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GENERALIZED RANDOM WALK IN A RANDOM ENVIRONMENT

By STEVEN A. KALIKOW

Stanford University

Random Walk in a Random Environment, a process where a randomly
chosen transition probability is assigned to each point, has been exhaustively
studied in the one dimensional nearest neighbor case but is much more
difficult in any more general case. This paper develops crude techniques for
handling transience results and zero-one laws in a generalized set up.

1. Introduction. In Section 1, all notation will be defined only in special cases and
only heuristically. It will be reintroduced rigorously, in a general setting, in Section 2.

Consider a nearest neighbor random walk on Z where at each time the process moves
to the left with probability %4 and to the right with probability %. We abbreviate this
probability law by writing % < %. A probability law such as %4 < % is called an
environment. If we say that 5 has environment %5 < 2%, we mean that for any n, if the
process is at 5 at time n, then at time n + 1, it will be at 4 with probability % and at 6 with
probability %. Random walk can be defined to be a process in which each element of Z has
the same environment. Random Walk in a Random Environment, abbreviated R.W.LR.E.,
is a process in which the environment of each point of Z is chosen randomly, in an i.i.d.
(independent, identically distributed) manner. Once the environments are chosen, they
are held fixed through time, and the process starts at 0 and takes place on these
environments. This definition can be easily extended to a nearest neighbor process on Z>
where an environment is

p,
P < T > P;

|

P,

with P; + P, + P3 + P, = 1, or to a process which is not nearest neighbor.

The one dimensional nearest neighbor case has been exhaustively studied in [3], [5], [6]
and [7] but in the more general case virtually nothing was known. In particular, example
2 (below) was previously unknown.

ExaMPLE 1. Consider the one dimensional case where the environment at each
element of Z is taken to be .001 « .999 with probability .999, and .501 < .499 with
probability .001. We denote this model in the following fashion:

g1 =001 999, g =501« .499,

p({g1}) =999,  u({ge}) = .001

Then it is easily proved that the process is transient; that it moves to the right with
probability 1.

ExaMPLE 2. Now consider the two dimensional nearest neighbor case, where
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v v
_ 001 999 _ 501 1 499
&= 2 &g 2
Vi Vi

p({g}) =999, u({g:}) =.001.

It seems still obvious, but is difficult to prove, that this process is transient and moves to
the right.

Theorem 1 establishes sufficient conditions for an R.W.LR.E. {X,},.=0 on a countable
abelian group, for #(X,) to approach +o; here ¢ denotes a real-valued linear functional
(i.e., Ax + y) = Ax) + Ay) for x, y in the group). In particular, this theorem handles
example 2. The generalization allows for unbounded step sizes. It should be noted that this
provides new information in the one dimensional case because even in that case R.W.LR.E.
is unexplored when step sizes exceed 1.

REMARK 1. Actually, none of the structure of an abelian group, neither associativity,
commutativity, or the existence of an inverse, is actually used in the proofs. All proofs go
through word for word if we eliminate the word “abelian” and, indeed, with minor changes

we could prove all results for a countable set endowed with an arbitrary binary relation.
However, it is notationally simpler to do everything on an abelian group. O

Generalizing example 2, consider the two dimensional case where

bl bZ
81 = cﬁ——[——»al, &2 = Czp__I._,az
d: ds

v({&}) =p, p({g})=1-p
where0<p<l,ai+bi+ci+di=1=as+ b+ c; + da,

ai, b1, C1, d1, Qaz, bz, Ca, dz, >0,a;>c1, a<Ca.

We will show the following result for this example:

COROLLARY TO THEOREM 1. If
plar — 1) > ma <a1 b a dl)

(1= p)(c; — as) a’ by ¢’ d;

then the process moves to the right (i.e., the first coordinate approaches ) with probability
1.

Although the conclusion of example 2 seems obvious, none of the previous techniques
seem to handle it. Harmonic functions for X,,, which can be easily computed in dimension
1, cannot be computed here. The problem is to show that the process does not somehow
‘seek out’ the bad environments. We do this by considering a fixed vector v € Z?, fixing the
environment off that vector, and bounding the maximum effect that a change of environ-
ment on v can have on how often the process visits v. Using this technique, we construct
a certain average Markov chain which has probabiity laws similar to the R.W.LR.E. itself,
and which has a drift to the right at each point.

In Section 5, under very restrictive conditions, a powerful zero-one law is proved.
However, if those conditions are relaxed, most zero-one conjectures are still unsolved. Here
are some problems which remain open.

Problem 1. When the reader reads my proof of Theorem 1, it will become clear that
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the techniques used in the proof are so crude that the result is probably far from optimal.
Indeed, in the one dimensional nearest neighbor case, the problem is completely settled
and the conditions of Theorem 1 for transience, at least in that case, are known to be much
worse than necessary. In cases other than the one dimensional case, nothing is known
except Theorem 1. One such case is the case of the corollary to Theorem 1 which has
already been stated. Here, for example, the reader can easily construct examples where
the conditions of the corollary are not met and where it nonetheless seems obvious that
the process is transient and moves to the right. Can Theorem 1, or at least the corollary to
Theorem 1, be improved?

