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CONDITIONAL DISTRIBUTIONS AND ORTHOGONAL MEASURES

By JouN P. BurcgEess' aAND R. DaNIEL MAULDIN?

Princeton University and North Texas State University

It is shown that every family of mutually singular measures in a condi-
tional probability distribution is countable or else there is a perfect set of
measures which form a strongly orthogonal family. THEOREM: Let X and Y
be complete separable metric spaces and p. a conditional probability distri-
bution on X X B(Y). Then either (1) there is a nonempty compact perfect
subset P of X and a Borel subset D of X X Y so that if x and y are distinct
elements of P, then u(x, D.) = 1, u(y, D:) = 0, and D. N D, = ¢ or else (2) if
K is a subset of X so that {u(x, -):x € K} is a pairwise orthogonal family,
then K is countable.

L. Introduction. A family ./ of measures, defined on a Borel field & of subsets of a
space X, is said to be pairwise orthogonal (mutually singular) if, given A, p € .# with A #
u, there exist Hy, € 4 such that A(H),) = 0 = w(X — H,,). Such a family will be called
uniformly orthogonal provided there is, for each A\ € ., a set Hy € % such that, for each
pwE M- {\}, MH)) =0=AX — H). In [4], D. Maharam proved the following theorem
(assuming the continuum hypothesis holds):

THEOREM. (CH) There exists an uncountable family # of pairwise orthogonal Borel
probability measures on the unit square I? such that no uncountable subset of M is
uniformly orthogonal.

Maharam has raised the following question:

Is there a function yu from I X #(I?) so that (1) for each x in I, u(x, -) is a probability
measure on #(I%), (2) for each E € #(I?), u(-, E) is Borel measurable, (3) if x, y € I and
X # y, then u(x, -) and p(y, -) are pairwise orthogonal and (4) no uncountable subset of
M = {u(x, -):x € I'} is uniformly orthogonal?

In this note we give a negative solution to this problem in Theorem 1. We then
strengthen Theorem 1 in Theorem 4 by demonstrating that the property of being a family
of mutually singular measures in a conditional distribution is “Cantorian.” However, a
statistically nonnegligible version of our theorem stated later as a problem is left unsolved,

Our setting will be a follows.

Let X and Y be complete separable metric spaces. Let #(Y) denote the o-algebra of
Borel subsets of Y. Let u be a conditional probability distribution on X X #(Y). This
means that for each x in X, u(x, +) is a probability measure on %#(Y) and for each E €
B(Y), u(., E) is Borel measurable with respect to Z(X). If EC X X Y and x € X, then E,
= { y:(x, y) € E}. The set of all positive integers will be denoted by N. The set of all finite
sequences of positive integers will be denoted by ‘Seq. By {0, 1}* is meant the set of all
finite sequences of zeros and ones. We set J = N" and if s = (sy, - -, s») € Seq, then J (s)
= {0 € Jio|n =s}.

We shall strengthen Theorem 1 by demonstrating that the property of being a family
of mutually singular measures in a conditional distribution is “Cantorian” in the following
sense:
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THEOREM 4. Let p be a conditional probability distribution on X X #(Y). Then
either (1) there is a nonempty compact perfect subset P of X and a Borel subset D of X
X Y so that if x and y are distinct elements of P, then u(x, D) =1, u(y, Dz) =0 and D,
N D, = ¢ or else (2) if K is a subset of X so that {u(x, -):x € K} is a pairwise orthogonal
family, then K is countable.

II. Results. We now turn to the theorems and proofs.

THEOREM 1. Let p be a conditional probability distribution on X X #(Y) such that
if x and y are distinct points of X, then p(x, -) and p(y, -) are orthogonal. Then there is
an F, subset B of X X Y such that T = nx(B) is a homeomorph of the Cantor set and if
x and y are distinct elements of T, then p(y, B:) = 0, p(x, B;) = 1 and B. N B, = ¢.

Proor. Let {U(n)}2; be a base for the topology of Y. For each s = (s1,--+, sn) €
Seq, let V(s) = U{U(s;): i = 1,- -+, n}. For each s, g = p(-, V(s)) and f; = p(-, V(s)) are
Borel measurable maps from X into [0, 1]. Let P be a nonempty compact perfect subset of
X so that g;| P and f;| P are continuous for all s.

We suspend the proof of the theorem in order to prove the following lemma.

LemMa. For each e = {(ey,---, ex) € {0, 1}* there is a nonempty open subset T (e) of
P and a finite sequence, t(e), of positive integers such that if e, € are distinct elements of
{0, 1}", then

1) ifx € T(e),ux, V(r(e)) >1—-27"

2) T(e) NT(e) = ¢, = V(rle)) N V(r(¢'))
3) ify e T(e), then u(y, V(r(e))) <2
4) T(exi) C T(e), fori=0,1.

