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AN ITERATIVE PROCEDURE FOR OBTAINING
I-PROJECTIONS ONTO THE INTERSECTION OF CONVEX
SETS?

By RICHARD L. DYKSTRA
The University of Iowa

A frequently occurring problem is to find a probability distribution lying
within a set & which minimizes the I-divergence between it and a given
distribution R. This is referred to as the I-projection of R onto & Csiszar
(1975) has shown that when & = N{ & is a finite intersection of closed, linear
sets, a cyclic, iterative procedure which projects onto the individual & must
converge to the desired I-projection on &, provided the sample space is finite.

Here we propose an iterative procedure, which requires only that the &; be
convex (and not necessarily linear), which under general conditions will
converge to the desired I-projection of R onto N{ &;.

1. Introduction. Suppose p and g are probability measures defined on
subsets of the finite set 2; which without loss of generality we take to be the first
m positive integers. The I-divergence of p with respect to g, also called the
Kullback-Liebler information number, cross-entropy between p and g, informa-
tion for discrimination, entropy of p relative to g, etc., is given by

(1.1) I(p |l @) = Xi=1 p(k)In(p(k)/q(k))

where p(k) is the mass placed by the probability measure p at the point k. We let
P denote the set of all probability measures on 2, and use the convention that
products (or quotients) are to be interpreted as pointwise multiplication (or
division). For example, s;» = rpi1/s;; means that the measure s;, puts mass
r(k)p11(R)/s1:(k) at k.

We mention that I(p | g) is defined analogously for general probability mea-
sures on infinite spaces, but for simplicity, we will only consider finite sets. (See
Kullback, 1959, or Csiszar, 1975, for the general definition.)

It is well known that I(p | g) = 0, and that I(p| q) = 0 iff p = q. Thus it is
heuristically reasonable to think of I(p || g) as representing a “distance” between
p and g. However, I(- || -) is not a metric, nor is the symmetrized version

I I
Jplg) = (pllq)-zlr (qllp)

used by Jeffreys (1948). Nevertheless,
(1.2) i | p(k) — q(k) | < [2I(p | )17,
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976 R. L. DYKSTRA

as shown independently by Kullback (1967), Kemperman (1967), and Csiszar
(1967), so that we have some idea of what small values of I(p || g) imply.

If we interpret I(p| q) as distance, then it seems natural to define the I-
projection of the probability distribution r onto a set & of probability distributions
as being a ¢ € & such that I(q || r) < « and

(1.3) I(q|lr) = minpez I(p || r).

In some sense, g is a measure in & that lies as close as possible to r.

Minimization problems of the form (1.3) play a key role in the information-
theoretic approach to statistics (e.g., Kullback, 1959; Good, 1963; etc.) and also
occur in other areas such as the theory of large deviations (Sanov, 1957) and
maximation of entropy (Rao, 1965; and Jaynes, 1957).

However, in statistical circles, I-projections are probably most important for
being dual problems to certain log-linear model maximum likelihood estimation
(MLE) problems. In particular, it is known that the multinomial MLE problem:

(1.4) Maximize [][%; p(k)"® subjectto pEP, Inp € .#

(where .# is some subspace of R™ containing the constant vectors) has precisely
the same solution as the I-projection problem:

(1.5) Minimize I(p|u) over P suchthat s —p€&.#t

(where s(k) = (37 n(i))*n(k), and u is the uniform distribution on 2°). Note that
for a subspace spanned by the vectors a;, - - -, a;, we have

'/%-L = {aly Y at}-L = ni {ai}la

and hence (1.4) is equivalent to minimizing I(p || «) for p in the set N} (s — {a;}*).
Since the s — {aj* are linear spaces, Csiszar’s algorithm of cyclic, iterated
I-projections is appropriate here. In this format, it is easy to see the connection
between Csiszar’s procedure and the IPFP (iterative proportional fitting proce-
dure) which has received so much attention in the general area of categorical
data. Meyer (1980) has an extensive discussion and several examples where he
relates Csiszar’s procedure and the general IPFP.