Problem 2. In the two dimensional case, consider the event that the x-coordinate
approaches . Need this event have probability either zero or one?

Problem 3. Is every 3-dimensional R.W.LR.E. transient?

Problem 4. Let0<p <%,

Ya Va
g1=%_P——I—'Pa g2=P¢—I——-1/2_P
Ya Ya

pr({g}) =pr({g:}) =%

Is this R.W.LR.E. recurrent? For that matter, can any reasonable criterion for recurrence
be established?

2. Statement of Theorem 1.

DEFINITION 1. Random Walk in a Random Environment (RW.ILR.E.).
N are the nonnegative integers.
C is a countable abelian group (e.g., Z*).
0 is the zero element of C.

Q = C". Elements of © are written {X,}.c~ where each X, € C. & is the standard o-
algebra on £ (generated by cylinders). G is the collection of all probability measures on C.
Hence, for g € G, Yoecg8(v) = 1.8 = G°. Elements s of S are called environments and are
written s = {s,}sec where s, € G for all v. Hence Z, ¢ s,(v1) = 1. To each environment s
is associated a measure P, on £ which makes {X,} into a Markov chain with stationary
transition probabilities;

P.(Xo=0) =1, Py(Xps1 =0 + 01| X = 0) = 8,(1), v, i € C.

E, is the expectation operator corresponding to P;. p is a probability measure on G (here
we presume the standard o-algebra on G, the borel sets when G is given the topology of
weak convergence). e is an S-valued random variable such that {e,}.cc are ii.d. G-valued
with common probability distribution u. Hence P, is a random measure on (2, &/). e is
called a random environment and, for v € C, e, is called the random environment at v. For
each A € o/, let P(A) = E(P.(A)).

The process {X,}.e~ under probability law P is called a Random Walk in a Random
Environment (R.W.LR.E.). RW.LR.E. will also be used to refer to P itself.

E will be used ambiguously to refer to either the expectation operator corresponding to
the probability law of e or to the expectation operator corresponding to P. Hence, for any
o/ measurable random variable X, E(X) = E(E.(X)). For s € S, P,(v1, v:) will denote
8y, (2 — v1) so that Ps(v1, v2) = Ps(Xn+1 = U2| Xs = v1) and Pe(v1, v2) = €y, (2 — v1).
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THEOREM 1. Let ¢ be a real valued linear functional on C. Suppose that

a) There exists a positive real function H such that
i) [HQA) d\ <,
i) Ypecico>n &) = HQA) for all A >0

with p probability 1. (Recall that p is a probability measure picking g from G.)

b) For any v, and v, in C where v; # vs, there exists e > 0 such that P(p.(after time 0,
{X.} hits v, before v3) > &) =1

(i.e., for almost every choice of e, the p. Markov chain has more than  probability that
the first time after time 0 that X, hits v, precedes the first time after time 0 that X, hits v,.

The following notation will be used in the statement of condition c. Suppose fi,f, €
RC. Define f:-f, by

hefe=%, . WfW).
c) Let F={f€[0,1]°f(v) # 0 for all v %0 }.

] 1 T (tg
lnfe —d, —_— 0
fe F(j 7z M(g)> ff-g du(g) >

lim,,. AX,) = « with probability 1.

Under these conditions

Note that, by translation invariance, condition b implies that for every vi, vz, vs, n,
where v; # v3, there exists g > 0 such that, for almost every e, if the process is at v; at time
n, there is P, probability of more than ¢, that, after time n, it will hit v, before vs.

It should be noticed that condition b is not satisfied in the one dimensional nearest
neighbor case. It would be possible to weaken condition b slightly in order to handle this
case but the resulting statement would be complicated to state and the proof of the
theorem would become more messy. Furthermore, the one dimensional nearest neighbor
case has already been completely settled and the purpose of this paper is to deal with the
other cases.

Condition c¢ says that certain weighted averages of I(v) are positive. The reader who
wishes a better understanding of this formula should skip ahead and read the proof of the
corollary to Theorem 1, which works out the meaning of this condition in the special case
where the conditions of that corollary hold.

3. A Markov Chain. Section 3 develops a process which is used in the proof of
Theorem 1. Note that R.W.LR.E. is not itself a Markov chain. Definition 2 defines a
measure P which does make {X.} into a Markov chain and is closely related to the
R.W.LR.E. measure P. We assume the notation of Definition 1. Recall that Py(v, vs) =
(s,;, — v1). In this section we presume {X,}, P is an R.W.LR.E. obeying condition b of
Theorem 1.

DEFINITION 2. Markov chain corresponding to P, 6.

Let 6 C C — {0}, 0  ¢.

7 = least n such that X,, € 6, « if none exists.
Forve C, R(v) = #{m,0=m =< 7 and X,, = v}.
D= {veC: P(R(v) >0)>0)}.

IL(v) = E(R(v)),11(v) = E(IL(v)), v € C.

