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CENTRAL LIMIT THEOREM FOR THE CONTACT PROCESS

By ROBERTO HENRIQUE SCHONMANN!
Universidade de Sao Paulo

If (£4(t),t > 0) is the contact process with initial configuration A,
f: P(Z) - R is any cylindrical function and |A| = o0, we prove a central
limit theorem for ( f(£4(t)), t > 0) when the rate of infection is supercritical.

Consider the contact process with initial configuration A € Z and rate of
infection A, (£4(¢), t > 0) [3], [4], [6]. It is known that if A > A, = sup{A > 0:
£4(t) » 8, weakly as t > o0}, p is the nontrivial extremal invariant measure
and |A| = oo, then for any cylindrical f: #(Z) - R

7 [*f(84(1)) it ~ [ 1y

almost surely as T' - .
Here we prove a corresponding central limit theorem:

THEOREM 1. If A > A, and |A| = oo, for any cylindrical f: #(Z) - R,
T1/2 [T-lef(gA(t)) dt — [fd,u] -, N(0,0?)
0
as T — o0, with 0 < 0,2 < 00. (—; means convergence in law).

We use theorems stated in [7], [8] and an estimation of the decay of time
correlations for the contact process based on a result in [2]. This approach was
motivated by similar methods used in [1].

First, we construct the family of processes {(£4(t),¢>0): AC Z} and a
stationary process, all on the same probability space. Consider the following
percolation structure on Z X R. For each i € Z consider three independent
Poisson processes on R: (7)), <z, (7)), ez, and (7, ), < ; with parameters A, A,
and 1, respectively. We suppose that for i varying in Z the processes are all
independent. Now for i € Z we draw arrows in Z X R from (i, 7}’) to (i + 1, 7)),
k,i € Z. Secondly we draw arrows from (i, 7) to (i — 1, 7}), k, i € Z. Finally
we put down + signs at each of the points (i, 7;%), k,i € Z.

We call a segment linking (x, £) to (x, s) a time segment. We give it the
orientation from (x, ¢) to (x, s) if s > t. Given two points (i, s) and (J, ¢) in the
space time Z X R, with s < ¢, we say that there is a path from (i, s) to (J, ¢) if
there is a connected chain of oriented time segments and arrows, leading from
(i, s) to (J, t), following the direction of the time segments and the arrows and
without passing through a + sign. ‘
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Now, given A C Z we define the process (£4(t), ¢t > 0) in the following way:
£4(0) = A, and for ¢ > 0, £4(¢) = {j € Z: there is a path from (i,0) to (J, t), for
some i € A}.

Using the same percolation structure we define ({(¢), ¢ € R) by {(¢) = {j € Z:
for any s < t there is a site i(s) € Z such that there is a path from (i(s), s) to
(7,8)}. So (§(t), t € R) is a strictly stationary Markov process. Also

PROPOSITION 1. If A > A, the distribution of {(0) is u.

ProOF. We must prove that for any A C Z,
PEO)YNA+2)=p(n:nnA=+ 2).
For fixed A consider the events
Ey={3j € As.t.3apathfrom (i, —N)to (/,0) forsome i< Z}.

So (E,, N = 1) is a decreasing sequence of events converging to [{(0) N A # Z].
But by the homogeneity of the Poisson processes, P(Ey) = P(¢4(N)N A # @)
and this converges to p(n: n N A # F)as N - 0. O

So (§(t), t = 0) is the contact process with random initial condition taken with
distribution p.
Now we prove

LEmMA 1. If A > A, for any cylindrical f: #(Z) - R,
1 .1
7| 7 (116D de =[] =, N(o,o7)

as T — o0, where

of = [ “eov(F(5(0)), 7((s))) ds.

REMARK. If f is increasing, then cov( f(£(0)), f(&(s))) = 0, and if f is also
not constant, then var( f(£(0))) > 0, so that o > 0 by continuity. We do not
know if it is true that o7 > 0 whenever f is nonconstant.

