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OPTIMAL STOPPING WITH SAMPLING COST: THE SECRETARY
PROBLEM

By THoMAS J. LORENZEN

General Motors Research Laboratories

A secretary problem is an optimal stopping problem based on relative
ranks. To the usual formulation of the secretary problem we add a cumulative
interview cost function A(-), no longer obtaining “cutoff point” rules. For an
appealing form of A(-) we examine the limiting results using the infinite
secretary problem. It is shown that the other appealing form of A(-) leads to
trivial limiting results. A large class of problems is considered and recursive
equations leading to the limiting solution are given. In particular we solve the
problem of minimizing expected rank with a linear interview cost function. An
approximation to the rank problem with fixed cost ¢ per interview is obtained
(for all values of ¢) through the solution of a single differential equation.

1. Introduction. A finite secretary problem is usually defined in the following way:
n candidates apply for a secretarial position. Some criterion is established to rank the
candidates from 1 (best) to n (worst) with no ties. The candidates arrive in a random
fashion and only their relative ranks are observed. On the basis of their observed relative
ranks and some loss function, each candidate is either hired (and the process stops) or
passed by. Passed candidates can never be recalled. If the (n — 1)st candidate is passed,
the last candidate must be selected.

To consider the limiting case (n — o), Gianini and Samuels (1976), following a
suggestion of Rubin (1966), defined an infinite secretary problem. Here an infinite number
of rankable candidates arrive at times that are i.i.d. (identically independently distributed)
uniform on [0, 1]. Again only relative ranks can be observed and there is no recall. Gianini
(1977) and more generally Lorenzen (1979) showed that the infinite problem is the limit of
the corresponding finite problems.

The formulation considered in this paper has a risk consisting of two parts, a loss
function q(-) based on absolute ranks and a cumulative interview cost function A,(-). Our
goal is to find the minimal risk and a stopping rule that attains this risk. A large class of
problems will be explicitely solved.

2. The finite problem. Let X(i) and Y(i) be the absolute and relative ranks of the
ith candidate to appear. Let 7 be a stopping rule on {1, 2, - . -, n} based on Y(i) and let V,,
= inf, E[q(X(7)) + hn(7)] be the minimal expected loss. Since at each time r we must
either accept the present candidate or take another observation, the backward induction
argument of Lindley (1961) applies and gives

(2.1) Cin—1)=n"" 3k [q(k) + hn(n)]
C(r—1) =r' Yo min[Qn(r, k) + Aa(r), C(r)]

where C(r) is the minimal going on cost at time r and

Qu(r, k) = E[¢(X(r)| Y(r) = k] =3 q()) <2__11><f—_ zi) / <:>

is the expected cost for stopping on a candidate of relative rank % at time r. Then the
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168 THOMAS J. LORENZEN

minimal risk is V,, = C(0) and the optimal stopping rule is to stop on the rth candidate
having relative rank £ if it is cheaper to do so than go on (i.e., if @,.(r, k) + h,(r) = C(r)).
Equivalently, and this is the form used throughout this paper, let I, = {r| @.(r, k) + h(r)
= C(r)}. The optimal rule is to stop the first time a candidate of relative rank % arrives in
I, for some k.

The difficulty comes when we let n — . We let ¢g(-) be an infinite nondecreasing
sequence and consider two natural forms for the loss function. The first is to define an
infinite nondecreasing sequence A(-) and let A,(i) = h(i) fori =1, - - -, n. The second is to
define an increasing function A(-) on [0, 1] and let A,.(i) = A(i/n). Strange as it may seem,
the limiting solution to the first is always trivial. Only the second form is interesting. (In
fact, we later use the second form to approximate the solution to the fixed cost per
interview problem A,(i) = ci for an arbitrary constant c.)

Consider the first form.

ProrosiTION 2.1. Ifh(1) < h(2) < ... is given and h,(i) = h(i), h(®) = lim A(i), g()
= lim q(i) and V* is the minimal risk for the no-cost problem, then
lim, ., V, = min[ V* + h(), g(®) + h(1)].
That is, in the limit, either take the first candidate and obtain a risk of g(«) + A(1) or

use the optimal no-cost policy paying the maximal interview cost and obtain a risk of V*
+ h(o).

