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THE INFLUENCE OF MARK KAC ON PROBABILITY THEORY

By HARRY KESTEN
Cornell University

Kac’s work covers a wide spectrum, from classical analysis through number
theory, potential theory, pure probability theory, ergodic theory to statistical
physics. One of the fascinating aspects of his work is that it demonstrates the
interplay between these fields, and, despite the title of this paper, it would not
do Kac’s work justice to restrict ourselves here to its purely probabilistic aspects.
Kac’s enormous influence on statistical physics is discussed by Thompson in the
companion article in this issue, and we shall therefore say essentially nothing
about his work in that field. Nevertheless, it should be pointed out that, apart
from the direct results obtained, Kac’s activity in statistical physics also had the
indirect influence on probability theory of convincing probabilists that there are
exciting and important probability problems in statistical mechanics. Through
his writings, lectures, and personal propaganda, Kac was instrumental in no
small measure in the development of the very strong international group of
probabilists who presently work on the borderline of statistical mechanics and
probability theory.

An excellent survey of most of Kac’s work was given in the introductory
Commentary to the collection of selected reprints of Kac [1]. In addition Kac has
written several illuminating autobiographical notes and a book ([2], [K165],
[K182]).! I owe many of my remarks to these sources. In most cases I have not
repeated all the references given in [1]; when possible I have added later
references. Clearly all my remarks have been influenced by my tastes and limited
knowledge. 1 apologize for misrepresentations and omissions of much work
influenced by Kac.

For the purpose of this article it is convenient to divide Mark Kac’s papers
into the following (somewhat arbitrary) categories:

Probabilistic aspects of gap series and probabilistic number theory.
Interplay between probability theory and analysis.

Potential theory.

Limit theorems and invariance principles.

Feynman-Kac formula.

oW

1. Probabilistic aspects of gap series and probabilistic number theory.
Under this heading fall the limit theorems for lacunary series and number
theoretic functions, which resemble the classical limit theorems (such as the
three series criterion and the central limit theorem) both in form and in
technique. Kac was brought to questions of this kind by his teacher Steinhaus
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1104 H. KESTEN

who had tried to model independent random variables by “independent func-
tions,” i.e., functions f, on [0, 1] which satisfy

{t e [0,1]: a; < fi(t) < B;,1 <i < n

(1) - i=ﬁl|{te [0,1]: &; < fi(t) < B},

where | - | denotes Lebesgue measure. Steinhaus [3] had started to put (countably
many) independent random variables on a sound analytical footing and Kac and
Steinhaus [K5]-[K9] derived a number of properties of independent functions
which are now familiar to every student who takes even one course in probabil-
ity. For instance in [K5] it is proved that two functions are independent if and
only if their joint characteristic function is the product of the two separate
characteristic functions. But remember that Steinhaus’ work on these functions
started some 10 years before Kolmogorov’s fundamental monograph [4]. It is
also of some historical interest (as pointed out by Kac himself in [2]) that [K5]
was the first place where Kronecker’s lemma was used to prove the strong law of
large numbers. See Kac’s note [K165] for further background material and
historical remarks. Kolmogorov’s work came to overshadow these early papers of
Steinhaus and Kac completely, but the latter papers had the important effect of
making Kac search for independence in traditional areas of analysis. He found
this in “gap series” and in additive number theory. (A survey of Kac’s work in
these areas can be found in [1] and [K50]; see also the Introduction and Chapter
12 of [5].)

Various well known analysts such as Kolmogorov, Paley, Zygmund, Sidon,
and Banach discovered that convergence of series of the form

o0
(2) 2 i f(nyt),
k=1

for certain periodic f of period 1 and integral n, satisfying Hadamard’s gap
condition

(3) Npir/Np2q>1,

is governed by Khinchine and Kolmogorov’s three series criterion. (See [K50];
[6], volume I, lacunary series appear on pages 202-212, 215, 230, 247-250,
379-380; or [7] for references.) For instance,

(4) Y c,sin(27n,,t)
converges for almost all ¢ if and only if
(5) Y e} < .

Kac found a number of other results about the convergence and divergence of (2)
(see [K26] and [K32]), but it seems more interesting that he realized that these
phenomena were due to the fact that the summands of the gap series behave like
independent random variables, and that it was therefore natural to look for a
central limit theorem. In [K15] Kac proved by the method of moments that for ¢
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uniformly distributed on [0, 1],

n -1/2 5
©) &Z@} 5 c,sin(2mnyt)
1 1

converges in law to a standard normal distribution, provided

R\ 12 o
o oa-of (Ee] |, nem Bio
1 1

and the integers n, satisfy the stronger gap condition

(8) Npi1/Tp = 0.

This work was continued by Ferrand and Fortet [8] and Salem and Zygmund [9].
The latter authors removed the restrictions that the n, be integers. They also

showed that the gap condition (3) suffices for the normal limit distribution of
(4).2 More generally one can consider sums

(9) {i&ywiqﬂmﬁ

For integers n, satisfying (8), c, satisfying (7), and “smooth” periodic functions
f, a central limit theorem also holds for these sums (see [K50, Section 3]).
However, in this case, the situation becomes quite different when the gap
condition (8) is relaxed to the Hadamard gap condition (3). The limit law (if it
exists at all) of (9) can now be nonnormal, even for bounded smooth f. It
depends strongly on the arithmetic structure of the n,. This was demonstrated
by examples of Erdds, Fortet, and Kac (see [K50]). The central limit theorem
holds nicely for (9) though, when one takes n, = a* for an integer a ([K37], [10],
and [11]). This even continues to hold for some nonintegral a > 1 and certain
functions f, but that is much harder to establish (see [12]). Other choices for n,
were investigated by several people. For instance, following a problem posed by
Bellman [13], the present author investigated the limit law of
(10) Sn:= Z{I[a,b](kx+y)_(b_a)}y

1
where f[a’ »7 is the indicator function of [a, b] € [0,1], periodically extended.
This corresponds to n, = k, which is the extreme opposite of a gap series. If x
and y are independent uniform variables on [0, 1], a second moment calculation
suggests that (10) should also have central limit behavior; the summands are
orthogonal and

E{S,} =0, E{S}}=n(b-a)1l-b+a).

