The Annals of Probability
1983, Vol. 11, No. 3, 624-634

HARMONIC FUNCTIONS AND THE DIRICHLET PROBLEM
FOR REVIVAL MARKOV PROCESSES

By KYLE SIEGRIST

University of Alabama in Huntsville

Harmonic functions and the Dirichlet problem on an open set G are
defined for a pieced-out or revival Markov process constructed from a contin-
uous base process. A one-to-one correspondence is obtained between the
bounded harmonic functions of the revival process and those of the base
process. The harmonic functions of the revival process are shown to be
continuous on G under certain conditions and to coincide with the solutions
of %Uf = 0 on G where % is the characteristic operator. These results are
applied to random evolution processes and branching processes.

1. Introduction. Ikeda, et al. in [7] develop a general method of “restarting” a given
Markov process (here called the base process) at the end of its lifetime. The restarting is
done with an “instantaneous” distribution in such a way that the new process, called a
pieced-out or revival process, still has the Markov property. By specializing the base
process and the instantaneous distribution, many interesting types of Markov processes
can be obtained. For example, revival processes are used to construct branching Markov
processes in [8] and are used to construct random evolution processes with feedback in
[12]. Several other interesting applications are given in [9].

One of the main uses of these new processes has been the probabilistic analysis of
certain types of equations. For example, Miyamoto [10], Heath [6], and Griego and Hersh
[3], [4] use random evolutions to study certain finite systems of equations. Nagasawa [11]
uses a branching process to solve a type of nonlinear Dirichlet problem.

In this paper, harmonic functions and the Dirichlet problem are studied for a general
revival process with a continuous base process. A bounded, nearly Borel function f is
defined to be harmonic on an open set G if it satisfies the usual mean value property on
open subsets of G. But since the revival process is discontinuous, it is necessary that f be
defined on the entire state space (not just on G) and of course the classical theorems (see
[2]) do not apply. The main result of this paper is Theorem (4.6) which gives a one-to-one
correspondence between the harmonic functions of the base process and the harmonic
functions of the revival process. Since the base process is continuous, this correspondence
is then used to obtain analogues of the classical theorems for the revival process. In
particular, it is shown that under appropriate conditions, the harmonic functions are
continuous on G and coincide with the zeros of the characteristic operator on G, and the
Dirichlet problem with a given “exterior function” is solved.

The results are applied to random evolution processes and branching processes. The
random evolution processes considered are more general than those used by previous
authors and allow feedback and an uncountable number of evolution modes. Moreover,
the main theorem yields additional insights. In the random evolution setting it gives a
correspondence between solutions of the coupled system of equations and solutions of the
associated uncoupled system. In the branching process setting of Nagasawa [11] it gives a
correspondence between solutions of the nonlinear equation and solutions of the associated
linear equation. .

2. Preliminaries. A locally compact Hausdorff space with a countable base will be
called a semicompact. If E is a semicompact, 4(E) will denote the topology of E, #(E)
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= g%4(E) the o-algebra of Borel sets, and #*(E) the completion of #(E) with respect to
the set of all probability measures on (E, Z(E)). If x € E, §. denotes point mass at x. If
f € B*(E)/#(R) is bounded, || f|| denotes the sup norm of f.

We will use the usual notation and results for a standard Markov process X =
2, A, A(t), X(t), 6(t), P*) with semicompact state space (E, #(F)), argumented by the
usual dead state A (see [1]). In particular, { denotes the lifetime of X, T(A) = inf{t =0 :
X(t) &€ A} the first exit time of X from A C E, and T*(A) = inf {¢ > 0 : X(¢) & A} the first
exit time of X from A after 0. A function f € #*(S)/%(R) is automatically extended to S
U {A} by f(A) = 0. The semigroup of X is denoted T'(¢), ¢ = 0. The process X is said to be
strong Feller if T'(¢) takes bounded #(E)/%(R) functions into continuous functions and X
is ¢(E) if T(t) preserves the space of bounded continuous functions “vanishing at «” (see
[2]). The characteristic operator % of X is defined by

E*[fX(TV)] — fx)
E*[T(V)]

with domain 2( %; x) at x, where the limit is taken over open sets V with compact closure
shrinking to x (see [2]).

