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ON DIFFERENTIABILITY PRESERVING PROPERTIES OF
SEMIGROUPS ASSOCIATED WITH ONE-DIMENSIONAL
SINGULAR DIFFUSIONS

By NORIO OKADA

Josai University

In this paper we investigate the differentiability preserving properties of
the semigroup {T;: t = 0} whose infinitesimal generator is a closed extension
of the one-dimensional diffusion operator L = a(x)d?/dx* + b(x)d/dx acting
on C2(I), where I is a closed and bounded interval. Especially we treat the
case in which the smoothness of the diffusion coefficient fails at the boundary.
We get that {T}: t = 0} preserves the one and two-times differentiabilities but
does not the three-times one of sufficiently many initial data.

1. Introduction. Given —» < ro < r; < o, let I be a closed interval in
(=, o) with endpoints ro and r;, and let a(x) and b(x) be continuous functions
on I satisfying a(x) = 0 on I and

(1.1) a(r) =0 =< (-1)’b(r;) for i=0,1
We define the diffusion operator L by
(1.2) L = a(x) (d?/dx®) + b(x) (d/dx).

Let x(¢, w) = w(t) for w € @ = C([0, »), I), # and _# be the s-fields generated
by {x(s): 0 < s < t} and {x(s): 0 < s}, respectively, and C"(I) be the space of n-
times continuously differentiable, real-valued functions on I forn=1,2,3, ---.
A solution to the martingale problem on I for L starting at x € I is a probability
measure P, on (2, _#) such that P,[x(0) = x] = 1 and {f(x(t)) — [§ Lf (x(s)) ds;
_;: t = 0} is a P,-martingale for every f € C*(I). For each x € I, the existence of
such a solution follows easily; refer to [2, 10]. For the uniqueness, Yamada and
Watanabe obtained a nice sufficient condition in [15]. Moreover, Dorea [1],
Ethier [2], Norman [10] and others (for which we refer to the references in
[1, 2]) investigated the differentiability preserving properties of Markov-semi-
group {T}: t = 0} associated with the unique solutions to the martingale problem
on I for L with the smooth a(x) and b(x). Especially Ethier proved that T,
t = 0, maps C™(I) into itself in case a(x) € C™(I) and b(x) € C™(I) for each n
=1,2, 3, --- and Norman also obtained a similar result independently.

In this paper, we study these problems for the case that a(x) > 0 on (ro, 1),
lim,_,a(x)/|x — r;| = fori=0 and 1 and so the smoothness of a(x) fails at
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the boundary. For example we consider the following diffusion operator:

} L +b(x)— on I=][0,1],

= {x(1 — x)}* <{log e

1
x(1- x)
where0=a=<1,-0<fB8<x (8<0if a =0; 3> 0if @ = 1) and b(x) belongs to
C%(I) N {f®(r;) = 0 for i = 0 and 1} and satisfies (1.1). In this example, not only
is the diffusion coefficient degenerate and undifferentiable, but Yamada-Watan-
abe’s sufficient condition for the uniqueness does not hold for 0 < a < 1 or for o
=1 and 8 > 1 at the boundary 0 and 1. Nevertheless, as stated in the general
form in Section 2, we get the uniqueness of the solution to the martingale problem
and the one and two-times differentiability preserving properties of the semigroup
{T;: t = 0} associated with the unique solutions for sufficiently many initial data.

For the significance and applications of these results, refer to the introduction
of [1, 2, 10] and the references listed in them. Also refer to [5.8].

In Section 2, we state the main results.

In Section 3, we prepare several lemmas and, using these results, prove the
main results in Section 4. In lemmas in Section 3, we chiefly engage in detailed
investigations of the boundary conditions which will contain C2(I) since we take
all C%(I)-functions as test functions in the martingale problem. These results are
useful for proving the uniqueness of the solution to the martingale problem.
Moreover, using these results and applying the ideas employed in Ethier [2], we
get the differentiability preserving properties of resolvent operators (A — L)™* of
the semigroup {T;: t = 0} associated with the unique solutions. Thus we obtain
our main results.

Finally in Section 5, we show that the associated semigroup {T': t = 0} does
not preserve the three-times differentiability of sufficiently many initial data.

2. Notations and main results. Let I =[ro, ri] with —o<ro<r; <o, G
be a subinterval of I, and let C(G) denote the space of real continuous functions
on G. For each nonnegative integer n, we denote by C"(G) the space of n-times
continuously differentiable, real-valued functions on G(C°%G) = C(G)) and we
let C3(I) = C*(I) N {f""(rl) =0 for i = 0 and 1} (C3(I) = Co(I)), where f™(x)
stands for the nth derivatives of the function f at x. We define the norm || - ||, on
C™(I) and C§(I) by

Iflln = Xk-o supser| f®(x)].

Then, with this norm, C"(I) and C§ (I) become Banach spaces.

Let a(x), b(x) € C(I° with a(x) > 0 on I° = (ro, r;). We let the domain D(L)
of L defined by (1.2) for these a(x) and b(x) be the set of functions f € C(I) N
C2(I°) satisfying Lf(x) = a(x)f®(x) + b(x)f V(x) = g(x) on I° for some g € C(I)
and define Lf = g on I. We denote D(L) also by C(I) N C3(I°) N {Lf € C(I)}.

" Fix r € I°. According to Feller’s result, the boundary points ro (or r;) are
classified into the regular-boundary, the exit-boundary, the entrance-boundary
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and the natural-boundary. To this purpose, we introduce the following quantities:

u(r) = f im(x) ds(x), v(r) = f iS(x) dm(x),

where

x

m(x) = f a(y)eB® dy, s(x) = f e B dy
and

B(x) = J: b(y)a(y)™ dy.

