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RANDOM SETS WITHOUT SEPARABILITY

By Davip Ross!

The University of Iowa

Suppose ¥~ and F are sets of subsets of X, for some fixed X. We apply
Koénig’s lemma from infinitary combinatorics to prove that if ¥" and %
satisfy some simple closure properties, and T is a Choquet capacity on X,
then there is a probability measure on % such that for every Ve %,
{Fe%: FnV=+ @} is measurable with probability T(V). This extends the
well-known case when % and ¥ are the closed (respectively, open) subsets of
a second countable Hausdorff space X. The result enables us to define a
general notion of “random measurable set”’; for example, we can build a point
process with Poisson distribution on any infinite (possibly nontopological)
measure space.

1. Introduction. A random element of a collection % is an %valued
random variable %, or, equivalently, a probability measure on .%. It may happen
that % C P(X), where X is some other set; in this case, the random element #
of % is called a random set.

If ¥ is another subset of #( X), we may require that the event “% hits V” be
measurable for each V in ¥". If T is a sufficiently well-behaved real-valued
function defined on ¥°, we may in addition require that the probability that %
hits V is equal to T(V). The assertion that a random set exists meeting these
requirements is called a “Choquet theorem.” Matheron (1975) and Kendall (1973)
have proved Choquet theorems in a variety of topological and pseudotopological
settings, requiring in all cases some sort of countability hypothesis. (The referee
has kindly pointed out that the basic constructions here appeared first in Revuz
(1955) and Huneycut (1971).)

With the aid of Konig’s lemma from set theory, we prove the Choquet theorem
in a much more general context. First, we note that the argument in [4] only
requires that % contain the singletons from X; we generalize this hypothesis
somewhat and prove (Theorem 3.4) the existence of a finitely additive probability
measure P satisfying the above requirements.

Our main result, Theorem 4.1, is that when % is closed under countable
intersections, P can be extended to a countably additive measure. We give
applications in Section 5; for example, if ¥»'=.% is a o-algebra, the hypotheses
are satisfied automatically, and we can thus produce a “random measurable set”
with respect to any measure space.

2. Notation. Suppose ¥ C #(X). Call ¢ a Nf-paving (respectively, Uf, Nc,
Ue, or —-paving) of X if p € ¢4, X € ¢, and ¥ is closed under finite intersec-
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tions (respectively, finite unions, countable intersections, countable unions, or
complementation). For example, ¢ is an algebra on X if it is a Uf—-paving

If {x} € ¢ for every x € X, say that & contains the singletons from X. Fix
arbitrary pavings ¥~ and % of X; by “the usual hypotheses” we will mean that

(i) ¥~ is a Uf-paving, and .
(ii) either ¥'C %, or .% is a Uf-paving containing the singletons of X.

For A, B,..., B,€ X(X),write 9}, .z ={FE€F: FNA=¢,FNB,+¢
for i < n}. Let &,-= {#4 _,: A, By,...,B, € ¥} and let &7/ be the closure
of .«7,- under finite unions. Write #4 for %@ and %, for %,

During this and the next section we will omit the proofs of propositions when
they are very easy or are similar to those in ([4], Section 2-2).

PROPOSITION 2.1. Under the usual hypotheses, </} is an algebra on %.
Moreover, every element of /) can be written as a finite disjoint union of
elements of .

A given element A of ./, may have two different representations, e.g.,
Fit = Fi . Call a representation Fj .. reduced if for all i <j<n,
B, N A = ¢ and neither B, C B; nor B; C B,. (This differs somewhat from the
definition in [4].)

ProrosITION 2.2. If ¥ is an algebra then every element of </, has a
reduced representation.

PROPOSITION 2.3. Suppose ¥~ is an algebra, and the usual hypotheses hold.
Then every nonempty element of </, has a reduced representation which is
unique up to permutation of the lower sets.

ProOF. When % contains singletons this is [4] (Lemma 2-2-1). Suppose that
¥’'C.#, and that F  p =% , are reduced. Since A° € F3' ., A€
FP kS0 D C A. Similarly A € D, so A = D. Now fix j<n, and let E =

(UL\E,)/B;. Since E ¢ #, .., E¢& % . ; ,s0 E;C B; for some i <m. In
other words, every B; contains some E,. Similarly, every E; contains some B;.