Note that, for v € C, v € D iff1(v) > 0. Note also that by condition b of Theorem 1,
there exists g > 0, such that for almost every choice of e, whenever the P, Markov chain
hits v it has more the & P. probability of hitting 6 by the next time it hits v. Therefore,
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under P., conditioned on the event R (v) = 1, R(v) — 1 is geometrically distributed with
success probability less than 1 — ¢ and hence has expectation less than 1/¢o. It follows
that II(v) = E(P.R(v)) <1+ 1/eo < o0,

13(01, l)z) = E(ne(vl) Pe(vl, UZ))/ﬁ(lh), n€D-— 0, v € C.
P, vs) = 8,,, i ED NG

Note that, if v; € D, P(v1, vs) > 0, then v, € D because I1.(v1) P.(vy, vs) < IL.(vs). It is
immediate that

Yoen P(v1,v) =1,0< P(v, v2) <1, v1, v € D.

Iiet P be the probability measure on DV C £ which makes {X,} into a Markov chain with
P(X, =0) =1 and stationary transition probabilities

P(Xpe1 = 02| Xn = v1) = P(v1, v2), 11, 12 E D, n E N.
E is the expectation operator corresponding to P.
P is called the Markov chain corresponding to P, 6.
ProposITION 1. If
(1) Pr<w) =1,
then, for every v € 0, BP(X,=v) = P(X,=v) and hence P(r < ») = 1.

Proor. Forv € C,

(2) NI(v) = EIL(v) = E(E.R(v)) = ER(v).
Easy Markov chain arguments give

IL(v1) = Yo Pe{ X, = v1, 7= 1} = 80,6 + Yom1 Jwec—-s Pef{ Xn
3) =u,Xp=viT7=n— 1} = 8,6+ Yvec-o [1(v) Pe(v, v1).
Thus

Yoen-s L) P(, v1) + 8,,6 = Yoep-6 E (IL(v) Pe(v, v1) + 85,6)
4) = Yoec-g E (IL(v) Pe(v, v1) + 84,6)

= EIL(v)) = fI(v)), v: € D.

The first equality follows from the definition of P.
For all v; € D, define 7,(v), n =0, 1, - - - by induction as follows:

7o(U1) = 8u,6
Fns1(V1) = Toen-o 72(0) P, 01) + 80,6
Then
#(v) = E(#{m: 0 < m < min(n, 7) and X, = v}.

Consequently,

lim, .. #2(v) = E(R(v)), vED.
Furthermore, by (4) and induction on n,

Fa(v) = I (v) for all n.

Thus
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(5) ERw)=MN(w), veD.

Note that R (v) is the indicator function of X: = v for v € 4. Thus v € 0 implies P(X, = v)
= ER(v) and P(X, = v) = E(R(v)). (5) and (2) give

(6) PX,=v)=P(X.=v), vEDNAG.
By (1)
Yoenns P(X, =) = 1= Suepns P(X, = v).
Hence by (6)
Yvepns P(X. =v) =1
P(X,=v)=P(X.,=v), veDNS§
P(X,=v)=0=P(X,=v), veEO-D. 0O

4. Proof of Theorem 1 and Corollary. For any positive real M, let 0, be the set of
all v € C such that | /(v)| > M and let @, be the set of all v € C such that £(v) > M or
£(v) < 0. Let 77 and 7ar be the hitting times of 6 and @, respectively. Let

Ay={wEQty<ow and 4AX,)>M)}
By={weEQ: 7yu<x and «AX:,)>M}.
We will show
limpso P(Ap) =1
limase P(Bu) > 0.

This implies that lim sup, .. #(X,) = « with probability 1 and that #(X,) = 0 for all n
with positive probability. These two results in turn imply lim, ... 4(X,) = « by a proof
analogous to the proof of Theorem 3. The idea is that since lim sup,_.. £ X,) = o, AX,)
becomes higher than it has ever been before infinitely often, and each time it does so it has
a probability p of never dropping below its new height, where p = P (X, > 0 for all n).
Consequently, it infinitely often reaches new heights approaching « and infinitely many of
those times it never again drops below its new height. For details of this technique see the
proof of Theorem 3.

Thus we need only establish (7). Fix M, and let P, P be the Markov chains corresponding
to P, 6y and P, @y, respectively, let 7 = 73 and 7 = 7as. By Proposition 1, if we can
establish

(8) Pr<w)=1 P(F<w)=1,
then P(Ax) = P(Ax), P(By) = B(Ba). Thus (7) will follow if we can establish (8) and

(9) For every & > 0 there exists M such that the P process defined in terms of M satisfies
P(Ay)>1- b;, there exists § > 0 such that, for all M, the P process defined in terms
of M satisfies P (By) > 6.

(M

From this point onward we will speak only of the P process and not of the P process.
The point is that, for every statement to be made of the P process, the corresponding
statement for the P process (where all notation of Definition 2 defined in terms of P, 0y is
replaced by the corresponding notation defined in terms of P, ®)s) can be made and proved
with the exact same proof. Here we assume all notation of Definition 2 for the P process.

To conclude, we now establish (8) and (9) by demonstrating that #(X,) for the b process
has a positive drift. From Condition a of Theorem 1 and the definition of P we have for X,
€ D — Oy and for all A > 0:
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(10) ﬁ(l AXns1) — AXR)| >N X)) = HQA)
where [§H(A)dA < » and H does not depend on M. Lev
1 ! (tg
¢ = inf] —d()) — du(g).
fEF<ff.g uig fg (¢4

Then ¢ > 0 by condition ¢ and ¢ does not depend on M. We will show that for any v, € D
- 0M:
11) E(AXni) =8 X0) | Xn = 1) > .
The proof that (10) and (11) establish (8) and (9) follows from Lemma 1 of [4] and is left
to the appendix.