In the sequel, if a Markov process has a subscript or other distinguishing mark, objects
(such as o-algebras, characteristic operators, etc.) with the same subscript or mark will

refer to this process.
Now let Z be a fixed, standard, continuous Markov process with state space (S, %(S))

such that 0 < ¢ <®as. P~ for z € S. Z will be the base process. Let u be an instantaneous
distribution for Z in the sense of [7], i.e.,

(2.1) %f(x) = hmle

(2.2) (a) pis a transition probability from @&, Z) to (S, 4(S)).
(b) If Tis an_.4(t)-stopping time and x € S then (&, -) = p(l(T)(&), ) as. P

on {T<%.
Let Z be the pieced-out or revival process associated with Z and p (see [7], [8], and
[9]). Let 7,,n =0, 1, - . - denote the revival times of Z. Z is a standard process and satisfies

(2.3) (a) (Z(t), t < m, P?) is equivalent to (Z(¢), t < {, P?).
(b) For A€ Z C € AB(S),
P*{w:p1(w) € A, Z(11)(w) € C} = E*[u(&, C); A]
where p; is the natural projection from Q to & (see [7]).

3. Characteristic operations and nearly Borel sets. The goal of this section is to
establish some connections between the characteristic operators and nearly Borel sets for
the base process Z and those for the revival process Z. The results will be needed for the
study of harmonic functions in Section 4.

Let 7" be the operator defined by

E*[f(Z(11)); T(V) =]

(3.1) vf(2) = limy,, PREA)]

with domain 2(v"; z) C #*(S)/#(R) at z € S.

(3.2) THEOREM. Letz € S andfe #*(S)/#B(R). Assume that
(3.3) W&, V) =0 as. P? for sufficiently small compact neighborhoods of z.
Iffe 2(v; é) then f € D(U; z) ifand only if f € (% ) and

Uf(2) = Uf(2) + Vf(2).

PROOF. Let V be an open neighborhood of z with compact closure then
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B4) E°[fZ(T(V)]=E?[fZ(T(V));T(V)<m]+ E*[f(Z(T(V))); T(V)= 1]
By (2.3) the first term on the right of (3.4) is
E[f2TV))); T(V) < §).
By (2.3) and (3.3),
P T(V)>n]=E*[uwa V), T(V)=§1=0
for V sufficiently small. Hence the second term on the right of (3.4) is
E*[f(Z(1)); T(V) = 1]
Also, by (2.3) and (3.3),
E*[T(V)] = E*[T(V)].
Hence the result follows from the definition of the characteristic operator (2.1). 0
(3.5) REMARK. Condition (3.3) can be weakened. For the results in this paper, all that is
necessary is
P [T(V)>mn]
=" 0

E* [T(V)]
and

E*[T(V)]

——1

E*[T(V)]
as V| z. However for the applications considered here (the random evolution process and

the branching process) Condition (3.3) is satisfied.

It is straightforward to show that C C S is nearly Borel for the base process Z if and
only if C is nearly Borel for the revival process Z. In addition, we will need the following:
(8.6) LEMMA. Let fE€ #*(S)/B(R) be bounded. Let G be open in S and n = 1. Define

Mz2) = E*[f(Z(1,)); 7 = T*(G)].
Then h is nearly Borel.