Since the representations are reduced, m = n and {B,,..., B,} = {E,,..., E,,}.
]

3. Capacities. Given a function T: 2(X) — [0,1], define functions S, on
.@(X)'H'l by
S()(A) =1- T(A)’

Sn+1(A|B() e Bn) = Sn(AlB() U Bn~1) - Sn(A U BnlBO e Bn~l)‘
Call T a Choquet capacity on X provided:
() T(¢) =0, T(X) = 1;
(ii) S, > 0 for each n; and
(iti) If {A,: n €N} is an increasing sequence of sets, then T(U,A,) =

lim T(A),).

n—x
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In practice, we will only require that T be defined on a o-algebra containing ¥".
The reader is warned that this use of the term “Choquet capacity” is nonstan-
dard. Shafer (1979) uses the term “continuous upper probability function” for a
function satisfying (i)—(iii).

PROPOSITION 3.1. Suppose that ¥ is an algebra and that the usual hypo-
theses hold. If Fit . is the reduced representation for F) . . , then
S, ((A|B, - - B,) = m+1(D|E() R S

Thus we may define a function P: &/,-— R unambiguously by P( 373‘: wp,) =
S, . (A|B, --- B,), where of course we put P(¢) =

When ¥~ is not necessarily an algebra, but % contains the singletons from X,
both this fact and the next proposition follow from the work in [4].

PROPOSITION 3.2. Under the usual hypotheses, suppose F = G, U --- UG,
where {F,G,,...,G,} €, and the union is disjoint. Then P(F) =
P(G,) + -+ +P(G)).

PROOF. As just noted, we need only consider the case where 7~ is an algebra.
Induct on n. When n = 0 this is just Proposition 3.1. We may thus suppose that
n>1and F# ¢. Let F=%3 . B, Arguing as in Proposition 2.3, we can show
that one of the G,’s, say G, has the form T .p,- A similar argument shows
that for some D € ¥~ and some i < k with D, C D, G, has the form #2V7,.
Let F,=.%7", F, =%,. The definition of the functlons S, guarantees that
P(G)=P(GnN E,) + P(G N F)) for all G € &/,-. Note that Fn F=U,_Gn
F,=U,. G, N Fysince G, N F, = ¢; similarly, F N F, =U,,,G; N G,. Thus

(F)=P(F0F0)+P(FOF1)=ZP(GimE))"' ZP(GimFl)

1#0 i#1

Y PG, Fy) + P(GnF) = ¥ P(G,),

1<n i<n

as desired. O

PrOPOSITION 3.3. Under the same hypotheses, suppose F,U --- UF, =
G,V --- UG,, where {F,,...,F,,G,,...,G,} €y and the unions are dis-
joint. Then P(F,) + --- + P(F,) = P(G,) + --- + P(G,).

ProOF. When m = 0 or n = 0 this is just Proposition 3.2. Thus,

Y PF)=Y YP(FEnG)=Y X P(FENG)= 1 PG). 0

t<m i<mj<n J<ni<m Jj<n
The following is now immediate.
THEOREM 3.4. Under the usual hypotheses, let T be a Choquet capacity on

X; then there is a finitely additive set function P: /] — [0,1] such that
P (7” B, =S, 1(AlB, -+ B).
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The following corollary follows now from the Caratheodory Extension Theo-
rem ([6]).

COROLLARY 3.5. Suppose P is the set function from Theorem 3.4, and
suppose that whenever {F,: n € N} is a sequence from </} decreasing to ¢,
lim,_  P(F,)=0. Then P can be extended to a probability measure on the
smallest o-algebra containing <//-.

4. N c-Pavings.

THEOREM 4.1. In addition to the usual hypotheses, suppose that ¥ is a
Nec-paving and that {(V°: V€ ¥} € %. Then the conclusion of Corollary 3.5
holds.

The proof proceeds in several stages. Suppose {F,: n € N} is a sequence from
&7/- decreasing to ¢. We may write F, = F° U --- UFE*" where for all i, j, and
n, if F!,, N FE/+# ¢ then F/, , c F/. Call a function = N - N a branch if
(FET: n € N} is a maximal subset of {F!: n € N,i<k,} which is linearly
ordered by reverse inclusion. Let T be the set of all branches. If 7,0 € T, write
o~ ,7if o(i) = 7(i) for all i < n.