Suppose now that .# = K, + --- + K, is a closed, convex cone expressible as
a direct sum of closed, convex cones containing the constant vectors, rather than
a direct sum of subspaces. Such a configuration would arise naturally if one were
considering order constraints in a log-linear model. Then it is well known that
the dual (polar) cone of .#, defined as

H* = {y; 3P y(i)x(i) < 0 for all x € #}
is expressible as
M=K +K + --- +K)*=KfinKin ... N K¢}

Lemke and Dykstra (1984) have generalized the (1.4)-(1.5) duality results to
the case where .# is a closed, convex cone (with .#Z* replacing .#* in (1.5)). This
means that many MLE problems involving partial orders in log-linear models
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are equivalent to I-projection problems of the form:
Minimize I(p|u) for p € N (s — K¥).

If the K¥’s are not subspaces, Csiszar’s cyclic, iterated scheme need not work.
However, the procedure described in this paper will work since the sets s — Kf
will be closed, convex sets of probability distributions.

Of course, we would really like to be able to identify structure in these log-
linear model situations, which leads to the area of inference for various competing
models. While these are important questions, we shall only be concerned with
the MLE problem in this paper.

Csiszar (1975) discusses I-projections in great detail, and has a geometric
development for I-projections which is quite appealing. (Cencov, 1972, also has
a geometric development of I-projections, but with the arguments interchanged.)
Csiszar also discusses the existence of I-projections, and shows that if & is a
convex set of probability distributions (PDs) which is variation closed, the unique
existence of the I-projection of r onto & is guaranteed provided there exists a
p € & such that I(p | r) < . This result is clearly applicable for closed, convex
sets of PDs on the finite set 22 We shall make repeated use of the elegant
characterization of I-projections given in the following theorem.

THEOREM 1.1 (Csiszar). A probability ¢ € & with I(q||r) finite is the I-
projection of r onto the convex set & of probability distributions iff

(1.6) Iplr)=I(pllq) +Iglr) VpeE&Z
Note that in our setting of finite 2, it follows from (1.1) that (1.6) is equivalent to
(1.7) 2k (p(R) — q(k)In(g(R)/r(k)) =0 VpE &

If in fact g is an algebraic inner point of &, i.e., for every p in & — {q}, there
exists 0 < o <1 and p’ € & such that ¢ = ap + (1 — a)p’, equality must hold in
(1.6) and (1.7).

This situation is roughly akin to projecting onto subspaces in least squares
theory. In particular, Csiszar defines an & to be a linear set if p, p’ € & implies
ap + (1 — a)p’ € & for every a for which it is a probability. If & is a linear set,
then the inequality sign in (1.6) and (1.7) may be replaced by an equality sign as
long as 2 is finite. Based upon this characterization, Csiszar is able to prove that
if 2 is finite, & = N! & is a finite intersection of arbitrary linear sets, and there
exists a p € & such that I(p || r) < =, then successive, cyclic, iterated I-projections
onto the individual sets must converge to the I-projection of r onto & Thus if g,
=r, and g, denotes the I-projection of g,-; onto &, (where &, = & ifn=/t+1i,1
< i=<t), then g, must converge to ¢ € & as n — o where I(q || r) = minpesI(p || r).

This result is very much dependent upon the assumption that the & be linear
sets (in fact it is not true in general) and the accompanying fact that equality
holds in (1.6).

2. The procedure. We now propose a procedure which will enable one to
obtain I-projections onto a finite intersection of arbitrary closed, convex sets of
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probabilities by iteratively finding I-projections onto the individual sets. We will
prove that that under a mild restriction, the procedure must give the correct
solution, and then we examine an example.

First let us note that we can also define an I-projection onto & for any nonzero,
finite measure r on % as being a probability in & which minimizes

21 q(k)In(q(k)/r(k))

over & and has finite I-divergence with respect to r.

Of course, since & contains only probabilities, the I-projection of r onto a
convex set & is identical to the I-projection onto & of the normalized measure r’
defined by r’(k) = r(k)/r(2). It is easily shown that the characterization of
I-projections given in (1.6) and (1.7) is still valid, even though I(p| r) = 0 need
no longer be true.