ProOF. Since & € #*(S)/%(R) is bounded, it suffices to show that T(t)h — & as

t | 0 by Theorem (5.13) of [2]. But
T@)n(z) = E*[nZ(t))] = E*[MZ(t)); t <m ]

= BB f(Z(ra)); 1 = T* (@] t <m1]

=E*[fZ(r)); tn=t+ TT(G) 2 0(t), t <]
by the strong Markov property since ¢ + 7, ° 8(t) = 7, a.s. on {t < 7}. But ¢ + T*(G) »
a(t) | T*(G) by (10.3) of [1]. Hence'by bounded convergence, T(t)h — h.0O
(3.7 REMARK. In Lemma (3.6), note that 7" (G) = T(G) a.s. P* for z € G and hence for
Z EQG, _ .

h(2) = E*[ f(Z(7.)); 7 = T(G)].

4. Harmonic functions and the Dirichlet problem. The purpose of this section is
to define and study the harmonic functions and Dirichlet problem of the revival process Z.
The main result is Theorem (4.6) which relates the harmonic functions of Z and those of

the base process Z. Since Z is a continuous process, the standard results of [2] apply to Z.
Theorem (4.6) is then used to obtain analogous results for Z.
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(4.1) LEMMA. Let G be open is S. Suppose that

4.2) inf.ec P*[T(G) < {]> 0.

Then
(a) Yo P?*[1» = T(G)] converges uniformly and is bounded in S.
(b) PY[T(G)<{]=1forz€S.

PRO(lF. ~By assumption, there exists ¢ > 0 such that ﬁz[T(G‘). <§ 1>eforz € G. If
2€G,P[T(G)<{]=1Letd=1—¢cThen0<d<1and P’[T(G) ={]<d8forz€E S.
Forn=1,

P[r, = T(@)] = P*[1p-1 + 7 © (1-1) = 71 + T(Q) © 0(10-1); Ta1 = T(G)]
= E*[P?"V[1, = T(®]; 71 = T(G)]
= E*[P*[T(G) = {}; a1 =< T(G)]
< 6P?[Tn-1= T(Q)]
By induction, then P*[1, = T(GQ)] < 8". This proves (a). Part (b) follows immediately from
(a) since 7, 1 {.0

(4.3) DEFINITION. Let G be open in S. A bounded function f:S— R is harmonic for Z on
G if f is nearly Borel and if for every open V with compact closure contained in G and

2 EQG,

(4.4) E*[f(Z(T(V)] = f(2).

(4.5) REMARKS. (a) A similar definition applies for the base process Z. Since Z is
continuous, the definition reduces to the standard one (Section 12.18 of [2]).

(b) Since Z is not continuous, it is necessary in general for f to be defined on all of S,

not just on G (see however Sections 5 and 6).
(c) If f is harmonic for Z on G then it follows immediately that %f = 0 on G.

(4.6) THEOREM. Let G be open in S. Suppose that (4.2) is satisfied. The following
formulas establish~a one-to-one correspondence between the bounded functions g that
are harmonic for Z on G and the bounded functions f that are harmonic for Z on G:

(4.7) f(2) = Xr-0 E°[8(Z(14)); 7o = T(G)]

(4.8) 8(2) = f(2) - Ez_[f(Z(‘rl)); n = T(G)].

PrROOF. Let g:S — R be bounded and be harmonic for Z on G. Define f:S — R by
(4.7). Note that f = gon S — G so f is bounded and nearly Borel on S — G. Also, f is
bounded and nearly Borel on G by Lemmas (3.6) and (4.1). Thus we need to prove the

mean value property (4.4) and formula (4.8). Let z € G and let V be open with compact
closure contained in G. Then

(4.9) E°[f(Z(T(V)))] = Yn-o E*[E*™ [ g(Z(r2)) 72 = T(G)]].
The first (n = 0) term of the sum in (4.9) is
E*[g(Z(T(V))] = Ti=0 E*[(Z(T(V))); a < T(V) < Tps1]
= im0 E*[EZ[g(Z(T(V))); T(V) <1 =< T(V)]
= im0 B [EZ[gZ(T(V))] 1= T(V)]
= Yo E*[£(Z(m2)); 7o = T(V)]
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where we have used the strong Markov property, the assumption that g is harmonic for Z
on G and the following identities: 7, + 7 © 8(1x) = 7441, 7o + T(V) © (1) = T(V) a.s. on
{mx = T(V)}. For the remaining terms of the sum in (4.9) we have