5) diam (T(e)) <27

ProOF OF LEMMA. Let xo = x((0)) and x; = x((1)) be distinct elements of P. Since
(%o, +) and g (x1, -) are mutually singular, there are pairwise disjoint compact sets Ko and
K so that p(xo, Ko) > %, u(x1, K1) > %, p(xo, K1) < %, u(x1, Ko) < %. Let 7((0)) and
7((1;8) be finite sequences of positive integers such that V(7(0)) N V(r( 1)) = ¢, V(7(1))
D K;, and p(x, V(7(i'))) < 271 where i’ = i — 1(mod 2). Let 7'(i) be open sets relative to
P such that for i =0, 1:

1) x((i)) € T((i))

2) diam T((i)) < 2™

3) TO)NTHKL))=2¢

4) if x € T((i)), plx, V(r((i)))) > 27" and p(x, V(7(i')) ) < 27

We continue the induction process one more level for illustrative purposes. Choose
distinct elements x((0, 0)) and x({0, 1)) of T((0)) and distinct elements x((1, 0)) and
x((1, 1)) of T({1)). Choose pairwise disjoint compact sets K (e) containing x(e), for e
€{0, 1}2 so that u(x(e), K(e)) >1 — 2 2and if e # ¢, u(x(e), K(e')) < 272 Next, let 7(e), for
e €{0, 1}* be such that V(r(e)) D K(e) and if ¢ # e, p(x(e'), V(r(e))) < 272 and
V(r(e)) N V(r(e')) = ¢. Let T'(e), for e €0, 1)2, be open sets relative to P such that

1) x(e) € T(e) CT(e) C T(e|1)

2) diam (T'(e)) < 272

3) T NT(e)=¢ifere

4) if x € T(e) and e # ¢/, p(x, V(r(e))) > 1 — 272 and p(x, V(r(e')) ) <272
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We now complete the preof of the theorem.
For each n, let B, = U {T'(e) X V(7(e)) :e € {0, 1}"}. Let

B =Uy-;1 N5—s B.

Clearly, B is an F, subset of X X Y and 7nx(B) =T = N%.; U{7(e) : e€{0, 1}"}.

If x € T, then there is a unique sequence k. € {0, 1}" so that for each n, x € T'(kx|n).
This of course defines a homeomorphism of {0, 1} " onto 7. Also, for each positive integer
P, (%, Bpx) = p(x, V(r(kx| p))) = p(x, V(r(k:|p))) > 1 — 27". So, for each n,

(%, (NZp B)x) =1 — 27D,

Thus,
w(x,B;) =1, foreach x€ T.

If x and y are distinct elements of 7, then there is a positive integer % so that if p > &,
kx| P # k| p. This means p(y, Byx) < 277 and Bp: N By, = ¢, for all p > k. It follows from
this that B, N B, = ¢ and u(y, B,) = 0. O

Let us note that in case X = Y = I and X is Lebesgue measure on I, the perfect set P
given by the preceding theorem may be statistically negligible. We pose the following
problem. .

PROBLEM. Let » be an atomless probability measure on #(I) and p a conditional
probability distribution on I X %(I) of pairwise orthogonal measures. Is there a subset B
of I X I and a perfect subset T of I satisfying the conclusion of our theorem so that »(T')
> 0? (Added in proof. This problem has been solved negatively by R. J. Gardner [71)

The goal of the remainder of this paper is to obtain a strengthening of Theorem 1,
Theorem 4. Theorem 4 states that the property of mutually singular measures is “Canto-
rian.” In order to prove this result, we must first determine the descriptive character of the
set of mutually singular measure. This will lead to an apparently new result in descriptive
set theory, Theorem 3.

First, let us make the following convention: if X is a set and Z C X, then Z+Z = (Z X Z)
— A, where A = {(x, x):x € X}.

THEOREM 2. Let X be a compact metric space and S the space of all probability
measures provided with the weak topology. Let R = {(u, v) € S X S: y and v are mutually
singular}. Then R is a G; subset of S+S.

Proor. Let {U(n)}7-1 be a base for the topology of X. For each s = (s, . . ., s,) € Seq,
let V(s) =U {U(s):i=1,...,n}. For each (n, s) € N X Seq, let T'(n, s) = {u € S: w(V(s))
> 1 — 27"}. Since each set T'(n, s) is open in S, it suffices to show that

(%) R =N, Usteseq {T'(n, 8) X T'(n, O): V()N V() =¢}.

If (4, v) € R, then for each n, there are disjoint compact sets K and L such that p(K) > 1
—2"and »(L) >1-27"

Thus, there are elements s and ¢ of Seq so that K C V(s), L C V(¢) and V(s) N V() =
¢. This implies R is a subset of the right hand side of equation (*).

Suppose (1, ») is an element of the left hand side of (*). For each n, let s, and ¢, be
elements of Seq so that V(s.) N V(t,) = ¢, n(V(s,)) > 1 — 2" and »(V(£,)) > 1 — 27" Let
A = Ny [Un=n V(s,)]. It is easy to check that u(4) = 1 and »(4) = 0. O

We note that Theorem 2 remains true if X is only assumed to be a complete separable
metric space (= Polish space).

Let us recall that a Suslin space is a topological space which is a continuous image of a
G subset of the Cantor set [6].
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THEOREM 3. Let X be a Suslin space and R a Gs subset of X+X. If there is an
uncountable subset Y of X so that Y*Y C R, then there is a nonempty compact perfect
subset @ of X so that @*Q C R.