The boundary point r;(i = 0, 1) is called

regular  in case u(r;) < and v(r;) <o
exit in case u(r;)) <o and vu(r;) =
entrance in case u(r;)) =« and v(r;) <o
natural in case u(r;)) = and u(r;) =

(the conditions are independent of the choice of r). Note that r; is regular if and
‘only if both m(r;) and s(r;) are finite. If r; is entrance, then m(r;) is finite but
| s(r;)| = o. If | s(r;) | = ® and v(r;) is finite, then r; is entrance. If | m(r;)| =
and u(r;) is finite, then r; is exit. Moreover if r; is regular and b(x) € C(I),
lim,_,,.e®® has a finite limit " because

eP® -1 = f a(y)7b(y)e®™ dy

and

f Ia(y)“b(y)e“"”ldyl = lblo f a(y)e? dy’

= bllo] m(r)| <co.

Now we will state the uniqueness of the solution to the martingale problem
on I for L in the general form as follows.

THEOREM 1. Assume that a(x), b(x) € C(I) with a(x) > 0 on I° and (1.1)
holds. Moreover if we assume b(r;) # 0 (i = 0, 1) in case that r; is regular with
eB") = 0 or entrance, then for each x € I we have the uniqueness of the solution
to the martingale problem on I for L starting at x. Conversely if the solution to the
martingale problem on I for L starting at the boundary r; is unique for i = 0 or 1
and r; is regular with e = 0 or entrance, then we have b(r;) # 0.

REMARK 1. For each x € I, let P, be the unique solution to the martingale
problem on I for L starting at x € I and define
(2.1) T.f(x) = EMfG@)), ¢=0,
where EP+ stands for the expectation by P,. Then by results of Stroock and
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Varadhan [12] {T;: t = 0} is a strongly continuous nonnegative semigroup on
C(I).

As for the differentiability preserving properties of {T: t = 0}, we treat the
case where lim,_,,.a(x)/|x — r;| = « holds for i = 0 and 1.

THEOREM 2. Assume that a(x) € CYI% N C{), a(x) > 0 on I°
lim,_,.a(x)(—1)" = % for i = 0 and 1, b(x) € C*(I), and (1.1) holds. Then the
following conclusions are valid.

(i) For each x € I, the martingale problem on I for L starting at x € I has a
unique solution P,.

(i) T, t = 0, defined by (2.1), maps CY(I) into itself, the restriction of
{T,: t = 0} to C*(I) is a strongly continuous semigroup in the norm | - |, with
| T:l1 < e™, and the domain of its infinitesimal generator is the restriction of L
to C3 N C*(I°) N {Lf € CX(I)}, where & = | b [o.

REMARK 2. It is easily seen from the proof of Theorem 2 that, in case

ri 1
j: mdx

we can replace the condition lim,_,,.a'”(x)(—1)' = « by the weaker condition
lim,_,,.a(x)/|x — r;| = © in Theorem 2.

<o for i=0orl,

THEOREM 3. Assume a(x) € C2(I°) N C(I), a(x) >0 on I°,
lim,_,,.a®(x) (1) = oo

for i = 0 and 1, sup,epa?(x) < «, b(x) € CX(I), and (1.1) holds. Then we have
the following results for the semigroup {T:: t = 0}, defined by (2.1), which is
associated with the unique solutions to the martingale problem on I for L.

(i) X — A is a one-to-one map from 2 = Ci(I) N CYI°) N {Lf € C*(I)} onto
CXI) with |(A — A) Y2 = (A — &)1 if A > &, where A stands for the infinites-
imal generator of {Ty: t = 0}, & = max{2[|bP |0 + k, bV |1} and k =
max{0, sup,e0a®(x)}.

(ii) If b(x) € C«I), T, t = 0, maps C%(I) into itself, the restriction of
{T,: t = 0} to C¥(I) is a strongly continuous semigroup in the norm | - | s with
| T:ll2 < e, and the domain of its infinitesimal generator is the restriction of L
to C(I) N C*(I° N {Lf € C¥(I)}.

3. Some lemmas. We now prepare several lemmas for the proofs of theo-
rems. Let notations and symbols not explained in this section be those stated in
Section 2. Especially note that a(x), b(x) € C(I°) with a(x) > 0 on I°.

“LEMMA 1. Letibe 0 or 1 and assume that r; for L is entrance. Then we have
the following results.
(i) If lim,,b(x)(—1)' = », f € C(I) N C*(I°) N {Lf € C(I° U {r:})} implies
lim,,,f"(x) = 0.
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(ii) If b(x) € C(I) and b(r;) # 0, we have
CI) N CXI% N {Lf€ CI° U {r:})}
= C(I) N CYI° U {r:}) N CI% N {lim,_,.a(x)f?(x) = 0}.

PROOF. Since r; is entrance, we have

(3.1) |s(ri)| = o

and

(3.2) | m(r;) | < oo.
Further, it follows from (3.1) that

(3.3) lim inf,_,.b(x)(-1)' > 0

for the case b(x) € C(I) and b(r;) # 0 as well as the case limx_,,,.b(x)(—l)" = o,
Then, from (3.1) and (3.3), we get -

(3.4) lim,_,,e?® = 0.

Now, for f € C(I) N C*(I°) N {Lf € C(I° U {r;})}, let g = Lf. By solving this
differential equation on I° (see Mandl [9], page 22, Lemma 2), we have

fO(x) = e B fO(r) + J(x)} on I°
where
J(x) = f a(y)'g(y)e®? dy.

From (3.2), J(r;) = lim,_,,J(x) exists and is finite. Further, it follows from
f€ C(I) and (3.1) that f*(r) = —J (r;). Consequently, we have

(3.5) fO(x) = e BNJ(x) — J(r;)} on I°

Then, applying I’'Hospital’s rule, it follows from (3.4) and (3.5) that
(3.6) lim,,, fP(x) =0 if lim,.,b(x)(-1)'=®
and

3.7 lim,,,fP(x) = g(r;)/b(r;) if beCUI) and b(r;) #0.