Proor. The inequality lim sup V, < min[V* + h(x), g() + h(1)] follows from the
remark following the proposition. For the other inequality, first note that
(2.2) lim, .. @.(r, k) = g() for any fixed % and r.

Now let V,, 7., V¥ and 7} be the optimal risks and stopping rules for the secretary problem
with and without interview cost. Fix N and use a property of the no-cost policy to choose
n so large that 7t = N with probability one. Since @.(r, k) decreases in r and A.(r)
increases in r, we have

Vo= E[q(X(1,)) + h(7,)]

[@n(N, 1) + R(1)]P(r. = N) + E[q(X(r:)) I 1r,=m)

+ h(N)P(r, > N)

[@~(N, 1) + h(1)]P(r, = N) + [V} + h(N)]P(r, > N)
= min[@.(N, 1) + A(1), V} + h(N)]
— min[g(%) + A(1), V* + h(N)]

This holds for all N. [

v

v

The rest of the paper is concerned with the interesting case where A(-) is an increasing
function defined on [0, 1] and A.(i) = h(i/n). To obtain an heuristic limit we let r/n — x
and let

C(r) - f(x),
Qn(r, k) = Ri(x) = YZr q(l) (2__11>x”(1 —x)"* and
h,(r) — h(x).

If we rewrite (2.1) as a difference equation, divide each side by 1/n and let n — o we get
a differential equation of the form

(2.3) f(x) = 27 Y5 [f(x) — Re(x) — h(x)]*,  f(1) = g() + A(1).
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(Note for the no-cost problem A(x) = 0 and we get the differential equation obtained by
Mucci (1973) as the limit of the finite problems.)

3. The infinite problem. To verify that the differential equation (2.3) gives the
limiting solution of the finite problems we turn to the infinite secretary problem of Gianini
and Samuels (1976). Here we let f(x) be the minimal going on cost at time x, A(x) the
interview cost for observing the process up to time x and R.(x) the computed expected
cost for stopping on a candidate of relative rank % at time x.

THEOREM 3.1. If g(®) < o, h(l) < « and h(-) is continuous then the differential
equation (2.3) holds and V,, — f(0) the minimal risk for the infinite problem.

Proor. This is a simple application of Theorem 2.1 and Corollary 2 to Theorem 4.1 in
Lorenzen (1979). 0O

This is easily extendable to the case g(x) = . Undoubtedly even this can be
strengthened if 4(-) tends to infinity slowly enough but no proof is offered.

THEOREM 3.2. If h(1) < « then (2.3) again holds and furthermore V,, — f(0).

Proor. That (2.3) holds again follows from Theorem 2.1 in Lorenzen (1979). That V,
— f(0) can be seen by considering an intermediary process equivalent to the infinite
secretary problem where we are told whether a candidate is one of the n best or not. (This
is not a valid secretary problem.) We show the difference in minimal risk between this
process and the finite problem tends to zero and the lim sup of the minimal risk for this
process is bounded by f(0). The other inequality is established in Corollary 1 of Theorem
4.1 in Lorenzen (1979). O

The limit of the finite problem stopping rules (after normalizing to the unit interval) is
given by the island rule (a term first coined by Presman and Sonin (1972) for a similar
problem)

(3.1) I, = {x| Ru(x) + h(x) < f(x)}.

This is the optimal policy for the infinite problem; stop the first time a candidate of relative
rank k& arrives in I, for some k.

Unlike the no-cost problem, more than one island can exist. As an example consider the
rank problem ¢ (i) = i with 10 applicants. The algorithm in Chow, et al. (1964) gives I; =
{8, 9, 10} for the no-cost problem. If we let A1o(i) = 0 for i = 1, 2, 3 and A;o(i) = 6 for i =
4, ..., 10 equations (2.1) give I3 = {3, 8, 9, 10} which has two islands. For the infinite
problem similar results hold.