Yn-1 E*[E*TY [ g(Z(10)); 12 < T(G)]]
= Yn-1 E*[£(Z(r2)) © O(T(V)); 1 o (T(V)) = T(G) ° 6(T(V))]
= Yo-1 Ym=0 E*[(Z(T(V) + 7 © O(T(V)))); T(V) + 10 © §(T(V))
=T(V)+ T(@Q) * 6(T(V)), T = T(V) < 1]
= Y1 Ym0 E*[8(Z(1142)); Tmin < T(@), T < T(V) < Tr1]
= Y51 Xhe1 EF[8(Z(12)); 7 < T(G), Toon < T(V) < Thonsn]
= Yi-1 E*[g(Z(71)); 7 = T(G), T(V) < 12].
Combining we have
E*[fZ(T(V))] = Xi-0 E°[£(Z(14)); o = T(V)] + Xim1 E*[8(Z(12)); T(V) <mi = T(G)]
= Yi-0 E*[g(Z(r)); 7o = T(Q)] = f(2).
Hence fis harmonic for Z on G. To prove (4.8), it suffices to show that
E*[f(Z(1)); 1= T(G)] = X721 E*[ g(Z(rn)); 7 = T(G)].
But
E*[f(Z(r); 1 = T(G)] = E*[T7-0 E*V[£(Z(1,)); 7a < T(Q)]; 11 = T(@)]
= Xr-0 E*[£(Z(1r+1)); Tar1 = T(G), 1 = T(G)]
=Yr-1 E*[g(Z(1,)); 7 = T(G)].

Now suppose that f: S — R is bounded and harmonic for Z on G. Define g:S — R by
(4.8). Then g is bounded since fis. Also, g = fon S — G so g is nearly Borel since fis and
By Lemma (3.6). The mean value property can be verified by arguments similar to the
previous ones. Thus we will prove (4.7). For n = 1,

E*[g(Z(7)); 7 = T(G)]
= E*[f(Z(rn)); T = T(G)] — E*[E**"[{(Z(11)); 1 = T(G)]; 7 = T(G)]
= E*[f(Z(12)); 12 = T(G)] = E*[f(Z(1041)); Tws1 = T(G)].

Therefore

Yr-1 E*[g(Z(m)); n = T(@)] = E*[f(Z(r1)); 11 < T(G)] — E*[ f(Z(rn+1)); 1 = T(G)].

But the last term on the right — 0 as N — « since f is bounded and by Lemma (4.1). This
proves (4.7). 0

(4.10) ExaMPLE. Let G be open in S and suppose that (4.2) is satisfied. Let ¢: S — R be
bounded and nearly Borel. Define f(2) = E*[¢(Z(T(G)))] and g(2) = E*[¢(Z(T(G)))].
Then fand g are related as in (4.7), (4.8). Also, g is harmonic for Z on G by Theorem 12.12
of [2] so f is harmonic for Z on G.

(4.11) THEOREM. Let G be open in S and suppose that (4.2) is satisfied. Let f, g be
bounded functions in #*(S)/% (R) related as in (4.7), (4.8). Let z € G and suppose that
(3.3) is satisfied. Then f € 9(U; z) if and only if g € D(U; z) and

Uf(z) = Hg(2).
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ProOF. Let V be an open neighborhood of z with compact closure contained in G.
Then using the strong Markov property,

E [ gZ(T(V)N] = E[fZ(T (V)] — E*[fZ(T(V)));n < T(V)]

= E*[f(Z(m)); T(V) < = T(®)]

Hence for V sufficiently small,
EgZ(T(V)] = E*LfZT(V)] - E*[f(Z(r1)); 11 = T(V)]
— E*[fZ(r)); T(V) <m = T(G)]
= E*[f(Z(T())] + g(2) — f(2)
from (4.8). Hence
E[gZ(T (V)] - &) = E*[fZ(T(V)))] - f(2).