Therefore, as for assertion (i), it is obtained from (3.6). For (ii), we have from
(3.7) that

feCI°Ufr}) and lim,.,a(x)f?(x) = g(r:) — b(r)fV(r;) = 0.

Conversely, it is obvious that f € C(I) N CYI° U {r}) N C*I° n
{lim,_,a(x)f®(x) = 0} implies f € C) NnCHI% Nn{Lfe C(I°U {r;})}. Hence
assertlon (ii) follows. O

LEMMA 2. Let ibe 0 or 1 and assume that r; for L is regular and b(x) € C(I).
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Moreover assume b(r;) # 0 if eB") = 0. Then we have

C(I) N C*(I°) N {Lf € CI° U {r:))} N {u(r) DI f(r:) (—1)" = 8(ri) Lf (r:)}
=C) N CYI°U {r}) N CHI°) N {lim,_,a(x)f®(x) = 0},

where u(r;) = b(r;)(=1)’, 8(r;) = €9 and D7 f(r;) = lim,,.f®(x)e®*.

(3.8)

Proor. For f€ C(I) N C¥I° N {Lf € C(I° U {ry})}, we let g = Lf; then we
have

(3.9) fPx) = e BDfD(r) + J(x)} on I

where J(x) = [*a(y) 'g(y)e??dy.
In case 2" = 0, from b(r;) # 0, we have

C(I) N C*(I°) N {Lf € C(I° U {ri})}
(3.10) N {u(r) D7 f(r) (=1)° = 8(r;) Lf (r:)}
= C(I) N C*(I°) N {Lf € C(I° U {r:})} N {DSf(r:) = O}.
It follows from (3.9) and (3.10) that
fO(r) + J(r) = lim,.,.f (x)e?® = DIf(r;) = 0

for f which belongs to the left side of (3.8) (It should be noted that r; being regular
implies that J(r;) = lim,_,,,J (x) has a finite limit). Then, applying 'Hospital’s
rule to (3.9), we have

lim,_,.f V(x) = g(r)b(r)™
and hence
fecuI’uirj
and
lim,.,a(x)f®(x) = g(r;) — b(r)f P(r) = 0

for f which belongs to the left side of (3.8). Noting (3.10), the converse part of
this case is easily seen because of Lf € C(I° U {r;}) and D f(r;) = 0 for f which
belongs to the right side of (3.8).

In case e > 0, it follows from (3.9) and lim,_,,J(x) having a finite limit
that lim,_.,, f ¥(x) has a finite limit /*(r;). Hence we have also

lim,_,,a(x)f®(x) = g(r;) — b(r)f(r:)
= Lf(r;) — u(r)e 2D} f(r;)(-1)" =

for f which belongs to the left side of (3.8). The converse part of this case is
- obvious since it is easily seen tha}t Lfe C(I°U {r;}) and

u(ri) D} f(ri) (—1)* = 8(r:) Lf (r2)
for f which belongs to the right side of (3.8). 0
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LEMMA 3. Let a(x), b(x) € C(I) and define
D = C*(I) N C¥I° N {lim,_,,a(x)f®(x) = 0 for i = 0 and 1}.
Then, for each positive integer n and f € D, there exists f, € C*(I) such that
| fo = fllo—0and | Lf, — Lfllo—>0asn — .

Proor. Foreachf€ D,let Lf = g € C(I) noting D C {Lf € C(I)}. Then, for
n=1,2, ---, we can choose sequences {x,} and {y,} C I in such a way that
Fo<Yn <X, <T,X,—>Toas n —> o,

0< 20— ya = YnlfPn)]) if FP(xa) #0,
[fP(x,)| (xn — ¥n) < 1/B, SUDp<sss,a(x) = a(x,),
and
a0 2| + [fV@) - FO) | < 1/n

for all x € [ro, x,]. We can also choose sequences {z,} and {v,} C I for each
n=12,---insuchawaythatr<z,<v,<ry,z,—>riasn—oo,

0<v,— 2, =<1/(n|fPza)|) if fP(za) #0,
[ f®(2,) | (Un — 20) < 1/n, sup, <i<ra(x) = a(z,)
and
a(X)|fP)| + | fP>x) — fPz.)| = 1/n

for all x € [z, r1]. Foreachn =1, 2, - - -, let h,(x) be a continuous function on
I such that h,(x) = f®(x) for x € [x,, 2,], hn(x) = 0 for x € [ro, ¥u] U [Un, ri],
| ha(x)| < | FP(x,)| for x € [yn, %], and | ha(x) | = |fP(2,) ]| for x € [2,, v,].
Using h,(x), we define a C3-function f,(x) on I by

x 'y
falx) = f f ha(2) dz dy + fO(r)(x — 1) + f(r).
Then it is easily seen that | f, — flloand | Lf, —gllo—> 0 asn—c.[]

LEMMA 4. Let i be 0 or 1 and assume that a(x) € C*(I°), | [Fa(x) dx| = o
and lim inf,_,a(x)|x — r;|™" > 0. Suppose further that b(x) is of the form
b(x) = a®(x) + b(x), where b(x) is Lipschitz continuous on I° U {r;} and satisfying
b(r;)(=1)' = 0. Then r; for L is entrance.