REMARK 3. The heuristic idea of the proof of (11) is as follows. Note that E is a certain
average of expectations with respect to P;, and that

E (A Xps1)—AXn)| X = V)

can be negative for certain environments s. However, it will turn out that if we fix the
environment off v and average only over the value of the environment at v, then the
conditional expectation of £(X,+1)—#(X,) becomes positive. The technique is to express
I1,(v) in terms of quantities which depend only on the environment off v.

Proor oF (11). Fors €S, vi € C, let

fo(v1) = Ps({X,.} hits v; for some n with0 = n < ).
For any no € N, v, v2 € C, let
fi(v1, v2) = Py(X,, # v1 for all n € (no, 7]| Xngr1 = U1 + U2, 1o < 7).

Note that f,(v1, 0) = 0 for any v; € C, and that by the Markov property, f;(v1, v2) does not
depend on n,. Note also that f;(v1) and f.(v1, v2) do not depend ons,,, but only on {s,:v #
v1}, because s,, only influences the probabilities of paths which at some time exit from v,
and f.(v1), f.(v1, v2) are both sums of probabilities of finite paths which never exit from v;.
For s € S, v, v € C, recall that s,(v1) = Ps(v, v + v1) (see Definition 1). If at a given time
no before 7, we know the process to be at vi, the P; probability that it will not return to v:
before 7 is

ZUZEC Sv, (UZ)fS(vly 02)-

Under P;, R(v) = 1 with probability f;(v) and for v & 6, conditioned on the event R (v)
=1, R(v) — 1 is geometrically distributed with failure probability ¥,cc s.(v1) fs(v, v1).
Thus, for v & 6,

(12) IL(v) = fi(v)/ Yv,ec su(v1) fi(v, L1).
For v € D we get
E(AXps1) — 4X2)| X = V) = ToecPv, v + v1)£(01)
(13) = Yu.ecE (4v)IL(v) Pe(v, v + v1))/E (IL(v))
= (ZuecE (Av)IL(v)e,(v1)))/ E (IL(v)).
By (12) we get
YoecE (Av)IL(v)e,(v))
= YecE (dvi)es(v1) fo(V)/ Tuec e(v1) (v, v1))

(14)
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E(E(fe(v) Tuec (e(v1)(v1))/ Tuec (es(v1) £(v, v1))) | {e,:01 # v})
E([(f(v) Tvec 8(v1) A1)/ Fuec 8(v1) fe(v, 11)) dp(g))

The last equality holds because e, is distributed with distribution p and is independent
of {ey,:v1 # v} while fo(v), f.(v, v1) depend only on{e,:v1 # v}.
By similar reasoning

(15) E (IL(v)) = EJ (fe(v)/Tvec 1) fe(v, 1)) du(g).

With F as in condition ¢ of Theorem 1, and f(-) defined by f(v:) = f:(v, v1) for any fixed
v, s, we have f € F for almost all s by condition b of Theorem 1. Hence for almost all
choices of e

1
(jﬂ(v)/zwec &(v1) fe(v, v1) d#(é’)) f(v) Yvec&81) (V1)) Yuec (V1) fo(v, v1)) dp(g)

-1
g7
= 1/(g-f.(v,:))) d, —— ) du(g) ==
(f( /(8-£:lw,)) u(g)> <g.f.,<v,->> we)

It follows from 14 and 15 that the right hand side of (13) is at least ¢. 00
ProoF oF COROLLARY TO THEOREM 1. Recall the conditions on a1, b1, c1, d1, @2, b,
c2, ds stated in the paragraph preceding the statement of the corollary. We assume the
hypothesis of the corollary and verify conditions @, b and ¢ of Theorem 1 with £(v) = the
first coordinate of v. Condition a holds with H(A) = 1for0 =A =<1 and H(A) =0 for A
> 1. Condition b holds because for all admissible environments, every nearest neighbor

path (ie., path where X,.. — X, € {(0, 1), (0, —1), (—1, 0), (1, 0)} for all n) has positive,
bounded away from zero probability. For f € F, define As by

A= ( f é du(g)>‘1( f f—j du(g)>

(16) = (p/Tvec () g1()) + (1 — p)/Toec [(v) &)
((p(a1 — 1)/ Tvec f(V) £1(v)) + (1 — p)(az — c2)/Fvec (V) &2(V)).
Also define
m = max(a;/as, b1/bs, c1/cs, di/d2)/(p(a1 — c1)/((1 — p)(cz — a2))).

Then, dividing both numerator and denominator of the right hand side of 16 by
Yvec f(v) g2(v) and then solving for Y.ec f(v) £1(v)/ Yvec f(v) g2(v) yields

pla1—c1— A7) /(1 = p)lez — az + A7) = Yoec f(v) 81(v)/ Foec (V) &2(v)
= f(1,0)a: + f(0, 1)b, + f(— 1, 0)c1
+ f(0, -1) d1)/(f(1, O)a:
+ £(0, 1) b2 + f(—1, O)c2 + £(0, —1) db)
=< max(ai/az, b1/bs, c1/cs, di/d>)
=mp(a: — c1)/(1 — p)(cz — a2).