Two simplifying properties of the optimal procedure exist. The first is intuitive and is
suggested by the previous example; you will stop sooner with interview cost than without
interview cost. The second gives conditions under which the optimal procedure is a single
island rule.

ProrosITION 3.1. The optimal stopping rule will stop sooner with an interview cost
than without an interview cost.

ProOF. Let I} be the optimal policy for the no-cost problem and recall x in I} implies
inf,~; E[Ry(-(7)] = Ri(x). Then,

f(x) = infro; E[Ry( (1) + h(1)]
> inf,-. E[RY(,)(T)] + h(x)
= Ri(x) + h(x).
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Therefore x is in I;. A similar result holds for the finite case. 0

ProposITION 3.2. Suppose f(0) < R1(0) + h(0) (so the game is worth starting), q (k)
< q() for all k and h(-) is differentiable. Let

(3.2) Wilx) = 27" 31 [Rei(x) — Ri(x)] — ' (x).

If, for each k, W,(x) has at most one sign change, from + to —, then the optimal rule is
a single island rule. That is, I, = [Bs, 1] for some Bs.

Proor. If gu(x) = f(x) — Rr(x) — h(x) we can show gi(z) = Wy(z) for all z in I, and
&r(x) = 0 implies g% (x) = W,(x). Since gx(x) < 0 for x not in I and gx(x) > 0 for x in I,
more than one island would imply g%(z) < 0 for some z in I;. This would then contradict
our hypothesis. 0

4. A class of q()’s and h(+)’s. Let us consider the following class of secretary
problems.

q:t) =T+ 11— 1)/[T¢)-T@)], £=2,
h(x) = Y51 aix’, s arbitrary, a, = 0.

Mucci (1973) has shown Ry(x) = q:(M)x"¢. Since War(x) has the same sign as War(x) =
YHEige (M + 1) — g:(j) — Tit ia:x*"2 and the derivative of Wi (x) is negative for x > 0,
Wi has at most one sign change. We conclude Iy is a single island rule and let Ins = [ Bar,
1]. Following the procedure outlined in Mucci (1973), we obtain the recursive equations

(BM-H)_M Z}ZTI [Rar+1(Bar+1) — Ri(Bars1)]
Bum+1
= (Bu) ™I M [Ru(Br) — Ri(Bu)] — (M — 1) j y MR (y) dy.
Bm
Using the equalities ¥ 27" [Ra1(x) — Ri(x)] = [(M + &)/M]YX" [Ru(x) — Ri(x)] =
[(M + &)/M][(¢ — 1)/€1(M — 1)g:(M)x""* and substituting for Ry(-) gives

[(¢ = D/&ge(M) + B4 ¥ iqittin—1(Bu) ] frb1
[+ &/MILE - D/EgeM) + BTTTY iauuiy1(Baer) | ¥4

where u;(x) = x/(I + 1) for [ % —1 and u_,(x) = In(x).

The cutoff point for the no-cost problem (call it ap) is an upper bound for B
(Proposition 3.1) and is derived in Mucci (1973). For M > s (so that u;(x) < 0) a lower
bound on B is obtained by setting Ba+1 = 0 and B = 1 in the complicated expression
within brackets. Using the fact that 8; — 1 gives

) ) ) iaslt 1/(l+¢-1)
B = [liem <z +& “TU-DI+HE- 1>qs<l>> e

(4.1)

“2) BYM= [

1 1/(1+¢-1)
BM =am= H1=M (l—+-§>

These bounds squeeze together as M — . To obtain the solution we choose M,
compute the upper and lower bounds and use an iterative numerical technique to
successively solve backwards for By, - - -, 81, also obtaining upper and lower bounds. If
the bounds on B, are not sufficiently close, go back and start with a bigger M. When the
bounds on B; are sufficiently close, we compute V = f(0) = f(B8:1) = R1(B1) + h(B1), the
minimal risk. The B; themselves give the optimal policy.