PROOF. Let r; = r; (the case r; = ro is similar). Assume b(r;) = 0. Then there
are positive constants C, and C, such that

a(x)(r, —x) <C; and |b(x)|(ri—x)t=<Cy on [r,ry).
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From these and [} 1/a = %, we have that

v(r) = J:rl {J:x a(y)“exp(— j:y a(z)7'6(2) dz) dy}

- exp ( f a(y)™'6(y) dy) dx
< exp(2(r; — r)C,Cy) fl {f Ci(r, — ¥ dy} dx < o

_ a(r) b(y)
s(rl)—J: a() p( ra()d>dx

= a(r)exp(—(r, — r)CiCy) % B

r

and

Therefore it follows easily from these that r, is entrance in the case b(r;) = 0.
Next, assume b(r;) # 0. Then there are positive constants é and ¢ (< r; — )

such that
(3.11) b(x) = —6 forall x € [r —e ril

From this, we have that

Ty I fx (_ 'y 9—(2—) ) 1 . ( % b(y) )
L -cl - exp . alz )dz dyJ a(x)"'exp .a (y) dx

1L ek 820l 23
) rl—el = a(y) exp r—e @(2) dz dyJ exp r—e a(y) y | dx

<

IA

IA

SRR

and so
(3.12) v(ry) < .
We also have from (3.11) and [;* 1/a = o that

SR S I CY) f"am—e) . f dy)
f e"p( e aly) dy)"’ =J " al) e’“’(a e ) &

" dx
=>a(r, —¢) r_@=w
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and so

(3.13) s(ry) = oo,

Hence, from (3.12) and (3.13), we conclude easily that r, is entrance in the case
b(ry) # 0 also. O

REMARK 3. In the case b € C(I°) and lim inf,_,.5(x)(—1)' > 0, we can drop
the conditions lim inf,_,, a(x)|x — r;|™" > 0 and the Lipschitz continuity of
b(x) on I in Lemma 4.

LEMMA 5. Let i be 0 or 1 and assume that| J'" dx/a(x)|] < « and
lim,..a(x)| x — r;| ™" = . Suppose further that a(x) € C'(I°) and b(x) is of the
form b(x) = a®(x) + b(x) for a continuous function b(x) on I° U {r;}. Then we
have

C(I) N CXI°) N {Lf € CI° U {ri)} N {DJf(r;) = 0}
(3.14) = C(I) N C*I°) N CH(I° U {r) N {fD(r;) = 0}
N {Lfe CI° U {r}.

PROOF. Let f belong to the left side of (3.14) and g = Lf. Then we have

o) _ﬁ (_ b(y) ) ) 0
(3.15) (%) a(x) exp aly) {fP@r) + J(x)} on I°

where

J(x)=j: a(r)‘lg(y)exp<j: a(z)7'b(2) dz) dy.

Moreover we have
(3.16) lim,,, {fP(r) + J(x)} = lim,,,fP(x)eB® = Dff(r;) =0

and J(x) € C'(I°U {r;}) because of | [71/a| < . Then, applying the mean value
theorem to J (x), we get J (x) + fV(r) = O(| x — r;|). It therefore follows from
(3.15) and | 11 1/a| < o that

fP) = (1/a(x) 0] x = r:]).

Consequently, from lim,_.,a(x)/|x — r;| = », we conclude lim,_,,.f"(x) = 0. As
for the converse part of (3.14), it follows easily from

fP(x)a(x) ( * b(y) )
an *P\J ap®

for f which belongs to the right side of (3.14). 0

Dif(ri) = lim,,,

LEMMA 6. Assume that

a(x)
[x — 1]

(3.17) lim inf,_.,, >0,
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(8.18) [b(x) = b(y)| =Clx -yl
for all x, y € I and some positive constant C, and
(3.19) b(r)) (1) = 0.

Then we have
(i) r;is exit if | [Tia(x)™" dx| = » and b(r;) = 0,
(i) r; is entrance if b(r;) # 0 and | s(r;)| = o (therefore | [7ia(x)™" dx | = ),

(iii) r; is regular otherwise (i.e. | [ a(x)™" dx| < o or both b(r;) # 0 and | s(r;)|
< ),

Moreover define D = Dy N Dy, where

(a) D; = D(L) N {Lf(r;) = 0} in case (i),
(b) D; = D(L) in case (ii)

and

(¢) D; = D(L) N {u(r;) DY f(r)(=1)" = 6(r)) Lf (r))} in case (iii) (u(r;) and 5(r;)
are those defined in Lemma 2).

Then we have the following results:
(iv) D =D = Dy N D, where
D;=D n c() N {lim,_.b(x)f"(x) = 0}

) " dx
AR

D;=Dn C'I°U {r;}) otherwise

=ow and b(r) =0,

and
D = CX(I° N {lim,_,a(x)f®(x) = 0}.

ProoF. (i) It follows from (3.17), (3.18) and b(r;) = 0 that

(3.20) J:r' % dx | <o
and hence, from (3.17) again,

(3.21) u(ry) < .

We also have from (3.20) and | [7:1/a| = o that
(3.22) [ m(r;)| = oo

Cdnsequently (3.21) and (3.22) ifnply that r; is exit.

(ii) From (3.18), (3.19) and b(r;) # 0, we have lim inf,_,, b(x) (=1)! > 0 easily
and so, by similar calculations to those done in the proof of Lemma 4, v(r;) < .
Hence we conclude easily from this and | s(r;) | = o that r; is entrance.
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(iii) If | f771/a| < o, then we have u(r;), v(r;) <o by simple calculations and
hence r; is regular. If b(r;) # 0, then, from (3.18) and (3.19), the same calculations
as done in (ii) yield v(r;) < . Hence, from this, we conclude easily that r; is
regular if b(r;) # 0 and | s(r;)| < . Thus (iii) follows.

(iv) From the results of (i), (ii) and (iii), we have b(r;) # 0 in case r; is entrance
or in case r; is regular and e = 0. Therefore, from (ii) of Lemma 1 and Lemma
2, we get D; = D; in case (b) or (c). Then the only thing left to prove is D; = D;
in the case (a). For f € D;, let g = Lf. Then solving this equation yields -

f(l)(x) = e—B(x).lf(l)(r) + fx &_). eB® dy} on I°

a(y)
and so, from (3.18), (3.20) and b(r;) = 0, it follows that

I3

roa(y)
for some positive constants C; and Cs. Since, by (3.17), the second term of the
right side vanishes at r;, we therefore have
lim,_,,,b(x)fP(x) = 0
and consequently, because of Lf(r;) = 0,
lim,a(x)f®(x) = Lf (r;) — lim,_,b(x)fV(x) = 0.