It therefore came as a bit of a surprise that in fact (logn)~'S, has a Cauchy

2In footnote 3 of [K50] a paper by Erdés, Ferrand, Fortet, and Kac is promised which will prove
this same fact. It seems that the paper was never published.
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limit law with a scale factor which depends only on the length b — a, but in a
discontinuous and complicated way (see [14]; see also footnote 3).

From our vantage point it is natural to continue and try to prove invariance
principles and a law of the iterated logarithm for sums of the form (9). A simple
special invariance principle of this kind with n, = 2* is in [15] and an almost
sure invariance principle (which implies a law of the iterated logarithm) for (4)
was proved by Philipp and Stout [16] by using Skorokhod imbedding techniques.
Even though Gaposhkin [17] takes a slightly different point of view, this major
survey discusses a large number of articles on lacunary series which follow Kac’s
work. It also discusses a number of new questions not discussed above. We also
refer the reader to Kahane’s review [7] for further work on lacunary series.
Today investigations of (9) do not seem to beé an active research topic. There is,
however, enormous activity in the study of sums of the form

(11) S F(T*)

for T a transformation of [0, 1] into itself. Of course Tx = ax (mod 1) is a special
case of this and Kac himself already moved in the direction of looking at sums
(11) in [K79]; a central limit theorem for some cases of (11) can also be found in
[10].

A second major area where Kac found independence was additive number
theory. For any set A of integers set

1
P(A} = - {# of integers £ in A N [1,n]}
and
D{A} = lim P,{A} if this limit exists.
If D{A)} exists it is called the density of A. Also define

1, if pn
8 — b b
(1) {O, otherwise.
Then for distinct primes p,,..., D,
Pfm:8,(m)=1,1<i< k} = P{m: pjm,1<i<k}=|n/p, -~ p:l,

where | a| is the largest integer < a. Therefore,

D{m:8,(m)=1,1<i< k} = (p, . py) = iEIID{m: 8,(m) =1}.

3The result for i[ a, 5] 1S atypical for the case n;, = k, because the function i[ a, b} 18 not smooth. If
f has a sufficiently rapidly convergent Fourier series and [} f(¢) df = 0, then

1 n
— Y f(kt) - 0 in probability
n 0

for any sequence y,, tending to co.
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Thus, asymptotically the §, act like independent Bernoulli random variables
with
D{8, =1} = 1/p,.

“Primes play a game of chance” as Kac put it in his delightful Carus monograph
[K178]. It is this independence property which will lead to a central limit
theorem. There is, however, a major difficulty in proving such a theorem: the
density D{ -} is only finitely additive and not countably additive, even on sets for
which it exists. Nevertheless, a central limit theorem with respect to D{-} was

proved by Erdos and Kac for strongly additive functions. A function f on the
positive integers is called additive if

f(mn) = f(m) + f(n)
whenever m and n are relatively prime. If n has the prime factorization
n=prp Pyt
and [ is additive, then

k
f(n) = Xf(p{).

A function f is called strongly additive if it is additive and in addition
f(p*) = f(p), p prime.

Thus an additive function is determined by its values on powers of primes and a
strongly additive function by its values on the primes. In the latter case we can
write

(12) f(n) = X f(p)= X f(p)8,(n).

pln all p

For example if one takes f(p) = 1, the corresponding strongly additive function
is

v(n) = number of primes dividing n.

Another strongly additive function is (log ¢(n))/n, where ¢ is Euler’s function.
This corresponds to f(p) = log(1 — 1/p). Hardy and Ramanujan [18] proved a
“tightness result” for the function »(-). Specifically they showed that

1
(13) - { # of integers m < n for which |v(m) — loglog n| > v,(loglog n)l/z}

tends to O for any sequence vy, tending to co. Their proof used complicated
number-theoretic estimates but no probability. Turan [19] simplified their proof
by using Chebyshev’s inequality, but still without realizing that this was a
standard probabilistic method (see [5], volume 11, pages 18, 19). It was Kac who
realized the full relation with probability theory and tried to prove the following
theorem.
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(14) THEOREM. Let f be a strongly additive function which satisfies

(15) If(p)| <1, pprime.
Let

am- T 2 -y L2

p<n pP<n p

If B(n) —> oo, then
2
06)  tim (s f(m) A = 5B} = o= [ sp| -

Since D is only finitely additive, a proof requires truncation of the sum (12).
Kac could not carry out the necessary number-theoretic estimates of the error
due to such a truncation. As related in [K163] and [K182], Erdos completed the
proof during a lecture by Kac at Princeton. This resulted in the joint publication
[K24] which contains Theorem 14, now known as the Erdos-Kac theorem. In the
special case f( p) = 1, one obtains the result

lim P,{m: 511+111/2————
Jim n{m v(m) < loglogn + x{loglog n} or f exp
which sharpens the Hardy-Ramanujan result (13).

One reason why Erdés could supply the missing estimates so quickly was that
he found in [20] conditions for an additive function f to have a distribution. We
say that f has distribution F if the density of the set

A(x) = {m: f(m) < x}

exists and equals F(x) at each continuity point x of F. The conditions are very
similar to the three series criterion, but the probabilistic content of [20] probably
was not realized until the joint paper [21] with Wintner.

Once the basic result (14) had appeared, the whole machinery of probability
theory was brought to bear on additive number theory. In his thesis, written
under Kac and Rosser jointly, LeVeque [22] estimated the speed of convergence
in (16). In analogy with the usual rates of convergence in the central limit
theorem he conjectured that the limit in (16) is achieved at the rate
O((log log n)'/?) uniformly in x. He obtained a weaker estimate only, but his
conjecture was later proved by Rényi and Turan [23] using Dirichlet series. A
simpler proof of the Erdés-Kac theorem was given by Billingsley [24], [25].
LeVeque [22] generalized the Erdés-Kac theorem and showed that the joint
limiting distribution of f(m), f(m + 1),..., f(m + r) (when suitably normal-
ized) exists and is multidimensional normal with independent components (this
generalization was first stated by Erdés [26] without proof). Erdds [26] gives a
law of the iterated logarithm. Kubilius [27] obtained the full analogue of the
Lévy—Khinchine theory for convergence of a triangular array to an infinitely
divisible distribution. He found conditions for the convergence of the left-hand
side of (16) to any infinitely divisible law. Invariance principles started with
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Kubilius ([27], Theorem 7.3) and other versions were proved by several people
(see [25], Sections 4, 5, 12).