ProoF. In what follows f is fixed and A is its support. We identify 2(Z)
with {0,1}? in the usual way. So we write for n € #(Z), x € Z: n(x) =1 if
x € m, n(x) = 0if x & n. We use the notation £(¢, x) instead of (£(¢))(x).

We employ Theorem 3 in [7], so we first define an associated (FKG) system of
random variables (Y}, k2 € Z). In [7] these random variables are supposed to be
real but this is not necessary. In fact the Y, may assume values in any partially
ordered measurable set, and (Y}, 2 € Z) must be associated with respect to this
partial order. We define T as the set of functions from [0, 1] to {0, 1}'*! which are
right continuous and have left limits, with the usual partial order: if a =
(ay,...,a,) ER"and b= (b,,...,b,) ER” a>diffa,>b, i=1,...,n. If
o1, 90 ET, ¢y = ¢, iff po(x) > ¢4(x), Vx €[0,1]. Let T be endowed with the
Skorokhod topology. Next define the random variables Y,, £ € Z assuming
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values on T' by
Y (x)=((k+x,i),i€ A)

The system of random variables (Y, & € Z) is associated; this means that for
any m < n, g(Y,,...,Y,) and g4Y,,...,Y,) are positively correlated whenever
g, and g, are bounded, increasing and continuous functions from I'*~"*! - R.
This fact is a consequence of Harris’ theorem in [5] (Theorem 2.14 of Chapter I1
of [6]). First p has positive correlations by Harris’ theorem and then {£(¢), t € R}
has positive correlations by a corollary to Harris’ theorem: Corollary 2.21 in [6].

In fact the definition of associativity given above is a little less restrictive than
the definition in [7], but it is not difficult to see that modifying their definition of
D to be the set

{F(Y,,...,Y,): m < n, F is real, coordinatewise
nondecreasing, bounded and continuous},

their Theorem 2 still holds.
For each j € Z and each cylindrical f the random variable

j+1
X; = [T 1(3(2)) dt
J
is a bounded and continuous function of Y}, almost surely well defined, and

Nl/z[N*fONf(f(t)) dt - ffdu] = N—VzNg(Xj - E(X;)) = X",

As f is cylindrical it can be represented by f = f, — f_ with f, and f_ being
increasing functions. We define f’ = f, + f_ and

’ J+1 7,
xp= [ 1(0) .
J
Then X/ > X; this means X/ — Re(ei"Xj) € D for all « € R [7], and Lemma 1
will follow since we prove that
Y. cov(X{, X/) < 0.
JjezZ

This is a consequence of Lemma 2 below. O

LeEMMA 2. If A > A, for any cylindrical f: #(Z) — R there are constants
C=C(A)>0,y=1y(\) >0, such that

|eov(f(8(r)), F(8(s)))| < Ce™e7",

Proor. Without loss of generality we consider r = 0, s > 0. We use the
notation: given A Cc Z, A = {(ncZ: nnA+# @}, Ig(-) = indicator of A. As
any cylindrical function is a finite linear combination of these indicators it is
enough to prove for any pair A, B C Z, |A| < 0, |B| < o0, that

|eov(Z£(£(0)), Ip(4(s)))| < Ce™™.

We will construct some auxiliary processes. First we define a dual percolation
structure. Consider the percolation structure where ({(¢), ¢ € R) is constructed.
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Take the inverse time scale [ =s — ¢t and invert the direction of the time
segments so that they are oriented according to increasing I. Also invert the
direction of the arrows. Using ! as time scale and given two points (i, 1,),
(J, 1) € Z X R, with [, < l,, we say that there is an inverted path from (i, /,) to
(J, 1) if there is a connected chain of time segments and arrows leading from
(i, L) to (Jj, 1,), following the new orientations of the time segments and arrows.