From these we conclude f € D;, that is, D; C D;. The converse part D, D D; is
obvious because of Lf(r;) = lim,_,,{a(x)f®(x) + b(x)f*(x)} = 0 for f € D; and
this completes the proof of Lemma 6. 00

1b(x)fP(x) | = Cilx—ril + Caligllolx — ril on I°

4. Proofs of main results.

PROOF OF THEOREM 1. The first half. Since a(x) > 0 on I°, it suffices to
show the uniqueness of the solution starting at the boundary. We prove the
uniqueness for the following two cases since the other cases can be reduced to
these cases.

CASE 1. The boundary points ro and r; are exit or natural. We will show that
the path starting at the boundary point r; never enters into I° in this case. Then
the uniqueness follows immediately.

For x € I, let P, be a solution to the martingale problem on I for L starting at
x and E, denote the expectation by P,. Let

x y
u(x) = f e BY dy f a(z)7%eP? dz'+ 1 € C¥(I°
rote rote

for sufficiently small ¢ > 0. It is obvious that u, > 0, Lu, < u, on I° and lim, ou.(x)
= o for each x € I° since ry is exit or natural. For each n = 1 and any « €
(ro + ¢, r1), define the stopping times 7,(e, a) and o,(¢) as follows:

Tale, @) = inf{t = o,-1(¢): x(t) = ro + /2 or o}
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and
on(e) = inf{t = 7,(e, a): x(t) = ro + ¢},

where 7o(e, @) = ao(e) = 0. Further let 7(yy) be the first hitting time to {y} for
y € I°. Then applying (b) of Theorem 2.1 in Stroock and Varadhan [13] and the
optional sampling theorem to f.(¢, x) = e ‘u.(x), we have

E,+[exp(—71(e, a))u.(x(71(e, @))) — u.(x(0))]
(4.1) = limywE . [exp(—7i(e, @) A t)u(x(r1(e, @) At)) — u.(x(0))]

T1(e,a) A L
= limtTwE,oﬂ[ J; e “(Lu, — u.)(x(u)) du] =0.

On the other hand, from 0 < ci—1(e) < 7i(e, @) < 0i(e) < o and u.(ro + ¢/2) >
u.(ro + ¢) = 1, we have

Uo(a) Erpsofe™")]
= Erprde  “u(x(r()))]
= lim, o By N Ou, (x(1ale, @) N 7(a)))]
= lim, o By Tiaffe N Ou,(x(ri(e, @) A 7(a)))
— e Oy (x(gi1(e) A 7(@)))}
+ {e" 1My (x(gim(e) A 7(a)))
— e @M@y (x(7,1(e,a) A 7(a)))}} + u.(x(0))]
= liMpose Y1 (Erprel{oici(e) < 7(a)}: e %u,(x(ri(e, a)))
— e 1%, (ro + &)] + Erpelfoioi(e) = 7(a)}:
e, (ro + &) — ey (ro + ¢/2)]} + 1
< lim 8Uppw N1 Ergrlfoi-i(e) < 7(a)}: €7 Yu,(x(rile, a)))
— ey (rg + &)] + 1
= lim suppar S limeguErpedloia(e) < 7(c) A t): €1
Epy v e 0y (x(71 (e, @)(0i-1,0)))
— wro + &) | Aupyond] + 1

for ro + ¢ < o, where _#,_a. is the o-field associated with a,_;(e) A t, 0,1, the
shlft operator such that x(s, i-1,.0) = x2(s + oi1(e) A t, w) and aA b = min{a, b}.
Note that P, +.[0721,[- 1] 44, yeadl(w) is a solution to the martingale problem on
I for L starting at x(ai_l(s)/\ t, @) P,+. — a.s. and P, is unique on 7 (,aas for
all s = 0, where _# (s is the o-field associated with 71(¢, @) As. Consequently
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it follows that
u(@) E pr[e@)]
< lim sup,.o Yl limyeErpio[{oimi(e) < 7(a) A t}: e~-19)
(4.2) © B e U (x(r1(e, @) — u.(x(0))] + 1
< lim SUppwBrprcle Y (x(71(e, @))) — u(x(0))]
AZE Erglloii(e) < m(a)}: e7 @)} + 1,
Then combining (4.1) and (4.2), we get
E,vle™@ < 1/u(a) foranye>0 and « € (ro + ¢, r1).
So we have
lim, o E,.[e”] = 0.
It therefore follows from this that, for any ¢t = 0 and « € I°,
(4.3) lim,, P.[7(a) < t] = 0 wuniformly for any solution P,,

that is, given t = 0, « € I° and ¢ > 0, we can choose some 6 > 0 such that
P.[7(a) = t] <& for any x € (ro, ro + 6) and any solution P, starting at x.

Let P,, be a solution starting at ro, _# (s, the o-field associated with 7(y) A ¢
and 0,,). the shift operator such that x(s, 8,,)a:@) = x(s + 7(y) A t, w). Then we
have

P lr(@) = t] = P{r(y) = t} N {1(a) (0,)a ) < t}]
= E,[{7(y) = t}: P, [07G)nclr(@) < t]| #iynell

for ro < y < a. So noting that P, [07a:[-]] #pacl(w) is a solution to the
martingale problem on I for L starting at x(r(y)A¢, w) P,, — a.s. and letting
¥ | ro, we get from (4.3) and (4.4) that P, [7(«) < t] = O for any ¢ = 0. It there-
fore follows that P, [r(a) < ®] = 0 for any o € I that is, P, [x(t) = ro for all
¢t = 0] = 1. Applying the same way to a solution P, starting at r,, P [x(t) =r
for all t = 0] = 1 also follows.