A good introduction to probabilistic number theory is Kac’s Carus monograph
[K178]. The elegant Wald lectures by Billingsley [25] are easily accessible and
show how much can be done relatively easily with the tools of probability.
Kubilius [27] has much of the earlier material as well as his own important
contributions. The latest complete collection of results as well as many historical
remarks are the two volumes of Elliott [5]. One only has to look at the wealth of
material in these books to see how the subject has grown since the Erdés-Kac
theorem.

2. Interplay between probability theory and analysis. It goes without
saying that the ratio of analysis to probability varies greatly over Kac’s papers.
We shall include in this section some papers which are “ pure probability”. Other
such papers are included in Section 3.

We already discussed in Section 1 Kac’s work on gap series which came out of
Fourier analysis; in this area analysis and probability were really intertwined. In
the papers of Kac which deal with the characterization of distributions through
special properties [K16], [K17], [K73], there was more influence of analysis on
probability than vice versa. [K16] proves that if X and Y are two random
variables such that Xcosf + Ysinf and X sinf — Ycos @ are independent for
each 0, then X and Y are independent normal variables with mean zero and the
same variance. The study of the characterization of the normal distribution by
independence properties of various statistics is of course still being pursued (see
[28], Chapters 5, 6 for some references). Analysis comes in here because one
usually reduces these questions to problems of functional equations and special
properties of characteristic functions which have to be handled by means of
complex variable theory. It may be worth mentioning here that in [K12] Kac has
a very neat proof that the only measurable solution of f(x + y) = f(x) + f(y) is
the linear function. It is not clear whether characterization problems or anything
in probability led Kac to this paper.

One would expect that the problem of finding the average number of real
roots of a polynomial with random coefficients was dreamed up by a probabilist
under the motto “if you can’t solve the problem exactly, then randomize” (which
I have heard attributed to Kac). In fact it originated with Bloch and Polya [29]
and Littlewood and Offord [30]. The latter gave an upper bound of order (log n)?
for the expected number of real roots, N,, of an nth degree polynomial whose
coefficients are uniformly distributed on [ —1,1] or standard normal or take the
values 1 and —1 with probability ;. They also showed that N, is at least of the
order of log n/logloglogn with high probability. Kac ([K30], Lemma 1 and
[K31], formula (6)) gave a formula for the number of roots in an interval of a nice
function. Taking expectations in this formula leads to a proper proof of what is
known as Rice’s formula. Rice [31] first gave such a formula on heuristic grounds
for the number of maxima per unit time of nice processes and applied it to a
stationary, twice differentiable Gaussian process. He later used it for the number
of zeros of a Gaussian process. In [K30] Kac used the formula to show that for
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an nth degree polynomial whose coefficients are independent with a standard
normal distribution one has

2
EN, ~ —logn.
™

In [K49] this was extended to the case where the coefficients are uniform on
[—1,1], but Kac’s method did not cover coefficients which are 1 or —1 with
probability 1. Various authors have continued this work. Probably the latest
paper on roots of random equations is [32]. Rice’s formula has also been proven
under more general conditions; formulas for the higher moments of the number
of curve crossings per unit time have also been derived. These results are
important tools in the study of high excursions of Gaussian processes (see [33],
especially Chapters 10, 13, 14 for some references and applications; also [K180],
Chapter 3).

A paper in which the interplay between analysis and probability was much
stronger, and which had a very stimulating influence on probability is [K63].
This paper (with its successors [K61] and [K96]) deals with Toeplitz matrices,
i.e., matrices with entries of the form ¢; ; = ¢;_,. Such matrices arise naturally in
probability theory as transition probability matrices of a random walk. This fact
figured prominently in Kac’s probabilistic proof of a theorem of Szegé which
gave a very sharp result about the asymptotic size of the determinant of C,,
where C, is the matrix with entries

¢ =Ci_is 0<i,j<n,
with
1 ron —ik8
%= 57 ), f(8)e "*°d6

for some f e L'. Kac proved an analogue for integral equations of Szegt’s
formula and writes in [K63] “the way [this analogue] was discovered and proved
seems sufficiently interesting to be summarized here. By a suitable reinterpreta-
tion of Szegd’s result we obtained the following theorem:

Let {X;} be i.i.d. random variables capable of assuming integral values only.
Let furthermore

P(X;=n} =P{X;=-n}=c,=c_,
and S, = X, + -+ +X,. Then, if ¥Pnc, < co we have
P(S, = 0}E{max(0, S,,...,S,_,)IS, = 0}
17 n & 2 P{S=j}P{S,_ = —J}
( ) 2] Z k k

2 o k(n— k)

If P(S, = 0} = 0, the left-hand side of (17) is set to be equal to 0.

...Although the remarkable identity (17) was discovered through Szegd’s
theorem it was desirable to have a direct and elementary proof. Using a
reduction suggested by K. L. Chung, G. A. Hunt gave such a proof. The heart of
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this proof is the following extremely curious combinatorial identity:
Let ay,..., a, be real numbers and
_({ 1L,2,...,n
9=\0,,0,,-...,0,
a permutation. Let finally N(o) be the number of nonnegative terms in the
sequence @,, @, + Qg ,..., 8, + *:- F+a,. Then

(18) Y max(0, a,,a, + a,,...,a, + -+ +a, ) = L, N(o)a,,
a (4

where the summations are extended over all permutations of 1,2,..., n.

Hunt’s original proof of (18) was somewhat lengthy and we shall reproduce in
the sequel a short and elegant proof due toF. J. Dyson.”