Since E[T(V)] = E*[T(V)], the result follows. 0
(4.12) THEOREM. Suppose that Z is strong Feller and 4(S). Let G be open in S and

suppose that (4.2) is satisfied. If f is bounded and is harmonic for Z on G then f is
continuous on G.

PRrOOF. Define g by (4.8). Then g is harmonic for Z on G and hence g is continuous on
G by Theorem 13.2 of [2]. Hence it suffices to show that
2> E*[f(Z(11)); 1= T(G)]
is continuous on G. Let ¢ > 0. Then

EfZ(n)); = T(@)] = E[ f w(@, du)fu); T(G) = f]
S
(4.13) - E[ f (@, dwfw); TG =§ t < T(G)}
S

+ E[[ (@, du)fw); T(G) = §, t= T(G)] .
S

The first term on the right of (4.13) can be written
E’[ﬁi‘”U n(@, du)f(u); T(G) = f]; t< T‘(G)]
S .

where we have used the fact that u(ﬁ(t)(&), <) = u(@®, +) as.on {t < f} But this last
expression is continuous as a function of z on G by Theorem 13.1 of [2]. The second term
on the right in (4.13) is bounded in absolute value by

I FIPT(G) < t]

which — 0 as ¢ | 0 uniformly on open sets with compact closure contained in G (see the
prqof of Theorem 13.1 of [2]). O

(4.14) THEOREM. Suppose that Z is strong Feller and %(S). Suppose that G is open in S
and that (4.2) is satisfied. Suppose also that (3.3) holds on G and that for each open U
with compact closure contained in G, there exists an open V with compact closure
contained in G such that V has regular boundary for Z and contains U. If f:S — R is
bounded and nearly Borel, then f is harmonic for Z on G if and only if f is continuous on
Gand U%f=0o0nG.
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PRrROOF. Suppose that f: S — R is bounded and nearly Borel. If f is harmonic for Z on
G then %f =0 on G as noted in Remark (4.5) and fis continuous on G by Theorem (4.12).
Conversely, suppose that f is continuous on G and that %f = 0 on G. Define g by (4.8).
Then %g = 0 on G by Theorem (4.11). Moreover, g is continuous on G (see the proof of
(4.12)). Hence g is harmonic for Z on G by the corollary to Theorem 13.5 of [2]. Hence f is
harmonic for Z on G by Theorem (4.6). O

(4.15) DEFINITION. Let G be open in S and let ¢:S — G — R. We say that fis a solution
of the Dirichlet problem for Z on G with exterior function ¢ if

(a) fis harmonic for Z on G
(b) f=¢ponS—G.
(c) lim,_,q.ccf(2) = ¢(a) for a € 4G.

(4.16) THEOREM. Suppose that Z is strong Feller and %(S). Suppose that G is open in
S with compact closure and that Condition (4.2) is satisfied. Suppose also that G has
regular boundary for Z. Suppose that $:S — G — R is bounded, nearly Borel, and
continuous on dG. Then there exists a unique, bounded solution of the Dirichlet problem
for Z on G with exterior function ¢, given by

(4.17) f(2) = E*[¢(Z(T(G)))].

Proor. First recall that z — ﬁz[T(G)~< f] is harmonic for Z on G (see Section 12.18
of [2]). Since G has regular boundary for Z, '
(4.18) lim.—a:ec PTG < {1 =1

for a € 3G (see Theorem 13.1 of [2]). Let f be given by (4.17). Define g by (4.8). By example
(4.9), f is harmonic for Z on G and of course f = ¢ on S — G. Moreover,

g(2) = E*[¢ Z(T@G))].
So by Theorem 13.4 of [2],
lim;_,q.ec8(2) = ¢(a)
for @ € 8G. On the other hand,
| B[ fZr)); 1 < T@]| < | fIPIr = T@] = | IPITG) = {]
and the last term — 0 as z » a € dG(z € G) by (4.18). Hence
lim..q:ecf(2) = o(a)

for a € 3G so f satisfies the Dirichlet problem for Z on G with exterior function ¢.