Since we assumed a; > ¢, @2 < ¢z, the condition of the corollary states m < 1. Thus Ayis
positive and bounded below by a function of a1, c1, @z, ¢z, m. 0

5. Zero-One Laws. Most interesting questions about zero-one laws of R.W.LR.E. are
still open problems. In this section, for simplicity, we restrict ourselves to the case C = Z>.
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LEMMA 1. Suppose that the RW.LR.E. is irreducible with probability 1 (i.e., for
almost all environments e and for all pairs of points vy, v, in Z?, there is a path of positive
probability connecting v; to v;). Then for any finite set § C Z?, P(X, hits 0 infinitely often)
is 0 or 1 and is independent of 6.

Proor. For any fixed environment s, X,, under probability law P; is a Markov chain.
If P, is irreducible, then this Markov chain is either recurrent or transient. Let

f(s) = 1 if P, is recurrent
0 otherwise.

Then P, (X, hits 6 infinitely often) = f(s) if P; is irreducible. Hence, since we are assuming
that P, is irreducible with probability 1, the lemma reduces to proving that f is constant
with probability 1. We do this by demonstrating that f is measurable with respect to the
completion of the tail field of the i.i.d. random variables {e,}.,cz:. In fact, we prove that
f(s1) = f(s2) when s; and s, are any two irreducible environments which differ on only
finitely many points of Z% Let = be a finite set such that s; and s, agree off =. Suppose
that f(s;) = 1. Let v be an element of Z?\=. Then for any m > 0,

P, (X,+m € E for some n >0|X,, =v) =
P, (X,+m € E for somen >0|X,, =v) = 1.

The first equality holds because both expressions are the sums of probabilities of finite
paths which never exit from points of =; P, and P,, agree on all such paths. Thus f(s;) =
1 implies f(sz) = 1 and the converse is proved similarly. 0

DEFINITION. If for all finite 6, P(X, hits @ infinitely often) = 1 we say that the
R.W.LR.E. is recurrent.

Now suppose that @ is an infinite subset of Z2. Can we conclude P (X, hits # infinitely
often) equals zero or one? This is still an open question. However, if we impose the
additional conditions that the vertical components of all environments are nonrandom and
that there is a lower bound on the horizontal components, a much stronger result can be
proved. For the convenience of the reader we introduce some standard notation. For any
random variable X, let 0(X) be the o-algebra generated by X. For any collection of o-
algebras {0} = let ViZ; 6; be the smallest o-algebra containing all 6; and A{Z; o; be the
intersection of the {o;} iZ;. Then the tailfield of a sequence of random variables {X;} i, is
defined to be AL; (V1 0(X))).

THEOREM 2. Let a, b, and € be reals 0 < ¢ 0 < a, b < 1. Suppose that with p-
probability 1

) £((-1,0) +g((1,0) +g((0,-1) +g((0, 1)) = 1.
i) £((0,1)) = a,g((0, -1)) = b.
iii) min{g((1, 0)), g((-1,0))} = e.

Then either the RW.LR.E. is recurrent or the tailfield of {X,}n-1 is trivial.

Proor. If a = b = 0 this reduces to the one-dimensional case which can be easily
handled with a proof similar to the one given below in the other cases. If a = 0, b 0 or
b =0, a # 0 the process is clearly transient and if a # 0, b # 0 the process is irreducible so
in either case the conclusion of Lemma 1 holds. Thus, throughout the proof we will feel
free to use the conclusion of Lemma 1.

This proof uses the well known technique of coupling (see, for example, [2]) which we
explain presently. Let (2;, o, P;);-1,2 be two probability spaces, .« X o4 the usual product
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o-algebra on ; X &,. Using the natural imbeddings <% — o4 X s, i = 1, 2, we can regard
&, L =1, 2, as sub-sigma algebras of o) X o (here o — o/ X o, is defined by A — A
X §). A probability space (21 X Qa, o X s, P) is called a coupling of (2:, #4, P;) and
(Q2, o, Py) if P restricted to o/ is P; and P restricted to </ is P;. Hence, regarding &, and
, as path spaces, when we couple two stochastic processes together, we get a process
where two particles move jointly in such a way that if we look only at one of the particles
and forget the other, we get back one of the original processes.

Let m be any positive integer. Note that since we are considering a nearest neighbor
process, the sum of the coordinates of X, has the same parity as m. With this in mind, let
p = (i1, i2) be an element of Z2 with (—1)"*2 = (—1)™. Now consider a fixed choice of
environment s such that for v € Z? s, obeys conditions i, ii, and iii. Let process 1 start at
the origin at time 0 and move as a Markov chain in accordance with environment s (i.e.,
process 1 is simply {X,.} under probability law P,). We now couple a process 2 to process
1. We construct process 2 so that if we consider only process 2 it also moves as a Markov
chain in environment s, but it no longer starts at 0. In fact we start process 2 at time m at
point p and leave it undefined for times less than m. I will now define how process 2 moves
inductively. Suppose r = m and we know where processes 1 and 2 are at time n. If the y-
coordinates of the two processes are different, then we let process 2 take its next step in
accordance with environment s independently of the movement of process 1. In the case
where the y-coordinates are the same, but the x-coordinates differ, let v be the position of
process 2 at time n and let g = s,. In that case, if process 1 moves one step upward or
downward, let process 2 also move one step up or down, respectively. If process 1 moves
horizontally, in either direction, let process 2 move one step left with probability
£((-1,0))/(g((=1,0)) + g((1, 0))) and one step right with probability g((1, 0))/(g((—1, 0))
+ g((1, 0))). In the third case, where the two processes are together at time n, let them
stay together, i.e., process 2 takes the same next step as process 1. .