Somewhat earlier Sparre Andersen proved a number of remarkable identities
for the distribution of N,, the number of (strictly) positive terms in the sequence
S,,..., S,, as well as for the indices where the max and min of 0, S,, ..., S, occur.
For instance in [34] (see also its references to earlier work of Sparre Andersen) he
derived, by purely combinatorial means, the completely general identity

P{(N,=k} = P(N,=k}P(N,_,=0}, O0<k<n
(with N, = 0), and for |¢| < 1,

© ) 0 . o pk
(19) Y P{N;=j}t/= Y P(S;>0,1<i<j}t/= exp{Z —k—P{Sk > 0}},
0 0 1

plus a similar generating function for P(N, = 0} = P(S; < 0,1 < i <}. He also
derived —under symmetry conditions only—the limiting arcsine law for N,/n.*
When Spitzer saw the combinatorial identity (18) as well as the combinatorial
results of Sparre Andersen he felt that there should be a unifying combinatorial
principle behind these results. This led him to the paper [35] with the following
identity for the generating function of the joint characteristic function of S, and
M, == max(0, S,,..., S,),

ox(a, B) = Eexp{iaM, + iB(M, — S,)}, oo, B) = 1.

For
¢/<1, Im(a)=0, Im(B)=0,
one has
n © 1
@) Eaes)r - e £l + (00 - D),
where

u,(a) = Eexp{iaS; }, v,(B) = Eexp{iBS; }.

*The first paper of Sparre Andersen on the arcsine law was in 1949, before [K55]. Thus the
comments on page 8 of [1], which give the impression that Sparre Andersen’s work on the arcsine law
was an outgrowth of [K55], are somewhat misleading.
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One can retrieve (19) from this (see [35]). This paper led to a great number of
further papers in what is now called “fluctuation theory.” In addition to the
random variables introduced above, in fluctuation theory one derives expressions
for the (Laplace transform of the) time, T, of first entry into the positive
half-line by S, and the size of S;. The passage from Kac [K63] cited above and
the comments following it tied in an analyst, a large number of probabilists, and
a mathematical physicist with fluctuation theory in the mid-fifties. As a matter
of fact its history goes back further. It had long been realized that the distribu-
tion of the waiting time of the nth customer in a simple queueing system is
equivalent to the distribution of M,. In this context Pollaczek [36] (see formula
7.16)) had also obtained the case B = 0 of the identity (20). In [37] he even
obtained double generating functions for all the order statistics of 0, S,,..., S,.
However, Pollaczek made heavy use of contour integration and does not seem to
have realized the purely combinatorial nature of (20). The identity (20) is known
as “Spitzer’s identity” or the “Pollaczek—Spitzer identity.” Too many different
people have reproved and extended fluctuation theory to list them all. We
merely mention Kemperman [38] and Baxter [39] (see [38] and [40] for further
references). It is of some interest that in some proofs one almost returns to
analysis; the identity (20) is then derived from the Wiener-Hopf factorization
(see [38], Section 13ff.; in [41] Baxter closes the circle by using Wiener—Hopf
methods to generalize the theorem of Szeg6 which motivated Kac in [K63]). An
analogue exists when one replaces the random walk by a continuous time process
with stationary independent increments. This continuous time analogue was first
studied by Rogozin, with the principal later work by Fristedt and by Prabhu
(see [42]).

To come back to Kac’s work on Toeplitz matrices, the probability arguments
also suggested some purely analytic statements about the asymptotic behavior of
the extreme eigenvalues of the Toeplitz matrices C, above. These facts were
proven in one case in [K61], and further conjectures were settled by Widom and
by Parter. For these and further references, results, and applications, see [43].

We now turn to the the principle of not feeling the boundary which is a case
of doing analysis using probabilistic tools. The question is how much can one say
about the geometry of a domain & € R¢ from the eigenvalues of the Laplacian
on  with Dirichlet boundary conditions. More specifically, for a “nice” domain
Q Cc R? let A ; be the eigenvalues and u;(x) the corresponding normalized
eigenfunctions of the following Dirichlet problem:

Au(x) + Au(x)=0, x€Q,

(21)
u=0 on dQ.

For d = 2 Weyl [44] and Carleman [45] had proven the following asymptotic
relations:

Q
)\le = (# of eigenvalues \; < \) ~ |§;|}\’ A— o0 (Weyl)
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A
Yulx)~—, A->ow,x€Q (Carleman),
A <A 2

where [{2| is the Lebesgue measure of Q. Weyl also treats the case d = 3. (Some
interesting remarks about the history of this problem can be found in [44],
footnote on page 442, and in [K101].) Kac ([K55] and [K101]) noticed that these
relations follow from the simple probabilistic idea that a Brownian motion
particle which starts at x € Q will not “feel the boundary of Q” for a little time.
To formulate this rigorously let p(t, x, y) be the density at y at time ¢ of an
unrestricted Brownian motion starting at x, and q(¢, x, y) the corresponding
density of the Brownian motion absorbed at 9Q. Then for x € @ and y
sufficiently close to x one has

p(t,x,y)

22 im =
(22) 110 q(t, x, y)

Kac proved (22) essentially by explicit computation for d = 2 and y close to x.
Ciesielski [46] proved that under a mild condition on @ (22) holds if and only if
the line segment from x to y is contained in Q. In any case, (22) holds for
y = x € &, and using Mercer’s theorem one has

1
Q(t:x’x) = Ee_)‘jtu/?(x) ~p(t’x7x) I t10,
27t
from which Carleman’s result follows via a standard Tauberian theorem. Some
more work involving estimation of

-/;zQ(t’ x,x)dx

gives Weyl’s result as well. In particular one can obtain || from a knowledge of
the eigenvalues A;. A major advantage of this probabilistic approach is that it
immediately suggests extensions. For a nice & we can expect that we can sharpen
(22) by approximating the boundary by a line H (or hyperplane if d > 2) through
the boundary point closest to x, and then taking into account absorption of the
Brownian particle in H. For d = 2 and convex € this leads to

Y L
e
Ee 27t 4/2xt’
where L is the length of the boundary of Q. Pleijel [47] proved a closely related

result by purely analytic means. He obtained an asymptotic expansion for
another abelian expression in the eigenvalues, namely for

1
Z}\j(}\j+w)

ti0,

as w — o0.