Conversely, suppose that f is a bounded solution of the Dirichlet problem for Z on G
with exterior function ¢. Define g by (4.8). Then g is bounded and is harmonic for ZonG
by Theorem (4.6). Moreover,

lim.e.ccE?[f(Z(11)); mn=T(G)]=0
for a € 4G as above so it follows that
lim._q-ccg(2) = ¢(a)

for a € dG. Hence g solves the Dirichlet problem for Z on G with boundary function ¢ by
Theorem 13.4 of [2]. Hence

8@ = E*[oZ(T(GN)].
By Example (4.9), fis given by (4.17).0

5. The random evolution process. Let E, F be semicompacts and let S = E X F.
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If C C S and y € F, C, denotes the cross section {x € E:(x, y) € C}. Similarly, if fis a
function on S and y € F, f, denotes the function on E defined by f,(x) = f(x, y). With the
product topology #(S), S is a semicompact. We will also need the topology %'(S) =
{GC S:G,€ 4(E) for y € F}. If F is countable, then F is automatically given the discrete
topology so that €(S) = €’(S). In general, however, (S) C %'(S).

For y € F, let X, be a standard, conservative, continuous process with state space
(E, #(E)). We assume that for C € %4(8S),

(5.1) (%, y) = Pi[X,(¢t) € C,] € #(S)/%I0, 1].
Let ¢ € #(S)/%(0, ) be bounded and such that g, is continuous on E for each y € F.
Let M, be the multiplicative functional of X, given by
t
M,(t) = exp(— J gy (X, (s)) ds).
0

Let X, be the killed process associated with X, and M, (see Chapter III of [1]). Let Z =
(X, Y) be the composite process on (S, .%(S)) associated with {Xy y € F} i e. »
@), t < § P“) is equivalent to (X, y), t < §,, P?) for (x, y) € S. Z will be the base

process.
Let @ be a probability kernel on (S, #(S)) such that for (x, y) € S,
(5.2) Qx,y), EX {y}) =

We will also denote by @ the corresponding operator
Qf(z) = J Q(z, du)f(u)
s

deﬁrled on a domain of functions in £*(S)/%(R). Define an instantaneous distribution p
for Z by

(5.3) 1@, C) = Q(Z(§-)(&), C).

The revival process Z = (X, Y) associated with Z and u is called the random evolution
process (REP) associated with the basic data {X,:y € F}, q, and @ (see [14] for details).
Condition (5.1) is necessary for the existence of Z and Z. Note that (5.1) is automatic if F
is countable.

Z has the following intuitive description: X switches at random among the processes X,
y € Fand Y = y whenever X is evolving according to X,. The function ¢ is a rate function
for the random times between jumps. The kernel @ is the probability law for the change
in evolution rule and the change in evolution state at a jump time. Feedback is incorporated
by allowing ¢ and @ to depend on the evolution state x. If @ satisfies

(5.4) Qx,y), {x} X F)=1

for (x, y) € S then X is continuous and we will say that the evolution is continuous (but of
course Z is still discontinuous because of jumps in Y).

In this setting, it is natural to consider the characteristic operator of Z and Z in the
%’'(S) topology. That is, in definitions (2.1), (3.1) with z = (x, y), Vis restricted to be of the
form V= U X {y} where U is an open neighborhood of x in E with compact closure (for
Z, the characteristic operators in the %(S) and %’(S) topologies are the same since the
second component of Z is constant). Note then that condition (3.3) is true at each z € S by
(5.2).