(4.4)

CASE 2. The boundary points r, and r; are regular or entrance. Let D = C(I)
N CHI%) N {Lf € C(D)} N {u(r) DFf(r:) (1) = 6(r;) Lf (r3) if r; is regular}, u(r;)
= b(r;)(—=1)" and &(r;) = 7. Then, by Feller’s result, the restriction L |p of L
to D generates a strongly continuous contraction semigroup {T,: t = 0} on C(I)
(for details, refer to Mandl [9], Chapter II). On the other hand, it follows from
assumptions (ii) of Lemma 1 and Lemma 2 that D = C*I° N C'() N
{limx,.,,ia(x)f‘z’(x) = 0 for i = 0 and 1}. Hence it follows from this result and
Lemma 3 that L | p is the closure of the restriction of L to C*(I), that is, C%(I) is
a core for L|p. Consequently, by standard arguments, we get the uniqueness of
the solution to the martingale problem on I for L (especially, starting at r;).
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The latter half. Let r; = r, and suppose that the conclusion does not hold.
That is, let r; be regular or entrance, b(r;) = 0, and e?" = 0 if r; is regular. As
for ro, we can assume without loss of generality that ro for L is the natural
boundary point because of the local property of the solution to the martingale
problem (see Theorem 6.6.1 in [14]).

Let &, be a probability measure on (2, _#) such that §,[x(¢) = r; for all t = 0]
= 1. Then obviously 4, is a solution starting at r;. ’

On the other hand, let D = C(I) N C?3(I°) N {Lf € C(I)} N {DJ f(r)) =0if ry
is regular}. Then D contains C2(I) because of e¥ = 0 in case r, is regular and,
by Feller’s result, the restriction L |p of L to D generates a strongly continuous
contraction semigroup {7T: t = 0} on C(I). Consequently, in the same way as that
of Theorem 4.1 in Stroock and Varadhan [12], we can construct a solution @, to
the martingale problem on I for L starting at r, such that T;f(r,) = E, [f(x(t))]
for f € C(I). Here E,, stands for the expectation by Q.. )

Now we will show @, # 8. By Theorems 61.2 and 61.3 in Ito [7], there exists
a function u(x) on I such that u € C((r, r1]) N C*(I° N {Lf € C((ro, r])},
D}u(r)) = 0, u(ry) > 0 and (1-L)u = 0 on (ro, r1] (u(x) is also positive and
decreasing on I°). Let h(x) be a C*(R')-function which is equal to 0 and 1 in
some neighborhoods U, and U,(Up N U, = ¢) of ro and ry, respectively, and
define v = hu. Then it is easily seen that v € C(I) N C*(I°) N{LfEC(I)},v=1u
on U, N I and D} v(r;) = 0. Hence we have v € D, v(r;) > 0 and g(r;) = 0, where
g = (1-L)v € C(I). Consequently it follows that

E,,[ J; e 'g(x(t)) dt] = J; e 'T,g(ry) dt = (1 — L) 'g(r)

= U(rl) > 0.

_This implies Q,,[x(¢) = r; for all £ = 0] <1 and so we have Q,, # d..
Thus the martingale problem on I for L starting at r; has two solutions at
least and it contradicts the uniqueness. Similarly, we get the same result for
r; = ro. Hence the theorem is proved. 00

REMARK 4. In Theorem 1, we add the assumption that there exists some
positive constant K such that b(x)(—1)' < K|x — r;| forall x € I and i = 0, 1,
from which follows b(r;) = 0. Then an application of Gronwall’s inequality to
E.[|x(t) — ri|] implies the uniqueness of the solution P, to the martingale
problem on I for L starting at r;. Consequently it follows from this fact and the
latter half of Theorem 1 that r; is neither regular with e#? = 0 nor entrance.
Moreover we get the result that, in case | [7 1/a| = o, r; is neither regular nor
entrance. Here we have used the fact that, if r; is regular, | [7 1/a| = o implies
€8 = 0 since lim,_,,e?* has a finite limit " and

ri -
f a(x)'eB® dx
X

This result is also found in the proof of Lemma 2 in Ethier [2].

< o,

|m(r)]| =
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REMARK 5. Using Proposition 3 in Dorea [1] and applying Theorem 4.1
in Stroock and Varadhan [12], we have that the infinitesimal generator of
{T,: t = 0}, defined by (2.1), is equal to the restriction of L to D, which is defined

by
D = C({) N C¥I° N {Lf € C(I)}
N {Lf(r;) = 0 if r; is exit; u(r) DY f(r)(=1)" = 8(r)Lf(r))
if r; is regular for i = 0 and 1},

u(r) = b(r)(-1),, 8(r;) = BT,

REMARK 6. In Theorem 1, if r; is regular or entrance for i = 0 and 1, C*(I) is
a core for the infinitesimal generator A of the semigroup {T: t = 0} associated
with unique solutions to the martingale problem. If b(x) is Lipschitz continuous
on I, we can show that C%(I) is a core for A also in the case of r;(i = 0, 1) being
exit. But in the other cases, we do not know whether C2(I) is a core for A or not.

REMARK 7. In the exit boundary case, the fact that the path starting at the
boundary point r; never enters into I° has already been shown in Gihman and
Skorohod [4] pages 163-165. On the other hand, the technique used in Case 1 in
the proof of Theorem 1 is useful for the multidimensional case and the related

topics will be stated elsewhere.

REMARK 8. Let D = C(I) N C*(I° N {Lf € CI)} N {Lf(r;) = 0 if r; is exit;
uw(r) DY f(ri) (=1) = 6(r;) Lf (r;) if r;is regular for i = 0 and 1} for some nonnegative
constants u(r;) and 6(r;). That is, D is Feller’s boundary condition without
killings and jumps at the boundary. By some calculations, we have the fact
that, if the conditions of the first assertion of Theorem 1 hold, u(r;) and &(r;)
(=0, 1) such that D C C%(I) and u(r;) + 86(r;) = 1 exist and are unique in case
ro and r; are regular. Then applying Theorem 12.2.4 in Stroock and Varadhan
[14], we get the first assertion of Theorem 1 also from this fact and further
properties of one-dimensional diffusion process. But we omit its proof.