As a particular case let us consider the rank problem (¢g(i) = i or £ = 2) with linear cost
h(x) = Kx. We solve the finite problem using (2.1) and the infinite problem using (4.1).
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Since [i: [1/(2 + 2)]7 = [1&: [/ (2 + 2)]/**" is of the order 1/n, a direct evaluation is
not feasible. Instead, the Euler-Maclaurin sum formula can be used to approximate the log
of the infinite product and decrease computational time. Minimal risks for the finite and
infinite problems are given in the next table.

Suppose we are interested in the limiting value for the rank problem where the cost per
interview is some fixed constant c. Since q(i) = i — « and h,(i) = ¢i — o, Proposition 2.1
proves V,, — o. Unfortunately it tells us nothing about the rate. To obtain this information
we approximate the finite problem by the infinite problem with K = cn. (This approxi-
mation is adequate as long as it is not optimal to select the first candidate. It will not be
optimal whenever ¢ < (0.088)(n + 1).) Letting V(x be the risk for that infinite problem, we
are interested in the rate at which Vix) — 0. The last column of Table 4.1 indicates
Vi) = 2.477K"* for K large.

PROPOSITION 4.1. For the rank problem with linear cost h(x) = Kx, lim V) /K"? =
g(0) = 2.477 where g(-) is defined on R* and satisfies

(4.3) g ) =x"132: [gx) — i/x — x]*, 8(x) < o0, g(o0) = 0.

PrOOF. Let fx(x) satisfy fi(x) = x7' ¥ [fx(x) — i/x — Kx]", fx(-) finite on [0, 1) and
f(1) = . Define gx(x) on [0, K'*] by gx(x) = fx(x/K"?)/K"?. Then gk(-) satisfies
gk(x) = x7' Y [gx(x) — i/x — x]*, gxk(-) finite on [0, K"/?) and gx(K"?) = . Since the
gk () satisfy the same differential equation, differing only at the right endpoint, it is easy
to see gx(z) is decreasing in K for all K = K > 2% Thus, on a fixed interval [0, 2] the
functions gx(-), K > K, are bounded which, by the form of the differential equation, shows
they are equi-Lipschitzian and therefore equicontinuous. This shows gx(x) tends to some
function g(x), gk(x) — g'(x) and g(-) satisfies (4.3). Since z was arbitrary this proves the
proposition. Call g(-) the infinite infinite problem and solve this the same way we solved
the infinite problem. To seven decimal places we obtain g(0) = 2.4768709. [

To get an estimate of the optimal procedure for the finite problem we use the same
trick. Compute yi, vz, --- the “cutoff points” for the infinite infinite problem and
approximate the BX (“cutoff points” for the infinite problem) by 8 = y,/K"? Then
approximate the finite procedure by I} = {nBY, ..., n}. Thus for n large V, behaves like
2.477 (nc)? and the cutoff points are approximately equal to ny;/(nc)"/? = n'/?y;/c"*. To
further aid in the approximation, the first 10 y, are given in the next table.

As an example, suppose there are 100 applicants and the cost per interview is ¢ = 0.1.
(Note c is small enough to make the approximation valid.) The exact result from Table 4.1
is V, = 7.855. The approximation gives V, = 7.833. The approximation to the optimal
strategy is equally as good.

TABLE 4.1
Minimal costs for the linear cost rank problem.

K\n 10 100 1000 10000 o0
0 2.5579 3.6032 3.8324 3.8649 3.8695
1 3.1415 4.1189 4.3320 4.3619 4.3661
5 49110 5.9592 6.1505 6.1641 6.1674
10 6.5000* 7.8553 8.0489 8.0716 8.0745
100 15.5000* 23.0564 24.6013 24.7520 24.7688
500 55.5000* 46.0512 54.5161 55.2973 55.3845
1000 105.5000* 60.5000* 76.5554 78.1496 78.3255
5000 505.5000* 100.5000* 166.0788 174.2509 175.1412
10000 1005.5000* 150.5000* 229.4733 245.9021 247.6871

* Select first candidate
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TABLE 4.2
Cutoff points for the infinite infinite problem.

Y1 Ye Y3 Ya Ys Ye Y7 Y8 Yo Y10
0.5079 1.1621 1.8439  2.5361 3.2332 39332 46349 53378 6.0415  6.7459
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