(5.5) THEOREM. Let f € #*(S)/Z(R) and z = (x, y) € S. If (Qf), is defined in a
neighbochood of x and is continuous at x, then f € 2(%, (x, y)) if and only if
f € 9(%U,; x) and

Uf (x, y) = Uyf,(x) + q(x, y)Qf (x, ).
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Moreover, if f, € D(%U,; x) then f, € D(%y; x)
and

Uyt (x) = UL, (x) — q(x, y)f (2, ¥).
Proor. From Theorem (3.2), to prove the first statement it suffices to show that
fE€ 2(¥; (x,y)) and
vF(x, ¥) = q(x, ¥)Qf (x, y).

Let V= U X {y} with U an open neighborhood of x with compact closure. Then from the
construction of Z,

T,(0)
ETfZ(r)); T(V)=m]= E;‘[f @y (X, () (Qf )y (X, (£)) M, (2) dt]
0

T(U)

E{T(V)] = E:T(U) = E;[ M, (t) dt] )

0
Here the desired result follows from the definition of ¥"and the continuity assumptions on
q, and (Qf),. The second statement in Theorem (5.5) follows from a result in [5]. 0

With the %’(S) topology, Definition (4.3) is modified by taking G and V nearly Borel
and %'(S) open (as before, the distinction is unimportant for Z).
(5.6) LEMMA. Let G € %'(S) be nearly Borel. If there exists t > 0 and ¢ > 0 such that
(5.7) Pj[T,(G)) <t]>¢
for (x,y) € G, then (4.2) holds.

- Proor. Letz=(x,y) € G. Then
PT(@G) < §1= BiT,(G) < 1= E5[M,(Ty(G)))]
= Elexp(— | 9| Ty(G)); T3 (Gy) < t]

Zeelol O

Let G € %'(S) be nearly Borel and suppose G, has compact closure for each y. Suppose
that (5.7) is satisfied and that G, has regular boundary for X, (equivalently X,) for each y.
Suppose that X, (hence X,) is strong Feller and %(E) for each y. Then the conclusions of
Theorems (4.6), (4.11), (4.12), (4.14), and (4.16) hold except that limit and continuity
statements must be interpreted relative to the ’(S)-topology. In particular, if @ preserves
the space of bounded, nearly Borel, ¢’(S) continuous functions, then Theorem (4.6) gives
a one-to-one correspondence between the bounded solutions of the “coupled” equation

Tf(x) + ¢xY)Qf (6,7 =0, (x,y)E G
and the “uncoupled” equation .
g, (x) =0, (x,7)E€G.

An interesting special case occurs if the evolution is continuous ((5.4)) and G = U X F with
U open in E. In this case, a harmonic function need only be defined on G = U x F and the
theory in Section 4 is more analogues to the classical theory.

6. The branching process. Let D be a compact Hausdorff space with a countable
base and let S = UZ%-o D" where D° = {8} (8 a new point) and where D" is the n-fold
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sAymmetric pl;oduct of D for n = 1. For f € #*(D)/%(R) define fE #*(S)/%(R) by
f(@) =1and f[x1, x2, -+ -, xn] = f(x:)f(x2) - f(x,) for [x1, x2, -+, x.] € D".

Let X; be a standard, continuous, conservative process on (D, #(D)). Let
q € #(D)/%(0, ») be bounded and continuous and let M be the multiplicative functional
of X; given by

M (t) = exp(— f q(Xi(s)) ds).
(1]

Let X, be the killed process associated with X; and M;. Let Z be the direct sum over all n
of the symmetric n-fold products of X; (see [10]). The process Z with state space (S, Z(S))

will be the base process.
Let @ be a transition probability from (D, (D)) to (S, #(S)) such that for x € D,

(6.1) Q(x, D) =0.

We will also denote by @ the transformation from %*(S)/ 2 (R) functions to *(D)/#A(R)
functions:

. Qflx)= JQ(x, dz)f(2).
S

Let p be the instantaneous distribution for 7 associated with @ as in [10].