Let us now state our algorithm. We assume that we wish to find the I-
projection of r onto & = N &, where each &; is a closed, convex set of probabilities.
We assume that we can project onto each &; individually and shall denote the
I-projection of s onto & by ;(s) and the I-projection of s onto & by =(s). We also
assume there exists a t € & such that I(¢ || r) < . (Remember that multiplication
and division of vectors will refer to the operations being performed coordinate-
wise.)

ALGORITHM.

1. Let s;; = r, and let p;; = m1(s11). We then set s;2 = p11 = r(p11/s11). (We note
that if s;;(k) = 0, then so is p1;(k). We take 0/0 to be 1.)

. Let p12 = ma(s12). Set s13 = p12 = r(p11/s11) (P12/512)-

3. Continue, until p;; = m,(s;;) where s1; = p; -1 = r(pu/su1) - -+ (P1,e-1/81,6-1)-
Set s21 = r(p1a/s12) - -+ (pP1/si). Note that sy = p1e/(p11/s11)-

4. Set ps; = mi(s21), and then set sy, = r(pai/sa1)(pis/sis) --- (pPu/s1), or
equivalently, sog = pa1/(p12/512)-

5. Continue. In general, set s,; = pn.i-1/(Pn-1,i/Sn-1.1), 2 < i < t and set s,; =
Pn—1,¢/(Dn-1,1/8n-1,1). We then let p,; = 7(sn), and define s, 11, OF Sp41,1 if
I = t, in similar fashion.

[N

Suppose now that the &; are actually linear sets so that equality holds in (1.7).
Noting that for any p € &

I(p| sn:) = Xk p(R)In[p(k)/sni(k)]
= Y p(R)In[p(R)/(pn,i-1(R)/(Pr-1,{(R)/$n-1,{(R)))]
(2.2) = Xk P(R)In[p(R)/Pn,i-1()] + Xk p(R)In[pry,i(R)/Sp-1,:(R)],
we observe that the last term must be equal to

Yk Pr-v,i(R)In[pn—y,i(k)/sp-1,:(k)]

(2.1)
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and hence free of p. Thus the p € &; which minimizes (2.1), is also the one which
minimizes the first part of (2.2), i.e., the I-projection of p,;; onto &. It easily
follows that our procedure reduces to the cyclic, iterative procedure given by
Csiszar when the &; are closed, linear sets.

For a simple example to show that Csiszar’s procedure does not work for
general convex sets, consider the following:

& = {(Pn, P12) ; P11 = P12, D1 = P22, Py = 0, X3 X pyj = 11 ,
P21, P22 ],

& = {(Pu, p12> ; P11 = Pa1, P12 = Pag, Py = 0, 2% 2% b = 1} ’
D21, P22

and
re 16 e
he 5he/’

Csiszar’s procedure yields (%32 V32, 932 /32), whereas (Y4 Y4, Y4 1) is the correct
solution.

Everything hinges on the following theorem, which retains the notation used
in describing the algorithm.

THEOREM 2.1. Assume & = N} &, where the & are closed, convex sets of
probability distributions and r # 0 is a nonnegative vector such that there exists a

t € & where I(t || r) < . If there exists a convergent subsequence p,_; — p for some
i such that

23) lim inf; 3k (pn,i(k) = p(k))ln(p——-—"j’i(k)) >0
’ Snyi(R)

for every i, then p,; — p as n — © and p = =(r).

ProoF. Recall that p,; = 7;(s,;) where

Pn1 Pn,i-1 Pn-1,i+1 DPn-1,t

Sni=7r
Sn1 sn,i—l sn—l,i+1 Sn—l,t
b -1
n—1,1 . .
(2.4) Dn-1:{ /= if i=1
Sp-1,1

-1
pn,i—1<p"—1”) if 2<i<t.

n—1,0
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Thus
I(pni " sni) - I(pn—l,i " sn—l,i)
=3 p"i1n<"—"") -3 pn_l,i1n<‘i"-1”)
Sni Sn—1,i
(2-5) = 2 pniln< Pni > + Z pniln<B'n—_1,i) - Z pn—l,iln<l—)'"—_l,i>
Pn,i-1 Sn-1,i n—1,i
= 2 pniln< pni > + 2 (pni - pn—l,i)ln(l—)'"——l—'l:>
pn,i—l sn—l,i

= I(pnill Pri-1) if 2=<i=<¢t andsimilarlyif =1,

since (by 1.7) the last term must be nonnegative because p,; € &. Noting that
I(pni || pr,i-1) = 0 since p,; and p,;—; are probabilities, we have that I(p,; | s;) is
nondecreasing in n for each i. Let us now show that these sequences are bounded
above.