PrOOF OF THEOREM 2. (i) From [2] (or [11]) follows the existence of the
solution to the martingale problem on I for L starting at any x € I. Moreover
from (i), (ii) and (iii) of Lemma 6, we see that the assumptions of the first
assertion of Theorem 1 hold under the assumptions of Theorem 2. Therefore the
uniqueness follows immediately.

(i1) It follows from (i), (ii) and (iii) of Lemma 6 and Feller’s result that L | p,
which is the restriction of L to D defined by (a)-(c) of Lemma 6, generates a
strongly continuous contraction semigroup {S;: t = 0} on C(I). Moreover, from
(iv) of Lemma 6, we have easily that C2(J) C D. Then, in the same way as that
of Theorem 4.1 in Stroock and Varadhan [12], we have solutions @,(x € I) to
the martingale problem on I for L associated with {S;: ¢t = 0}. Hence it follows
from the uniqueness of the solution that {S,: t = 0} is equal to {T: t = 0}, that
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is, L | p is equal to the infinitesimal generator of {T\: t = 0}. Therefore, in order
to prove assertion (ii), it suffices to show that (a) C3(I) N C3(I°) N {Lf € C*(I)}
is contained in D and a dense subset of C'(I) (with respect to || - ||1), and (b) the
equation (A — L)u = f has a (unique) solution u in C3(I) N C3(I°) N {Lf € C*(I)}
for all f € C*(I) if A > || ||, and this u satisfies | w ||, < | fll.(A = |8V ]lo)7%
By simple calculations, (a) follows from (iv) of Lemma 6 and the fact that C*(I)
N {f® has a compact support in I°} is contained in C3(I) N C*(I°) N {Lf € C*(I)}
and dense in C(I).
Now we will show (b). First we note that it follows from Feller’s result that

(4.5) lullo= A fllo if u€D and (A— L)u=f€ C().
Define the differential operator H by
Hf = af® + (a® + b)fY on I°
Hf(r;) = lim,_,Hf(x) for i=0 and 1
with the domain
D(H) = C(I) n C¥I°) N {Hf € C(I)}.

In case | 7 a(x)™ dx| = o for i = 0 or 1, r; for H is entrance by lim,_.,,a”(x)
- (—1)! = » and Lemma 4 and, in case | [7 a(x)™' dx| < o fori =0 or 1, r;for H
is regular by the simple calculation. Hence it follows from

lim, ., a®(x) (—1)" = o,
(i) of Lemma 1 and Lemma 5 that
(4.6) DH) c cXI) N {fYr;) = 0 for i = 0 and 1},

where
D(H) = C(I) n C*(I° n {Hf € C()}

x (1)
n {limx_,,if‘”(x)exp( f gz_iya)(;)ﬂ dy> =0

if ri}(i=0,1)is regular}

(more precisely, we have D(H) = C*(I) N C?(I°) N {fP(r;) = 0 for i = 0 and 1}
N {Hf € C(I)}). Moreover the restriction H |5 of H to D(H) generates a
strongly continuous contraction semigroup on C(I) by Feller’s result. Then, if
we define the bounded operator V on C(I) by Vf = b®f for all f € C(I), by
Theorem 13.2.1 of Hille and Phillips [6], the operator H = H + V defined on
D(H) generates a strongly continuous semigroup on C(I). Consequently, for each
f€ CYI) and X > || b, the equation (A — H)v = f¥ has a unique solution v
in D(H) and, moreover, v satisfies

(4.7) lollo =< I/ PN = 1M ]10)7™
We now define uy(x) = 6 + [} v(y) dy for this v and some 6 € R'. Then, since we
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have
(A =LY =N-HuP =A-Hv=Ff on I

there is some 6, € R! such that

(4.8) (A= L)uy, = f.
Further, from (4.6), we have

4.9) ug, € C3(I) N C¥(I°)
and so, from (a) and (4.5),

[(4.10) usllo = A7 fllo-

Hence (b) follows from (4.7), (4.8), (4.9) and (4.10). Thus the proof is complete. 0

REMARK 9. The result of (4.9) depends on the differentiability of f. Indeed
let I = [0, 1], a(x) = x(1 — x)log 1/x(1 — x) and b(x) = 0. Then the boundary
ro =0 and r, = 1 are exit and u(€ C(I)) and v(€ C(I)) satisfy (1 — L)v =u
and Lv(r;) = 0 for i = 0, 1, where u = x(1 — x){2(1 — 3x + 3x2) (log x(1 — x))' +
2x(1 — x) — 2(1 — 2x)*(log x(1 — x))™% and v = x(1 — x) (log x(1 — x))~. Hence
veED(A)andv = [ e 'Tudt = (1 — A) 'u. But v is not differentiable at 0 and
1. Next let Gi(x, y) be Green function with respect to dm(x), then v(x) =
J1Gi(x, y)u(y)dm(y) for above u(x) and v(x). If 4G,(x, y)/0x exists for all
(x, ¥) € I X I and there is a measurable function g(y) such that | 3G, /dx | < lg]
and [;|g|dm(y) < oo, then v belongs to C'(I) and this is a contradictory result.
Consequently Gy(x, y) cannot be a nice function. Thus, from these arguments,
we see that it will be very difficult that we obtain the results of Theorem 2 (and
Theorem 3) from eigen-differential expansions for Green functions and transition
densities.