We have coupled two Markov chains, both governed by P, one of which startsat 0 at
time 0 and the other starts at p at time m.

LEMMA 2. For almost all environments e, the coupled processes defined above will
eventually coincide with P, probability 1.

ProOF oF LEMMA 2. First assume we are in a situation where the y-coordinates are
different. Because all vertical components of the environment s are the same, the difference
between the y-coordinates behaves like a symmetric random walk with step sizes —2, —1,
0, 1, 2 until the two y-coordinates agree. Since a symmetric random walk with bounded
step sizes is recurrent, the difference between the y-coordinates will at some time be zero.
Once that happens, the vertical movement of process 1 is matched by the vertical
movement of process 2 and the y-coordinates remain the same. Furthermore, by induction
and our initial assumption regarding the parity of p, the difference between the x-
coordinates will be an even integer. Because there are only countably many pairs v, v; of
elements of Z?, it suffices to show:

(17) For almost all choices of s, and for any choice of pairs v;, v; of elements of Z* whose
y-coordinates are the same and x-coordinates differ by an even integer, the coupled
processes 1 and 2 will with probability 1 meet if there exists a time at which process
1 is at v; and process 2 is at vs.

Since the y coordinates will remain the same, this amounts to showing that the x-
coordinates will become the same. We introduce some notation. For fixed environment s
and fixed v € Z?, define the probability law P analogously to our definition of P; except,
instead of initial condition X, = 0, assume X, = v. Then define P¢, P, E” analogously to
our definitions of P., P and E (i.e., for A € &, P*(A) = E (P(A)), and E" is the expectation
operator corresponding to P°.) For each fixed environment s, couple processes P}' and P}
together in the same way that processes 1 and 2 above were coupled (i.e., since v; and v,
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initially have the same y-coordinates, let their y-coordinates remain the same and their x-
coordinates move independently until they meet. If and when they meet, let them stay
together). Let P be the probability law of the coupled paths {(X1,», Xz,»)}n=1.{X1,n} n=1
moves according to P} and {X,,.} »-1 moves to P Using the strong Markov property,
(17) reduces to proving

(18) For almost all s, P,(X,, = X, for sufficiently large n) = 1.

For any v € Z2 let v’ be the x-coordinate of v. The probability laws P” and P* are
identical except for translation. Consequently, for any integer n, E*(X7) — E*(X}) = 17
— v}. Let E, be the expectation operator corresponding to P,. Tt follows that

E(E.(Xjn — Xin)) = E(Eo(X3,) — E.(X1,))

(19)
= E(E#(X,)) — E(E2(X3)) = E*(X;) — E™(X;) = vz — v

for any n = 0.

Assume W.L.O.G. that v} > v}. Since v} — v} is an even integer, X5, — X1,. will always
be even and hence cannot become negative without first hitting zero. However, once X1,
and X%, meet, they must stay together. Thus, for the coupled process,

(20) X5, —X1.=0 for all n.
By (19) it follows that for any positive real r; and any integer n,
P(Bo(Xbn — Xin) >11) < (th = V1)/1y

For n = 0, let ,,,, be the set of all s such that E,(X4, — X4,) > r or such that there is a
site at which either i, ii, or iii fails. Then P(e € 6,,,,) < (vh — v1)/r: . Let o1, 02 be any
positive real numbers and r, be any positive integer. Let o be the first time the two
processes meet. Clearly we can choose no so large that

\ EB.(no=o=no+r)) <.
Let =,,;, denote the set of environments s such that
Pno<o=<no+r)>8.
It follows that

8
Pe€E,s) <—.
8

Now suppose s & (0n,,, U Zr,5,). Then E(X5,, — Xi.n,) =< 1. Therefore,
(21 Py(X,ny — Xiony > 12) < 11/15.

Now suppose 0 < X3, — X1, < r2. Since X5, — X1,», # 0, the processes have not yet met
by time n,. It is possible that from time no onward the processes will do nothing but move
directly toward each other until they meet. By condition iii this will happen with
probability at least ™. If this happens, the processes will first meet between times n, and
no + rz and this event has P, probability not exceeding 8;. Hence

P(0<X2,,0—X1,,0 r2)£r2<82
Using this, (20), and (21) we get

ﬁ (X2no7éX1,no) <—+'r—
2

We also know

4

Uy — v’l 81
r 82

P(e € Oy, U Epps) < Pe € 0,y) + P(€ € Epyp) <
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By successively choosing r; large, then r; large, then 8; small, then 6; small, then no large
we can insure successively that

vVia—vi r 6 &1

’ ro

rn r €28
are arbitrarily small. (18) follows immediately. The lemma is proved.