ForveEN, &,

Iwlp) =3 v 1n(L)

nt

=zvlnv—Zvlnr[&'—1 . Lui Prot,int @jl

Sn1 Sni Sn—l,i+1 Snt

= _ — 3 Py _ s
(2.6) =Yvlnhv—-Yvinr—- 3 [E vln 5 I(pg || s,,,)]
— s _in jsi
Yie1 I(paj || so)) where a {n _1, >

< I r) — 3% I(pa || sa)

by (1.6) and the fact that v belongs to every &;. Thus, choosing v such that I(v | r)
< o, we have a uniform upper bound on I(p,;| s.:). Hence the lim, «I(pn; || Sni)
exists finite for every i, and by (2.5)

(2.7 I(ppill pni-1) =0 as n—o for 2<i=<t.

(Similarly I(pp; || pr-1,:) — 0 as n — .)

Note that (1.2) and (2.7) imply that if p,; — p for some i, then p,,; — p for
every i. Thus p € N} &; since Pr,i €& and the & are closed.

Using (1.7) and (2.3), for any v € N &,

0 =< % lim inf; 3k (Pryi — PIN(Pny,i/sn,d) + Xi Tk (0 — P, ) In(Pr,i/ Sn,0)
< lim inf; 3; 3 (v — P)In(Pn,,i/sn;,i)
= lim inf; ¥ (v — p)In r [[; (Pn,i/8n,)/r
= lim; ¥ (v — p)In(py,t/r) = Tk (v — p)In(p/r).
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Thus p = #(r) by (1.7). Setting v = p in (2.6) and using (2.3), it follows that for
the subsequence {n;},

i=1 I(Pny,i | 8n,0) = I(p || 7).
However, by the monotonicity in n of I(p,; || s.;), we have that
t=l I(pn,i " sn,i) i I(P " r)-

Thus I(p || pn) = 0, so that by (1.2) and (2.5), p,; — p as n —  for all i.

We remark that it would take rather surprising behavior of the p,; for condi-
tion (2.3) to not hold, and we strongly conjecture that this condition is always
true. As we note in the following corollary, if the p,; > #(r) we must have
SUpP,; Y Sni(k) — o, and we have been unable to construct examples where this
happens. We point out that when one uses the algorithm, a step can be put in to
check the value of sup,; Y« sn(k). If the algorithm is not going to converge
correctly, then this value must become excessively large. Otherwise, the algorithm
must converge to the correct solution.

COROLLARY 2.1. If the algorithm should not converge correctly, then SUpy, i
2k Sni(k) — 0 as n — o,

PROOF. Suppose s,(k) is uniformly bounded above, and Pn,i = P is a
convergent subsequence (which must exist since 0 < p,;(k) < 1). If there exists
o<ms< s,,j,,(k) for all n;, k, then (2.3) follows by standard continuity properties.
If not, there exists at least one k such that Sn, /(k) takes on arbitrarily small
values. Then either Pr;, ;(k) = 0 for all such k (which cause no problems), or there
exists some k such that Pr, i(kR) — p(k) > 0, while Sn; (k) takes on arbitrarily small
values. This contradicts the uniform upper bound of I (Pri |l 5ni)-

We recommend that when one uses the algorithm, one should compute the
average value over an entire cycle ((1/t) Y-, p,.) rather than a single projection
Dri to estimate the I-projection. Convergence is still guaranteed, and this value is
much more stable and seems to converge much more quickly to the correct
solution.