LEMMA 4.2. Suppose T’ C T, that §: T’ — N, and that whenever 7 ~ , 0,
0(7) = 6(o). Then 6 has finite range.

Proofr. This is an easy consequence of Konig’s lemma ([3], Theorem 4.7). O

For each branch 7 and each n € N, we may write F,'"" = %" 5., where
T T ™n
for fixed 7, Aj, C A}, ,and k, , <k _, .,

n

LEMMA 4.3. Let 7 be a branch. Then lim, _,  P(E’™) = 0.

PrOOF. Let A = (U*_ A7) € %. Since NT_F, = ¢, A € NZ_ FI™), so A¢
contains some B]. It follows that for n sufficiently large,

P(F;"™) =8, . (A}|B,..., Bi ) <S(A}IB; ) = S)(A4}) — Sy(A;, U BY),
which goes to 0 as n = c0. O

In the proof of Lemma 4.3, say that r is annihilated by B]. There is a
countable collection &= {E,: n € N} such that every branch is annihilated by

some E,. )
* LetT,= {7 € T: 7 is annihilated by E;} and [T;],, = fbf,‘, where A =N, .1 A7,

LEMMA 4.4. Foranyi €N, thereisan N € N such that U, . ¢ F,' C [T/],
forn > N.
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PrOOF. Define 6 on T, by 6(r) = least n with E; € {B{,..., B; }. The
hypotheses of Lemma 4.2 are easily verified, so for some N € N, §(7) < N for all
1€T.If n>Nand reT, F["™ c # C [T,],, as desired. O

LEMMA 45. Foranyi €N, lim,_, P(T,],) =0

Proor. Since [T,], € «,, it suffices by the argument of Lemma 4.3 to show
that n:rc=()[.|]-t]n

Suppose not; then there is an x € E,\Uy;_o, c 1 A4}. For T € T, let 0(1) be
the least n with E; € (Bj,..., B} } and x € AJ,. (Such an n exists since E;
annihilates 7.) By Lemma 4. 2 find N € N with 0(t) < N for all 1 € T,. Then
x €N,y Ay, a contradiction. O

Proor oF THEOREM 4.1. By Corollary 3.5, it suffices to show that
lim, , P(F,)=0.Fix e >0, and for n € N let ¢, = ¢ - 27"V, Define § on T
by 8(7) = least n such that for some i e Nand ¢ € T;, 6 ~ ,7 and P([T,],) < ¢;.
By Lemma 4.2, thereis an N € N with 8(7) < N for all r € T. Let I be a finite
subset of N such that for each 7 € T there exists an i € I and o € T, with
P(T,]y) <e¢ and 6 ~ g, 7. Then for n > N, P(F,) < PU;c/[T,]y) < X;c/8 <
e, as desired. O

5. Applications. We conclude with three examples where the hypotheses of
Theorem 4.1 are satisfied.

ExAMPLE 5.1. Suppose X is a topological space, ¥~ consists of the open sets
of X, and .% consists of the closed sets of X. Theorem 4.1 holds for any Choquet
capacity T the probability space that results is a random closed set.

(Our notion of a random closed set differs from that in [4]. The space X there
must be second countable; ours need not. On the other hand, the probability
measure P is defined there on a wider class of measurable sets. The two notions
are equivalent when X is second countable.)

EXAMPLE 5.2. Suppose ¥~ is an algebra, and % is a o-algebra containing 7".
Again, Theorem 4.1 holds; the random element of % is a random measurable set.

Suppose in this example that X is a topological space, with open sets ¥ and
closed sets .#, and suppose that 7°C ¥". The map A: % — %, where A(E) is the
closure of E, is evidently <7/ — &/, ! measurable, and in fact measure-preserving.
This illustrates the connection between random measurable sets and random
closed sets.

ExXAMPLE 53. As a special case of Example 5.2, suppose (X, %, m) is an
infinite measure space, ¥'= %, A > 0, and T is defined on % by

1—exp(—A-m(A)) ifm(A) <o
1 otherwise.

T(4) ={
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A standard computation verifies that T is a capacity on X. The probability
measure produced is called a generalized Poisson process.
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