PROOF OF THEOREM 2. Suppose that the R.W.LR.E. is not recurrent. Let @ be the set
of environments s which obey i, ii, and iii at every site, for which the P, process is not
recurrent, and for which any coupled processes such as those of Lemma 2 will eventually
meet with probability 1. By Lemma 1, e € § with probability 1. Suppose s € §. Consider
the coupled processes of Lemma 2. Let A be any event in the tailfield of {X.}7-:. Since
the two processes stay together after a finite amount of time, A occurs for one of the
processes if and only if A occurs for the other. Thus, using coupling, we have proved for
any p of proper parity, and any A in the tailfield,

P,(A|Xn=p) = Ps(A)
or in other words
Py(A|Xn) = Ps(A).

By the Markov property,
Ps(Ale) = Ps(AIXIa X .- Xm)

and thus A is independent of V7, X; under P;. Since m is arbitrary, A is independent of
VZ,(X;) under P,. A € V&, (X;) so A is independent of itself. P,(A) € {0, 1}.

It remains to be shown that the function e — P.(A) has the same value for almost all
e, which will follow if we can show it measurable with respect to the tailfield of the i.i.d.
random variables {e,}.cz:. In fact, for s1, s: € 6 where s; and s; differ only on a finite set,
we will show P, (A) = P,(A). Let F be a finite subset of Z2 such that s, and s; agree off F.
We couple processes P, and P, as follows. Let them run independently if either process is
on F. If neither process is on F, couple them as in the coupling of Lemma 2. Since neither
process is recurrent, eventually both processes will leave F forever. Once that happens, the
two processes are both on s; (because s; = s; off F) and by the proof of Lemma 2, they will
eventually meet and stay together. Hence, in the coupled process, A occurs for process 1
if it occurs for process 2, i.e., Ps (A) = P;,(A). O

Theorem 2 implies that if i, ii, and iii hold, events such as hitting a fixed set infinitely
often, or the x-coordinate approaching « must have probability 0 or 1. Note that example
2 obeys all these conditions.

It should be noted that for any R.W.LR.E. which is not merely a random walk (i.e.,
where u has a support of more than one environment), if the R.W.LR.E. is recurrent, its
tailfield cannot be trivial. If p, ¢ € Z? the random variable

lim sup,— #{i:0 <i<n,X;=p, Xir1 = q}/#{i:0<i<n,Xi=p})

is measurable with respect to the tailfield if the process is recurrent. It is in general not
constant, though, because it depends upon the environment at p; indeed it equals e, (g —
p).

Theorem 2 can easily be generalized to the n-dimensional nearest neighbor case, where
n — 1 directions are nonrandom and probabilities in the other direction are bounded below.
In particular, the result holds for the one dimensional case, where probabilities of moving
left or right are both bounded below.

Although very few zero-one conjectures can be proved when we remove the assumption
of nonrandom vertical components, we can still show the following.

THEOREM 3. Let e > 0. Suppose that with p-probability 1,
i) min{g((1, 0)), g((-1,0))} = &
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Then the probability that the process hits the Y-axis infinitely often is either zero or one.
ProoF. For any v € Z2 let v be the first coordinate of v. Define events A, B, C and D
by
A = {X, hits the Y-axis infinitely often}
B = {There exists an N such that for alln > N, X}, > 0}
= {There exists an N such that for alln > N, X}, < 0}
D = {X}, > 0 for all n > 0}.

If P(B) = 0 and P(C) = 0, then P(A) = 1 and we are done. Thus we can assume that
either P(B) > 0 or P(C) > 0. Assume W.L.0.G. P(B) > 0. We begin our proof by proving
that P(D) > 0.
Suppose P (D) = 0. Then Py(D) = 0 for almost all s. For v € Z?% define P*, P! as in the
proof of Theorem 2. Let D’ be the event defined by

={X,>v’ for all n>0}.

Since the probability laws P, P" are identical except for translation, P*(D") = P(D) =0.
Therefore PZ(D") = 0 for almost all s. Let

0=(seS:P)(D")=0 forall veEZ?.
Then P(e € §) = 1 because Z ? is countable. Suppose s € §. By the Markov property
P(X,>v foral n>N|Xy=v)=0,N=0.
Therefore,
Py(X, < XN forsome n>N)=1 N=0.
Thus, since X = 0,
P(X,=<0 io)=1
and thus, since s is an arbitrary element of 4,
PX,=0 io0)=1

contradicting our assumption that P(B) > 0. We have proven P (D) > 0.
For N > 0, v € Z? define the event Fy, by

Fy,={X,<Uv’ forall n< N, Xy =v}.