Thus for convex @ C R? one can even find the length of the boundary, and as
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Kac argued in [K101], one may even guess
Sone O L
2@t 4yY2mwt

for a smooth domain € with r holes; Kac then speculated whether one can
determine the Euler characteristic of & from the eigenvalues A .

In [K119] Kac “proved” (he admitted to some gaps in his argument; these
gaps were filled by Stroock in [48]) that one can almost determine a solid of
revolution in R?3 from the associated spectrum. The inverse problem has been
generalized to that of finding the geometry of a manifold (of any dimension)
from the eigenvalues of its associated Laplace-Beltrami operator. Many people
have contributed to this; the problem seems to have moved back to analysis or
differential geometry, though. We refer the reader to [1] for a partial summary of
the progress up till 1975. More detailed information can be found in [49],
especially in the contributions of Berger, Duistermaat and Guillemin, Gilkey and
Gilkey, and Sacks. For a discrete version of the problem see [50].

+ %(l—r)

3. Potential theory. The Laplacian is of course intimately connected with
classical potential theory. Relations between random walk and harmonic func-
tions had been known for a long time (see [K55], Section 10 for some references),
but since 1A is the generator of Brownian motion it is more natural to relate
Brownian motion directly to harmonic functions. It seems that Kakutani was
the first to make explicit use of this relationship. In [51] he expressed the
harmonic measure relative to x of a subset E of € for a nice domain Q as the
probability that a Brownian particle starting at x hits dQ first in E. More
generally, Doob [52] considered the (interior) Dirichlet problem: For a given
domain © ¢ R? and function f on 9%, find a function u on  such that

(23) Au(x) =0, x€Q,
(24) limu(x) =f(y), ye<aQ.
x>y
x€Q

Doob wrote the solution as

(25) u(x) = E{{(B,,)}

where {B,} is a Brownian motion, E, denotes expectation with respect to the
measure P, governing the Brownian motion when it starts at x (thus B, is not
necessarily 0 in our notation), and ‘

o, =inf{¢ > 0: B,€ A}.
If
(26) 0,0 < oo almost surely and Ex{| f(Bom)l} < 00, x€Q

(i.e., if f is integrable with respect to the harmonic measure; this condition does
not depend on x), then (25) is indeed harmonic in Q. If f is bounded and
continuous on d and every point of 3 is regular for Q¢ := the complement of
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Q, then u even has a continuous extension to the closure of 2, which satisfies the
boundary condition (24). (A point y is regular for a set A if

P{B,€ Aforsome0 <t <48} =1 foralld>0

i.e., the Brownian motion hits A immediately from y). For more general f the
boundary condition (24) only holds in a weaker sense, but u agrees with the
classical Perron—Wiener—Brelot solution under (26); see [52], Theorem 6.2, and
[63], Section 2.IX.13.

In [K55] Kac considered another problem from classical potential theory; he
looked for the capacitary potential of a bounded set @ c R? d > 3, with
positive Lebesgue measure. To be more pre01se Kac was investigating the
distribution of the functional

T="T,= f I,[ B,] dt = the occupation time of €.
0
He was led to this because his work on the Feynman-Kac formula (see Section 5

below) gave him the following expression for the Laplace transform of 7' when
d=3:

o0 a
2 E{eT} =1- 2
(27) He™} ug.l 1

Au’

where

4= 5 [9() dy [T "”’(z) -

and A; and ¢; run through the elgenvalues and corresponding normalized
eigenfunctions of the integral equation
1 f o()

2

dy=Ap(z), z€Q.

alz =yl
By taking the limit as u — oo one obtains
1 1 9,(2) dz
28 P{T>0}=1lm—Y —— [o(y)dy[ —.
(28) AT 0) = lim Y g [ () ar [ 0=

If one defines—as in [54]—the “penetration time of Q” as

r=n=inflt: [TL[B,]ds >0},
0

then
U(x) = P{T > 0} = P{r < oo}.
In [84] (see also [K180], Chapter 1) Kac showed for compact £ c R? that U(-) is
the potential of a measure concentrated on 92, is harmonic on Q¢, and equals 1
on the interior of {. Finally if y is a point of d§ which is regular in the sense of
Poincaré (this is stronger than y is regular for ), then
lim U(x) = 1.

x—y
x&Q
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This implies that for a nice region {2, U equals the capacitary potential of Q. The
capacitary potential of £ can be characterized as the “swept out” function

W(x) = liminfR(y),
y—ox

where
(29) R(y) = inf{v(y): v is superharmonicon ,v > 1on Q and v > 0 on R%}.

R is harmonic on Q¢ and equals 1 on “most” points of €. It is now known ([55],
Theorem 5.19) that W can be expressed probabilistically as

W(x) = P{og < o0}.

Kac [84] raised the question of determining for which sets € it is true that U is
the capacitary potential, or equivalently for what € is
P{rg< w0} =Pfog < o0} forall x.
He called such € semiclassical. Clearly this hinges on the relation between the
penetration time 7, and the hitting time o,. In [K55] Kac already conjectured
(falsely as it turned out despite the footnote on page 211) that if x € 9Q is
regular for & then P{r, < oo} = 1. Erdos and Dvoretzky gave a counterexample
of a compact € which equals the closure of its interior and for which there exist
x € dQ which are regular for £ but with P {1, < oo} < 1. These questions were
the stimulus for Ciesielski’s work [56] on potential theory. Among other results
he gives the following analogue of (29) to characterize U. For compact
(30) U(y) = inf{v(y): v is superharmonic on €,
30
v>1lae.onQand v > 0onR%}.
Note that this differs from (29) only in the addition of “a.e.” Stroock [54] further
developed Kac’s potential theory and compared it with classical Newtonian
potential theory. He considered for instance the exterior Dirichlet problem, that
is the boundary problem (23), (24) for Q@ = K¢, K compact, with the additional
requirement
lim u(x) = 0.
X 00

Stroock notes that one can write
o0
n:ﬂzmﬁmﬁ
where

Tk, = inverse function of Ty , = ftIK [B,] ds.
0

He then proceeds to show that
uy(x) = Ex{ f(B,); 7 < oo}

corresponds to the solution of the exterior Dirichlet problem in Kac’s approach.
Note that, for f = 1, u, becomes U. Stroock also shows that one will return to
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the classical solution by allowing for 7 , the inverses of more general additive
functionals than Ty ,.

