Hence there are constants A; for which
(S,,/x;) — A; converges to a random variable, which is nondegenerate since
N(1) + M(—1) = lim,_,, ,nH(x;) = 1. (This argument is closely related to Theo-
rem VIII of Doeblin (1940)).

" To complete the proof of Theorem 2 we have to find a sequence x; — + oo for
which lim, _, , lim sup, , , . H(xA\)/H(x)) = 0. This is where we use Drasin and
Shea’s result on Polya peaks. Let A, + oo, so for each n there is a sequence
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yi{(n) > + oo for which H(y,(n)A,)/ H(y,(n)) > Q(\,) as i > + oo. Thus there is a
subsequence i, for which, putting x, =y, (n), H(x,A,)/ H(x,) ~ QQA,) as n—
+ 0. (We are still assuming F & D,(2), so QA) >0 for A > 1) Let g(x) =
1/ H(x) and define p, > 0 by g(x,A,)/g(x,) = AP Then by Drasin and Shea (1972,
Theorem 1a(1.5)) (their assumption of the continuity of g being removable just as
occurs later in their paper) there is a sequence s, — + oo for which g(As,)/g(s,) >
(1 — 8 AP~ equivalently, H(As,)/ H(s,) < A7(1~%) /(1 — §,), when 1 <A <
a,, for some §, >0, ¢, > 0, a, > + o0. Since under the condition of Theorem 2
P. = [—log H(x,\,)/ H(x,)]/log A, = — log @\ ,)/log A,, + o(1) - p, say, where
p >0, we have limsup,_,  H(As,)/H(s,) < A™® when A > 1. Thus s, is a
sequence of the type required.

PrROOF OF THEOREM 3. Clearly F € D,(2) implies (ii) and (iii), and to prove the
converses we continue the argument of the second part of Theorem 2. Then if
F € D, but F & D,(2), we have from Theorem 1 that lim inf, ,,  H(xA)/ H(x) >
bA%~2 for A > 1, where b = a/(a + 1) > 0, so if T(\) is as in Theorem 2, then
T(\) > bA?~2 and — [PA2dT(A) = + oo, and the limit distribution has infinite
variance. Thus (ii) implies (i). Again the condition on H clearly means lim
Sup,_, o H(XA)/H(x) < b~'A\*"2forA < 1,s0 for A < 1,

lim sup,_, , 7% V(xA) < @~ lim sup,_, , [A2H(x\)/H(x,) < (ab)~ 'A%
—-0asA—-0+,
so 62 = 0 in Theorem 2, i.e., the limit law has zero normal component. Thus (iii)
implies (i).
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