The revival process Z associated with Z and p is called the branching process (BP)
associated with X1, ¢, and Q (see [10] for details). Z has the following intuitive descripton:
Starting at x € D, a particle moves according to X; for a random time 7; with rate function
q. The particle then disappears or splits into a number of new particles with new positions
according to the probability law @.

Suppose @ satisfies

(62) Q (x, - ) = 2:—0 Pn (x)a[x,x,~ -e,x] ( ‘)

where p, € B(D)/ %[0, 1], and ¥ -0 P (x) = 1, p1(x) = 0 for all x, and where [x, x, - -+, x]
is the element of D" all of whose coordinates are x. Then we say that the particles branch
" continuously.

Note that Condition (3.3) holds at each x € D C S by (6.1). The proof of the following
theorem is similar to the proof of (5.5).

(6.3) THEOREM. Let f € B*(S)/#(R) and let x € D. If Qf is defingd in a neighborhood
of x and continuous at x, then f € 2(%; x) if and only if flp € 2(%; x) and

Uf(x) = Gf(x) + q (%) Qf (x).
Moreover if f € 9(%; x) then f € DUy ; x) and

Wf(x) = W f(x) — ¢(@)f (%).

(6.4) REMARK. In (6.3), if @ has the form given in (6.2), and f = & for g € #*(D)/%(R)
then we have R

U (x) = Tg (x) + q(x) Trizo Pn(x)g" (x).
The proof of the following is identical to the proof of (5.6).
(6.5) LEMMA. Let G be open in D(and hence S). If there exists t > 0 and ¢ > 0 such that
(6.6) Pi[Ti(G)<t]>¢
for x € G. Then (4.2) holds.

Now let G be open in D. Suppose that (6.6) holdsAand that G has regular boundary for
X;. Suppose that X is strong Feller (and hence also ¢(D)). Note that (Z, P*) is equivalent



634 KYLE SIEGRIST

to (Xi1, P%) for x € D. The conclusions of Theorems (4.6), (4.11), (4.12), (4.14) and (4.16)
hold.

An interesting special case occurs if the particles branch continuously ((6.2)). In this
case, a function harmonic on G C D need only be defined on U-o (G)™.

Nagasawa in [11] considers the following setting: Let X, be a standard, continuous,
conservative, strong Feller process on a semicompact (E, Z(E)). Let G be open in E with
compact closure. Suppose (6.6) holds for Xo on G and that G has regular boundary for X,.
Let D = G and let X; be the process on D obtained by stopping Xo on 8G. Let @ satisfy
(6.2) (continuous branching) and suppose further that p, is continuous for each n. Now let
X., Z, Z be as in this section relative to this X;. Let ¢ be a continuous function on 4G with
|1l = 1. Then ¢ is defined on U5-o (8G)" and || é|| = 1. Nagasawa studies the function

6.7) f(z) = EF[$(V)]

where V is the random vector of positions of all particles when they hit (and stop at) the
boundary of G. Using a semigroup representation of f rather than (6.7), he shows that f
solves the nonlinear boundary value problem

(6.8) Uof (x) — q(x)f(x) + g (x) Ti=o Pu (x)f*(x) =0, xE G
limy_.qrecf (x) = ¢(a), a € IG.
Let g be defined from f by (4.8). It is not hard to show that for x € G,
&) = Ef[6 KT (G))].

Thus, fis harmonic for Z on G in the sense of Definition (4.3). Moreover, f is continuous
on G and (6.8) is just Zf(x) = 0, x € G. Also, g satisfies the linear boundary value problem

Ug(x) —qx)g(x) =0, x€EG
lim, .o -ec8€(x) = ¢(a), a€ IG.

It is important to realize, however, that f is strongly influenced by the values of g on
S - G.OnS — G, there does not seem to be a simple way to express g in terms of the base
process Z.
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