PROOF OF THEOREM 3. (i) From the fact mentioned in the proof of (ii) of
Theorem 2, it suffices to prove that (a) 2 = C3(I) N C*I° N {Lf € C¥I)} is
contained in D which is defined by (a)-(c) of Lemma 6, and (b) the equation
(A = L)u = f has a (unique) solution u in 2 for all f € C*(I) if A > ¢, and u
satisfies || ulz = [ fll2(A — £&)7". By simple calculations (a) follows easily from
(iv) of Lemma 6. ,

As for (b), we will show that U = ug, obtained in the proof of (ii) in Theorem
2 satisfies the assertions of (b) for all f € C*(I): in the proof of Theorem 2, we
had, for each f € C*(I),

(4.11) U = uy, € C3(I) N CX(I°) N {Lu € C'(I)} C D,
(4.12) N\-LyU=f,
(413) I Ulo=lfllox™ and U Yo =< IfPlo(X = 5P 0)

(see (4.7), (4.8), (4.9) and (4.10)). First, differentiating both sides of (4.12) yields
(4.14) AU — aU® — (a® + b)UP — pOU® = fO on JO,
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Solving (4.14), we get

_a(r) _J%%ﬁ
UP® = eXp< - a(y) dy)

f U = F00) = bU(U) (J”ﬂﬁ
"[U(m(r)"'.[ o) exp | a2) dz | dy

and so U® € C?(I°), that is,
(4.15) U e C4{IY.
Further differentiating both sides of (4.14) yields
>\U(2) _ MU(2) — (k + 2b(1)) U(2)_ b(2)U(1) = f(2) on IO,

where M = a(d?/dx?) + (2a'¥ + b)(d/dx) + a'? — k. It is easy to check that M is
a dispersive (s) operator on I° for all f € C3(I°). Hence, noting U®(r;) = 0 for
i =0 and 1, it follows that

IUP o< { (B+ 210V UP Mo + 15@ 1ol UM o + I /P l}N
for A>k+2[bY],.

(4.16)

Combining (4.13) and (4.16), we have

(RUAPEA VAP
maxd 1 15210 L1
IN=k=216D1" A\ =k = 210D (A = 15D0) * X = 16D of

for AX>k+ 206D,

. Find the minimum C such that max{(A — & — 2| 6P[lo)™, (A = 6P ]o)*

+ A=E=2[5Y0)7 A = 16D 10) 8@l o} = (A — C)7* for all A > C. Then,

by simple calculations, it is equal to & = max{||d® |4, 2] 6P ]lo + k}. We have

therefore

(4.17) TUNz < Ifllz2(A = £2)7" forall A> &

Thus the assertions of (b) follow from (4.12), (4.15) and (4.17) and this completes
the proof of (i).

(ii) From (4.12) and the results of (i), we have only to prove that 2, = C2(I)
N C*(I°) N{Lf€ C3(I)} is dense in C3(I) (with respect to | - || ). But this assertion
follows from the fact that C*(I) N {f® has a compact support in I°} is dense in
C%4(I) and contained in 2, in the case b(x) € C3(I) and the proof of Theorem 3
is complete. [0 :

5. A remark on the three-times differentiability preserving prop-
erty. In this section, we consider the three-times differentiability preserving
property of the semigroup {T;: t = 0} associated with the unique solutions to the
martingale problem on I for L for sufficiently many initial data.
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For simplicity, we consider the following example. Let I = [0, 1], a(x) =
{x(1 — x)}V2, b(x) € C3(I), A with the domain D (A) be the infinitesimal generator
of {T,: t =0}, and let u = (A — A)7Yf for f € C3(I) and A > 0. Then it follows
from Theorems 2 and 3 that u € C3(I) N C*I°, (\ — L)u = f, u'® € D(H),
(A = H)u® — bDy® = f@ and that the boundaries 0 and 1 for H are regular,
where H = a(d*/dx*) + (a' + b) d/dx and DH) = C) n C¥IY n
{Hf € C(I)} N {lim,..f P(x)exp{[{,(a®(y) + b(¥))a(y) ™" dy} = 0 for r; = 0 and
1}. Further from (3.15) and (3.16), we have

O = L <_ fx __bly) >
(51u>2)u) 1= 0 “P\” p -

. ) ()] — f — p )] 7 b(2) )
Jr: Au(y) = fP () = P (yu (y))exp(JJ/2 P dz| dy

for r; = 0 and 1. Consequently it follows easily from (5.1) that, if A\uP(r;) =
fO®r) + bV(r)uP(r;), then u € C3(I) N C&(I) and, if \u®(r;) # fO(r;) +
b (r;)u®(r;), then u is not three-times differentiable at r;(= 0 or 1). Let E be a
closed subspace of C*(I) with respect to | - |3 such that T.E C E for all ¢t = 0
and T is strongly continuous on E with respect to || - | 5. Then it is obvious by
above results that E is contained in C3(I) N C3(I). But it is easily seen that E is
not a dense subset of C*(I) with respect to || - || 1, because, if we assume that E is
dense in C*(I) with respect to || - ||1, then F = {f*: f € E} is dense in C(I) with
respect to | - [|o. Moreover it follows from above results that, if (A — H — bV)u
=fon I for f € F and u € D(H), we have \u(r;) = f(r;) + bV(r)u(ry),
that is, Hu(r;) = 0 for i = 0 and 1. Hence it follows from the boundedness of
(A= H — M7 from C(I) onto D(H) that

(5.2) Hu(r)) =0 forall u€ D(H) and i=0 and 1.

On the other hand, by an argument similar to that given in the proof of the latter
half of Theorem 1, we have a v; € D(H) such that v;(r;) > 0 and (A — H)v;(r;)
= ( for each i = 0 and 1. Then Huv;(r;) = Av;(r;) # 0 and this contradicts (5.2).
Thus we see that E is not a sufficiently large set in C*([).

Now let I' = {the set of linear function on I} and b(x) € I'. Then it follows
easily from the martingale property that T, I' C T for all £ = 0 and T is strongly
continuous on I' with respect to || - | . That is, I' is a nonempty trivial example
of E. But we do not know whether there exists an E that is larger than T'.
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