In the meantime much has happened in probabilistic potential theory. In
particular since Hunt’s pathbreaking papers [57] in 1957-58 this area has grown
into a separate subfield of probability which deals with potentials of (almost)
any Markov process, not just Brownian motion. We merely list the books [53]
and [58] as a starting point for a reader to become acquainted with the work in
probabilistic potential theory. It has become more accepted to work with the
hitting time o than with the penetration time 7,. Perhaps the advantage of
Kac’s approach is that one can write down analytic expressions such as (28). If
the set © is semiclassical this gives us an expression for the solution of the
exterior Dirichlet problem which can be manipulated.

Kac also investigated the analogue of the logarithmic potential in R2. Ap-
parently he started this work in the mid-fifties but did not publish it until
[K180]. Traces of it can be found in [K71] and [K116]. In R2, B, is recurrent and
T, = oo for any set @ with nonempty interior, so that the above U is identically
1 and useless. One has to replace U by the Green function at oo, i.e., by

V(x) = lim ["q(¢, y,x) dt,
y—00 Y0

where, in Kac’s approach,
(1) q(¢, y,x)dx = P{Tg ,=0, B, dx} = P{rc > t, B, € dx}.

K is assumed compact throughout here.® Kac developed much of the recurrent
potential theory using the penetration time in [K180], Chapter 2. The Dirichlet
problem is treated, Robin’s constant is defined, and expressions for V similar to
(28) are derived. Historically the most interesting is the limit theorem

P{Ty ,= 0} = P{K has not been penetrated by time ¢}

_ 27V(y)

, t—> o
log ¢ ’

for compact K. In the mid-fifties Kac did not have a proof of this but stated it
as a conjecture (possibly suggested by his calculations in [K71]) to Hunt, who
subsequently proved this result in the classical setting in [59]. That is, for
compact K, Hunt proves that

27H( y)

(32) Py{oK >t} ~ Tog ¢

) t— oo,

where H( y) is defined by replacing 7 by oy in (31). In fact this is the special
case f = 1 of Hunt’s asymptotic formula for

E,(1(B,,); ox > 1).

5Note that in [K180] the function U in Section I1.7 is 7 times the function U of Section IL.9.
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The paper [59] in which Hunt proves Kac’s conjecture (as well as the strong
Markov property for processes with stationary independent increments) seems to
have been Hunt’s first paper in potential theory and may therefore have
influenced him to write his famous papers [57]. The work of Kac and Hunt also
started Spitzer on his investigations of recurrent potential theory for arbitrary
random walks on R¢ which culminated in his book [40]. Many detailed results
can be derived for the special case of random walks which are not in the
potential theory for general Markov processes. A similar comment applies to the
potential theory for processes of stationary independent increments which was
worked out by Port and Stone [60]. Also the potential theory of random walks
and independent increment processes on groups has been investigated by many
people; we list in [61] an early and a recent contribution together with a useful
book.

We postpone to Section 4 discussion of [K71], which is closely related to
potential theory.

4. Limit theorems and invariance principles. Undoubtedly the most
influential limit theorems proved by Kac (with several coauthors) are those of
the series [K38], [K39], [K41], [K47], [K48], and [K52]. Most of these papers
deal with limit distributions for quantities of the form

(33) iwsk),

where the S, = Y*X, are the partial sums of independent identically distributed
random variables X;, or of the form

(34) fo "V(B,) ds

for a Wiener process B;. For instance, if one takes V = [, ., then (33) becomes
the number of positive partial sums among the S;, 1 < i < n; for V(x) = |x| one
obtains

(35) ilskly

which played an important role in Kac’s path to the Feyman-Kac formula. Not
only were these papers important in the development of this important formula
(discussed in Section 5), they also proved special cases of the “invariance
principle” and even formulated explicitly (see [K38], [K39], and [K41]) the idea
that many limit distributions for sums of the form (33) are the same for a wide
choice of the distribution F of the underlying X;. This idea was inspired by a
remark of Uhlenbeck to Kac (see [1]). As a true physicist, Uhlenbeck seems to
have liked “universal laws” and he suggested to Kac that the limit distribution
of the absorption time of a random walk with two barriers should be indepen-
dent of the distribution of the individual steps of the walk. Apparently it went
unnoticed that Kolmogorov had already proved a special case of such a result in
1931 (see [62]). Kac used this idea to prove various limit laws by calculating the



KAC’S INFLUENCE ON PROBABILITY 1119

limit distribution for some special choice of F. The precise limit distribution
obtained in the above examples is in many cases of less importance than the
method. The name “invariance principle” seems to have been coined in [K41]. In
[K39] it is also made explicit that the limit distribution should be the distri-
bution of a functional of a continuous time process (a Gaussian one in the early
examples and a Cauchy process in [K52]) and that the problem therefore was one
of proving convergence of the distribution of a certain functional of the S, to
that of the same functional for a limit process of the (normalized) S,. Actually
this was also apparent in Kolmogorov’s paper [62]; it appears once more in
Doob’s paper [63] on Kolmogorov—Smirnov statistics and in [K48] and [K52].
Doob could not prove the required functional limit theorem for his result, but
Donsker [64], inspired by the papers [K38] and [K41] of Erdos and Kac, proved
general functional limit theorems, which generalize [62] and also justify Doob’s
heuristics in [63]. With the later work of Prohorov and Skorokhod (see [65] for
references) this exploded into a whole new field. Nowadays when proving a limit
theorem, a functional limit theorem or invariance principle is the limit theorem
of choice, and every graduate student in probability theory or operations
research learns about these. There are exceilent textbooks on the subject [65].
The techniques for proving invariance principles have become enormously
sophisticated (see for instance [16] and [66], Chapter 11).