Let Y = {§ € Z2:¢’ = v’}. For any § € Y, the environment at o, es is independent of
any path {Xj, X, --. Xn} in the set Fy, because e; influences only the probabilities of
paths exiting from & and no path {X;, X, - -- X,.} in Fy, ever exist . On the other hand,
the conditional probability of the event

={X,>v forall n> N, Xy=v)}

given that Xy = v only depends on environments e;, where 0 € Y, because paths Xy,
Xn+1, - -+ in Gu, live entirely in Y. Thus

PX,>v' forall n>N|X,X; .- Xy} = P"(D") = P(D)
on the set Fu,. Define the event G by
G = {lim sup X,, = «}.
Equivalently,

= {there are infinitely many N such that there
exists v € Z % with v’ > 0 and Fy,}.
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Hence, on G, there are infinitely many N for which
PX,>Xy forall n>N|X,..- Xy)=P(D)
and X% > 0. Let A° be the complement of A. Then it follows that on G,
lim supy_.. P(A°| X; - -+ Xy) = P(D).
However, by the martingale convergence theorem,
limyoe P(A°| Xy -+ XN) =0

on almost all of A. Therefore,

P(GNA)=0.

Since P(X}s1 — X, =1|X;, X, - -+, X,) = ¢, it follows that P(X,.r — X, =R | X1, X,
«++,X,) = e® for any R. Thus, for any R, X}, = R for infinitely many n on almost all of A
(see [1], page 97, problem 9). Therefore,

P(G°NA)=0
and hence P(A) =0. 0O

Theorem 3 can be generalized to arbitrary R.W.LR.E. as follows. Let #be a linear
functional on C. Suppose there exists ¢ > 0 such that with u probability 1,

Ywecw>d &) >¢ and  Ypeciw<— &) > e
Then the event
{both sets {n:/X,) = 0} and {n:#(X,) < 0} are infinite}
has probability either 0 or 1.
APPENDIX

Here we prove that in the proof of Theorem 1, (10), (11) and the corresponding
statements for the P process imply (8) and (9).

Since we are not concerned with the behavior of £(X,) after time 7 it will not hurt to
redefine the P process on y U (C — D) so that (10) and (11) hold regardless of where X,
is. Consider the process to be so redefined.

Since

fH(}\) d(\) < oo, lim infy .. AH(A) = 0.
Choose an integer I so that
IH(I) +f H\) d(A) <¢/3.
I

Let

Y = /(Xn+l) - J(Xn) if/(Xn+l) - /(Xn) > I
" 0 otherwise.

Then by (10),
E(Y,|X,) <¢/3
and by (11),
E(UXun1) — €X,) — Yo | Xn) > 2¢/3.
Let
P =P({Xun) — 6(X,) — Yo <e/3| Xy).



GENERALIZED RANDOM WALK 767

Since
A Xpi1) — 6(Xn) — Yu=1,
it follows that
2¢/3<(e/3)p+1I(1—p);p<(3I—2e)/@BI—¢).
Thus
22 B(U K1) = 4(X,) Z ¢/3| Xs)

= P(AXpe1) — 4 X,) — Yo=¢/3|X,) >¢/3]—e, n=0.
Consequently, for any m
P(U(Xpim) — (X)) > me/3|X,) > (e/(3] — )™

from which it follows that for any m, the event £(X,+n) — £(X,) > m ¢/3 will eventually
occur with probability 1 and thus the process is unbounded (see problem 9, page 97 of
[1]). This implies that (8) holds for P and an exactly analogous argument proves that (8)
holds for P.

Let

Zn 1= UXns1) — 4 Xp) — E(4(Xpi1) — 4(X0)| X).
By (10),

| E(£(Xns1) — 4(X)| X)) | = J H(s) ds
0

and hence for A > 2 (& H(s) ds,
P(|Zpir| > N) < P(| U Xni1) — £(X,)| >N /2)

= B(P(| U Xni1) — 4X,)| > N/2| X)) < H(\/2).
Let

[1ifA<2[5 H(s) ds
G\ = {min(l, H(\/2)) otherwise.

G is a non-negative real-valued non-increasing function on the non-negative reals with
G@O0) =1, f GA)dA <
0

and
P(|Zoi1| > M| X0) = GN)

for all \. Since E(Zp+1|Zo, Z1, « + + , Zn) = E(Zp+1| X,) = 0 for all n, it follows from a result
of H. Kesten (Lemma 1 of [4]) that there exists a function f dependent only on G and ¢
(hence only on H and ¢) such that lim,.. f(x) = 0 and for any real R > 0 and integer N
>0,

P(3n: 304 (Z) < —R — (e/2)n| Xn) < f(R).
By (11), setting N = 0, with probability at least 1 — f(R),
A Xn) = Yie1 (Z:) + Yim E(4(X,) — 6(Xn-1)| Xn1) = —R — (€/2)n +en = (/2)n— R

for all n. Thus (9) holds for P.
Choose R so that f(R) < 1 and an integer N > 3R/e. By (22),

AX;) — /(X)) >¢/3 forall 0<i<N
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with P probability at least (¢/(31 — ¢)) V. If that happens, then ¢(Xy) > R, /(X;) > 0 for 1
<i=<Nandifforalln=1

YR (Z) = — R — (¢/2)n,
then forany n =1,
AXNen) = A XN) + TN (AX0) — €(Xim1))
= AXn) + TR (Z:) + TR B (4X) — 6(Xim1)| Xim)
>R—-R—(¢/2)n+¢en>0.

Thus for any M,

P(Bu) = (¢/3I — ))¥(1 - f(R)).
By an analogous argument,

P(Bu) = (¢/3I — ) M(1 - f(R))
and (9) holds for . O
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