We shall give two proofs for this theorem. First, we reduce the problem.

Let G be a G; subset of 2~ and f a continuous map of G onto X. Let S = (f X f)"'(R).
Then Sis a G subset of 2V x 2% and clearly there is an uncountable subset Z of 2" so that
Z+Z C S. Notice that is now suffices to demonstrate the existence of a nonempty compact
perfect subset P of G so that PP C S, since @ = f(P) satisfies the conclusion of the
theorem (f is one-to-one on Q).

Proor. I Let A = {M C 2":M is closed, M C G and M+M C S}. It is easy to check
that A is an analytic subset of the space of closed subsets of 2". For each countable ordinal
a, we can find a compact set M lying in Z whose Cantor-Bendixson derived set order is at
least . Thus, some closed uncountable (and therefore some perfect) subset of 2¥ must be
an element of A [3]. 0

Proor II. Fix a complete metric p on 2" so that the diameter of 2% = 1. Let # be a
countable field of clopen sets forming a basis for 2”. For nonempty U, V, W € %, let (V,
W) < U denote that: (i) VN W= ¢; (i) VU W C U; and (iii) max(p-diam V, p-diam W)
< Y%(p-diam U). Represent S = N S, with each S, open. Discarding a countable set if need
be, Z may be assumed dense-in-itself. Pick distinct zo, 21 € Z. We can find (U, U)) < 2N
with 2; € U; and U; X U; C S; for 0 < i, j = 1 with i # j. Pick distinct 20, 21 € Z N U We
can find (U, Ui1) < U; with z; € Uy and Uy X Up, C S1 N S; for 0 < i, /, k, /= 1 with
@i, J) # (k, ¢). Iterate. It suffices to set P = Npen Usezn Us. a0

THEOREM 4. Let p be a conditional probability distribution on X X %(Y). Then
either (1) there is a nonempty compact perfect subset C of X and a Borel subset D of
X X Y so that if x and y are distinct elements of C, then p(x, D;) = 1, u(y, D;) =0 and
D. N D, = ¢ or else (2) if K is a subset of X so that {u(x, -):x € K} is a pairwise
orthogonal family, then K is countable.

Proor. First, note that Theorem 4 holds if either X or Y is countable. Second, if X
and Y are both uncountable, then let f and g be Borel isomorphisms of 2" onto X and Y
respectively. Let »(x, B) = u(f (x), g(B)), for (x, B) € 2~ X #(2"). Then v is a conditional
probability distribution on 2" X #(2V).

Let us assume (2) does not hold. Let {U,}%-1 be a countable field of compact open sets
forming a basis for 2". Let W = [0, 1]". Define a Borel measurable map d:2" — W by
letting d(x) = (v(x, Uy), v(x, Us), ---). Define a G; binary relation S on W by letting (w;,
w,) € Sifand only if V£ € N3 n € N[w:(n) > 1 — 27 and wa(n) < 27*]. Notice that the
measures »(x, -) and »(y, -) are orthogonal if and only if (d(x), d(y)) € S.

Now, let X = d(sV),let R = S N (X X X) and Y = d(H). Applying Theorem 3, we
obtain a nonempty compact perfect set @ so that @ *@ C R. Let B=d (). Then Bis an
uncountable Borel subset of 2" so that if x and y are elements of B, then either »(x, -) and
v(y, -) are identical or orthogonal.

Now, let X; be the graph of d restricted to B so that X; C 2V x W. Let ((x, w), (3, 2))
€ R, C X;+X, if and only if w # z. Let Y be a subset of B so that d(z) = € and d is one-to-
one on Z. Applying Theorem 3, we obtain a perfect set @, C X so that @+*@: C R;. Let P
be the projection of ; into 2”. Now, apply Theorem 1. 0

Finally, we would like to point out that Theorem 3 is the best possible in the following
sense. )
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ExaMPLE. There is an F, subset R of 2“*2“ and an uncountable subset Y of 2 so that
Y+*Y C R and yet there is no nonempty perfect subset P of 2 so that PP C R.

This may be seen as follows. Define the binary relation <r by x <r y provided “x is
recursive in y.” Abbreviate

x=ry forx<ryandy=rx
x<ry forx<ryandnoty=rx
xRry forx#yand (x=<ryory=<rx).

It is known that Rz is an F, subset of 2¢ X 2“, It is also known that there is an uncountable
sequence Y = {y,:a < wi} such that y, <rys whenever a < B. (This follows from the facts
that (i) V x 3 y[x <r y]; and (ii) V sequence {x,:n € w} Ay Vn [x, <ry].)

But there cannot exist a nonempty perfect set P such that P+P C R. For otherwise a
theorem of Galvin [2, 3] would tell us that there is a nonempty perfect @ C P for which
one of the following holds (where =< is the lexicographic order on 2¢):

D VxyeEQx=ry]
{VxyeQx<y—x<ry]
(i) Vx,y EQIx<y—y<rx]

All three are impossible, since for any x, {y:y <r x} is countable.
A proof of Galvin’s theorem is given in [1].
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