3. An example. We consider the case where 2 is an n X n table. A
probability on 2 is represented by an n X n matrix (m;) of nonnegative numbers
which sum to one. We denote the corresponding marginals by

my. = Yy my and mj= Yh1my, kK j=1,.--,n

We now consider the problem of finding the I-projection of a fixed array (ry;)
subject to the marginal PD’s being stochastically ordered, i.e.,

25_—_1 my, = Zi’=1 m.,, for all 1.

(Kullback, 1971, has given an iterative procedure for I-projections where equality
is forced to hold for all i, also known as marginal homogeneity.)
Equivalently, we want to find the I-projection of (ry) onto

(81) &=nN'% where & = {(my); Tici Thor Mun = Thay Dy Myl
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Note that the &; are closed, convex sets of probabilities which are not linear
sets. I-projections of (v) onto the & can be found by forcing equality in the
constraint if the (v,) violate the constraint. (See Theorem 2.11 of Barlow et al.,
1972, which can be modified to apply to arbitrary, convex functions).

To express m;(v), we let

Ai={/m);l1=s/=<ii+1=<m<=nj

B;={(/,m);l=m=<ii+1=</<nj

Ci={sm)ssm=1,...,4Uf{(4ms4sm=i+1,---, n}
and

b; = (ZA,- Urm EBi U/m)l/Q-

If (vy) satisfies the constraint of &, namely Y4, U,m = Y5, Usm, then 7;(v) has
(k, j)th component

Wi(v)kj = Ukj/Z'll Yt v.m forall k&, j.
If (vyy) does not satisfy the constraint imposed by &, that is Y4, v.m < X, Usm,
then

r 1/2
Ukj(%ﬂ) [2{), + ZCi U/m]—l, (k, ]) € Al"
A; Urm

Wy =1, (Zavm)”
wi\V kj — ﬁ Ukj(M [261 + ZC_ v/m]—l, (k, J) (S Bi,
ZB,' Usm '

| vsl20; + e, voml ™ (k, j) € C..

The key point is that finding the I-projection onto &; is quite easy (and easily
programmed), while finding the I-projection onto & = N"! & is very difficult.
However our algorithm enables one to find the latter I-projection using only the
ability to handle the I-projections onto the individual &;.

To illustrate our example with some numbers, we consider some rather famous
data from Stuart (1953) concerning grades of unaided distance vision for left and

TABLE 1
Unaided distance vision (From Kendall, 1974)
Left eye
Right eye Highest Second Third Lowest Totals
grade grade grade grade
Highest grade 821 112 85 35 1053
Second grade 116 494 145 27 782
Third grade 72 151 583 87 893
Lowest grade 43 34 106 331 514

Totals 1052 791 919 480 3242
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TABLE 2
1-Projection of data in Table 1
(Values in parentheses are Table 1 values normed to sum to unity)

Left eye
Right eye Highest Second Third Lowest Totals
grade grade grade grade
Highest grade 2534 0344 .0262 .0120 .3260
(.2532) (.0345) (.0262) (.0108) (.3247)
Second grade .0358 1525 0447 .0092 2422
(.0358) (.1524) (.0447) (.0083) (.2412)
Third grade .0222 .0466 1799 .0298 2785
(.0222) (.0466) (.1798) (.0268) (.2754)
Lowest grade .0120 .0095 .0295 1022 1532
(.0133) (.0105) (.0327) (.1021) (.1586)
Totals .3234 .2430 .2803 1532 9999
(.3245) (.2440) (.2834) (.1480) (.9999)

right eyes. If one wished to estimate the probabilities of falling into the various
categories, subject to the provision that right eye vision is at least as good as left
eye vision, one might find the I-projection of the data in Table 1 onto the &
given in (3.1). Using this algorithm, we have essentially obtained convergence to
the true I-projection by 3 cycles. These values are listed in Table 2 (with the
unrestricted MLEs given in parentheses).

This estimate might prove useful for constructing a likelihood ratio type test
for testing whether right eye vision is better than left eye vision. This data is
treated by Plackett (1981) who uses it for tests involving marginal homogeneity
and quasi-symmetry. It also appears in Kendall (1974).

4. Acknowledgement. The author would like to thank a referee for help-
ful, knowledgeable comments and Peter Wollan for doing the calculations in
Table 2.
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