Two papers dealing with limit theorems not so much related to the invariance
principle are [K54] and [K70]. The first deals with the number of changes of sign
or small values among the partial sums, in the case where the X; belongs to the
domain of attraction of a stable law. The invariance principle does not apply in
this case.® [K70] is concerned with the limit distribution of additive functionals
of Markov chains X, or Markov processes X, of the form

(36) )'::V(X,» or [V(X)ds

respectively. If X is positive recurrent the limit distribution is usually normal
(see for instance [68], Section 1.16). The situation is quite different for a null
recurrent process such as a random walk or Brownian motion. This is demon-
strated by Darling and Kac with the following result in [K70].

THEOREM. Let X, be a Markov process with stationary transition probabili-
ties
p(t,x,E) = P(X,,, € E|X, = x}

6Section 7 of [K70] is not correct. Let X, have characteristic function ¢(¢) ~ 1 — |7, and let X/
equal aX, with probability p and X, = 0 with probability (1 — p). Then for pa” =1 also ¢'(t) ~
1 — |¢|”, where ¢’ is the characteristic function of X/. If S = XX/ and N, (N;) is the number of
changes in sign of S,..., S, (S},...,S,) then n~1/7S,, and n~'/*S;, both converge to the same
stable process, but N; ~ N,,.. The error in [K70] is that condition A was only checked for x = 0 and
not uniformly for x € {§: V(£§) > 0}.

The result of [K54] for a = 1 is also incorrect both in the original version as well as in the
correction; see [67].
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and assume that V > 0 and that there exist a constant C > 0 and a function
h(s) tending to infinity as s | 0, such that

ﬁff dt [e='p(t, x, dy)V(y)>C

(37)
as s |0, uniformly on the set {x: V(x) > 0}.
If

(38) h(s) = L(1/5) for some 0 < a < 1 and slowly varying L,
then

. 1 ¢

lim P{WLV(XS)dS < x}
(39)

1 2 (-1 _
= g(x) = — [ ¥ ———sin(maj)[(aj + 1)y’ " dy.
T J!

In fact Darling and Kac showed that under condition (37) either the limit
distribution is concentrated on one point (corresponding to a law of large
numbers with A(s) =1/s) or h has to be of the form (38) and the limit
distribution has to be as in (39). Of course this is again an invariance principle of
some kind. The usual functional limit theorem for (36) was proved by Bingham
[69]. Kasahara [70] considered the delicate case when a = 0 in (38); this case
requires introduction of a new time scale since otherwise the limit process is
constant in time. Perforce most of the extensive further literature dealing with
additive functionals of Markov processes is concerned with the case where V can
be both positive and negative, in which case a whole new class of limit distribu-
tions can arise. The first paper in this direction was perhaps by Dorbushin [71]
on the difference of the number of visits to two integers by a simple symmetric
random walk. For a sample of other results in this direction see [72]; a number of
these references also treat invariance principles even for a V which takes both
signs.

In [K71] the tail of the distribution of (36) is studied when X, is the sum of %
ii.d. random variables in the domain of (normal) attraction of a symmetric
stable law of index v, 1 < y < 2, and V is the indicator function of a bounded set
Q. For 1 < y < 2 Kac proves that

(40) lim ! —l/vp{ izﬂ( X,) = j}

exists, and for y = 1,

(41) lim log nP{ izg( X,) - j}

exists. Since two-dimensional Brownian motion behaves (as far as recurrence
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times are concerned) very much like a Cauchy process, (41) for j = 0 may well
have been the basis for the conjecture (32). Of course one can formulate
analogues of (40) and (41) for any recurrent random walk and such analogues
were proved in [73].

It is worth mentioning that [K48] uses the trick of simplifying the calculation
of a limit distribution by using a Poisson distributed number of summands
rather than a nonrandom number of summands. I do not know whether this is
actually the first appearance of the trick, but by now its use is so standard (see
[74] for a recent case) that by the definition of Polya and Szego ([75], page VI) it
has long since become a method instead of a trick.

5. Feynman-Kac formula. If one were to choose a single result for which
Kac is most famous, it would surely be the Feynman-Kac formula. This formula
in its original form (see [K47], [K55]) expresses the double Laplace transform of
the additive functional

(42) fo ‘V(B,) ds

for a Brownian motion B, and nonnegative V (plus some other conditions on V')
as

(43) fow dte”‘EO{exp[—u/(‘)tV(Bs) ds]; a<B(t) < b} = fab\p(x) dx,

where { is the fundamental solution of the differential equation
(44) W(x) = (v +uV(x))d(x) =0, x+0,
subject to the conditions
Y(x) -0, |x| > o0,  y’(x)is bounded on x # 0 (with the bound
dependingon v > 0), and (0 +) —¢/(0—) = —2.

This result can be applied in two directions. One can choose some V and use the
equation (44) to solve for the Laplace transform of (42) (or at least find
properties of the distribution of (42)); or one can try to use the representation
(43) to derive properties of the solutions to (44). Kac in [K47], [K55], and [K177]
gives examples of both kinds of applications. For instance if V(x) = (1 +
sgn(x))/2 then one recovers the arcsine law for the amount of time spent in the
positive half-line. More generally, V(x).= 1 — I, ,;(x) can be used to treat the
amount of time spent outside the interval [a, b]. By taking the limit u — o0 in
(43) one obtains an expression for the Laplace transform of

Py{B, staysin [a, b] up till ¢},

i.e., one obtains a handle on the two-sided absorption problem. Kac.[K55] even
started on this for stable processes (the Feynman-Kac formula generalizes to
any other Markov process; see below) but the resulting replacement for (44)
seemed too nasty to obtain explicit results. Nevertheless Widom and Getoor [76]
soon afterwards obtained explicit expressions for the distribution of the exit
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place for stable processes (and less explicit expressions for the joint distribution
of the exit time and place). For an application in the other direction Kac derives
the asymptotic expressions for

> u¥(x) and ) 1

A, <A A, <A
where A; and u; are the eigenvalues and corresponding eigenfunctions in L? of
(45) qu(x) — V(x)u(x) = —Au(x)
for a V which tends to oo as |x| = oo. These expressions are closely related to the

Weyl and Carleman results discussed in Section 2. In this application Kac also
gives the expression

A, = — lim l1og Eo{exp[—j:V(Es)ds]}

t—oo L

for the smallest eigenvalue of (45).