Now consider the processes (Z;, I > 0) and (W), l > s) defined by (we are using
[ as time scale):

Z,= {j € Z: there s an inverted path from (i,0) to (j, !) for some i € B},
W, = {Jj € Z: thereis an inverted path from (i, s) to (j, /) for some i € A}.

The processes (Z,, I > 0) and (W, I > s) have, respectively, the same laws as
(¢B(¢), t = 0) and (£4(¢), t > 0), the first under the correspondence I — ¢ and the
second under ! — ¢ + s.

We define the events

A= [Iz(3(0) = 1] = [W, # &,VI> 5],
B = [I(s)) =1] = [2,+ @,vI> 0],
E=[Z + o].
Then
|cov(I£(£(0)), Ix(§(s)))| =|P(A" " B") — P(A")P(B’)|
=|P(A’nB'NE)+ P(A’'n B N E°)
—P(A)P(B'NE) — P(A’) - P(B' N E°)|
=|P(A’NnB'NE)-P(A")- P(B'NE)]|.

The events E and A’ are independent, since the former depend on the Poisson
processes defining the dual percolation structure during the time interval
0 <! < s and the latter depend on these processes during the time interval
! > s. Then

|cov(Z5(£(0)), Ix(£(s))) | = | P(A” N B’ 1\ E)
—P(A'NE)+ P(A")P(E) - P(A)P(B'NE)|
=|P(A’) - P(En (B")°) - P(A’n En (B)°)|.
But
0<P(A’)-P(En(B)°) < P(En (B)°),
0<P(A'NEN(B)°)<P(En(B)°).
Then
|eov(Z£(£(0)), I5($(s)))| < P(E n (B’)°)
=P(Z,+ @,Z,= & forsomel > s) < Ce™ ™,
where the last inequality is Theorem 5 in [2]. O
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PROOF OF THEOREM 1. Define the random variable
0 4= inf{t > 0: f($(s)) = f(£4(s)),¥s = t}.

It is known (see the proof of Theorem 6 in [4]) that VA s.t. |A| = o0, ©; 4, <
a.s. So given ¢ > 0,

P(T-V2

IRGOETIRIED dtl S 8)
SP(T_1/2®I’A-2|f|>£) >0 asT > oo,

where |f | = supp . | f(B)}
This combined with Lemma 1 finishes the proof. O

Acknowledgments. This work is part of my Ph.D. thesis at Sao Paulo
University. I thank my advisor Antonio Galves for the suggestion of the problem
and for fruitful discussions. Thanks also to Enrique Andjel and M. Eulalia Vares
for helpful conversations, and to the referee for his observations.

In a previous version of this paper I proved the associativity of (Y,) in a
cumbersome way. I am indebted to the Editor, Thomas M. Liggett, for pointing
out the argument given here and also for many other useful comments and
suggestions.

REFERENCES

[1] Cox, J. T. and GRIFFEATH, D. (1983). Occupation time limit theorems for the voter model. Ann.
Probab. 11 876-893.

[2] DURRETT, R. and GRIFFEATH, D. (1983). Supercritical contact processes on Z. Ann. Probab. 11
1-15.

[3] GRIFFEATH, D. (1979). Additive and Cancelative Interacting Particle Systems. Lecture Notes in
Math. 724. Springer, New York.

[4] GRIFFEATH, D. (1981). The basic contact processes. Stochastic Process. Appl. 11 151-186.

[56] HARRIs, T. E. (1977). A correlation inequality for Markov processes in partially ordered state
spaces. Ann. Probab. 5 451-454.

[6] LicGETT, T. M. (1985). Interacting Particle Systems. Springer, New York.

[7] NEwWMAN, C. M. (1983). A general central limit theorem for FKG systems. Comm. Math. Phys. 91
75-80.

[8] NEwMAN, C. M. and WRIGHT, A. L. (1981). An invariance principle for certain dependent
sequences. Ann. Probab. 9 671-675.

DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853