Kac’s original example was V(x) = |x|, which he treated in [K39] in order to
answer a question of Martin. For that example he approximated the Brownian
motion by a Gaussian random walk and treated the random walk problem by an
eigenfunction expansion of an integral equation (the latter is Kac’s favorite tool,
which is all pervasive in his work). Actually he could not solve the integral
equation for the Gaussian case but instead dealt with the case where the
variables have a density jexp(—|x|) and used Uhlenbeck’s remark discussed in
Section 4 that the limit (as the discretization interval goes to 0) should be the
same for this as for the Gaussian case, i.e., a form of the invariance principle
should hold. All these calculations masked the general Feynman-Kac formula
and he did not discover this until [K47]. There he still used discretization, but
this unnecessary device was no longer used in [K55] where the result was
obtained by deriving an integral equation for the density at x of

Eo{exp[—u/O‘V(Bs) ds]; B, e dx}

The way Kac arrived at his proof has been well described in several places (see
[2], [K100], and [K182]). The proof has since been considerably streamlined and
generalized; see [77], [78], Chapter 13.4, and [79]. Let L be the generator of a
probability semigroup and V(¢, x), f(¢, x), and g(x) measurable functions. These
functions also have to satisfy some growth conditions to justify the argument in
footnote 7. For simplicity we take V, f, and g bounded in x for ¢ in compact
time sets. These conditions can be relaxed considerably afterwards, but we shall
not discuss this here (see [79]). Let {X,},. , be a standard Markov process with
generator L. Assume that u(¢, x) is a solution of

du(t, x)
ot
which is sufficiently nice so that

(46) = Lu(t,x) + V(¢t,x)u(t,x) + f(t, x), u(0, x) = g(x),

(47) 6(¢) = u(T - ¢, X,) - /0‘{— [ﬂ‘%f—)LT + Lu(T - s, Xs)} ds
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is a martingale on [0, T'] with

Ex{sup|0(t)|} < oo forall x.

t<T

The Feynman-Kac result in its present version says that the only function u
which can satisfy these conditions is given by’

u(t,x) = Ex{g(X,)exp[LtV(t -s,X,) ds]}

(48)
+/OtEx{f(t— s,Xs)exp[j:V(t— r, X,) dr]} ds, t<T.

Note that (47) is indeed a martingale under very mild conditions by [66],
Theorem 4.2.1, and the fact that

o(X,) - [Lo(X,)ds
0
is a martingale if v is in the domain of L and s — E,|Lv(X,)| is locally
integrable, by Dynkin’s formula (see [78], page 133).
Applications of the Feynman-Kac formula are to be found throughout the

literature (see [K55], [K100], [K177], [79], [80], and [81] for instance). Note that
if f = 0, then solving (46) amounts to constructing a semigroup with generator

"Here is a very general method to prove (48) which I learned from R. Holley; it basically follows
Exercise 4.6.7 in [66]. Define

n(t) = exp[fO‘V(T ~ s, X,)ds

and use Theorem 1.2.8 of [66] as well as

0(t) = u(T -t X,) + fo‘[V(T— s, X)u(T — s, X,) + {(T — s, X,)] ds
(by (46)) to obtain that

8(t)n(t) —fota(s)n(ds)
=u(T -t X,)exp[fo V(T - s, X,) ds]

+ exp[fo‘V(T -5, X,) ds]fo‘[ V(T —r, X)u(T —r, X,) + (T~ r, X,)] dr
(*) .\
- fo’u(T — 5, X,)V(T - s, Xs)exp[fo VT -r, X,) dr] ds
- fo ds V(T - s, Xs)j(; {(V(T - r, X,)u(T - 1, X,)
+1(T-rX,)} drexp[j:V(T - g,X,) dq]

is a martingale on [0, T']. Integration by parts of the last term and equating the expectations of ( *)
with respect to P, at times T and O gives (48) at ¢t = T.
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L + V, a perturbation of L. In quantum field theory (see [79], [80]) the
Feynman-Kac formula (48) is apparently an important tool for deriving proper-
ties of this perturbed semigroup (and sometimes even for its construction).

We arbitrarily pick one more application to illustrate the usefulness of the
Feynman-Kac formula. The Kolmogorov-Petrovsky-Piscounov equation

du(t,x) 1 9%u(t,x)
at 2 ox®
for a function f in C'[0,1] which satisfies
f(0)=£(1) =0, f(u) >00n(0,1) and
f()=1, f{(u)<1on(0,1]

was introduced as a model for the spread of an advantageous gene in a
one-dimensional medium. One is interested in the asymptotic behavior as ¢t — oo
of the solutions of this nonlinear partial differential equation for different initial
conditions. It turns out that in many cases (49) has asymptotically travelling
wave solutions, i.e.,

(50) u(t,x + m(t)) - w(x), t— oo,

for some wave w centered at m(t). In order to prove (50) and to find an
asymptotic expansion for m(t), Bramson [82] writes the solution by means of the
Feynman-Kac formula as

(51) u(t, x) = Ex{u(O, Bt)exp[jo‘v(t —s.B) ds]}

with

(49) + f(u(t, x)), xR,

V(t, x) = f(u(s, x))/u(s, x).
This V depends on the unknown function u, but nevertheless Bramson obtains
sufficient information to find out which Brownian paths give the main contri-
butions to (51) and to evaluate these asymptotically. This yields (50) with sharp
information about m. Even though Uchiyama [83] obtained a good part of these
results by purely analytic methods, the probability attack seems to give the
sharpest results at present.
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