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A SHARP AND STRICT LP-INEQUALITY FOR
STOCHASTIC INTEGRALS!

By D. L. BURKHOLDER

University of Illinois

A new proof of a sharp L?-inequality for stochastic integrals is given that
makes it possible to show that strict inequality holds in all nontrivial cases.

1. Introduction. Let (Q, #, P)be a complete probability space and (%),
a nondecreasing right-continuous family of sub-o-fields of .# where %, contains
all A €% with P(A) = 0. Suppose that M = (M,),., is a real martingale
adapted to (%), , such that almost all of the paths of M are right-continuous
on [0, c0) and have left limits on (0, o). Let V = (V)), ( be a predictable process
with values in [—1,1] and denote by N = V- M the stochastic integral of V
with respect to M: N is an adapted right-continuous process with left limits on
(0, ) such that

N, = V.dM, as.
[0, ¢]

For background and the basic results that we take for granted here, see [3] and
[4].

Let p* be the maximum of p and ¢ where 1 <p < and 1/p +1/q = 1.
Set || M|, = sup,| M, Then [1],
1) INIl, < (p* = DIMIl,

and p* — 1 is the best constant. However, our original proof of (1) has the
disadvantage of not preserving the strict inequality of the discrete-time version
(Theorem 1.1 of [1]) in the transition, via approximation, to the continuous-time
case. Therefore, the following theorem and its proof give additional information
and insight.

THEOREM 1. Ifp # 2 and 0 <||M||, < oo, then

(2) NI, < (p* = 1)IM]|,.
For example, if p # 2 and ||M]|,, = 1, then
(3) V,dM,| <p* - 1.
[0, o) p

Here the integral denotes N, the almost sure pointwise limit of N. It is also the
limit in L? of N, hence the left-hand side of (3) is equal to || N||,.
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2. The inequality without strictness. To prepare for the proof of the
theorem, we shall give a new proof of (1). Let 1 <p < o0 and ||M], < oco.
Denote by Z = (X, Y) the stochastic integral with values in R? where

(4) X=N+M=(V+1)-M
and
(5) Y=N-M=(V-1)-M.
Define v: R2 > R by
x+yp x—yp
v(x,y)=l 5| —(P* =1

Since N= (X + Y)/2 and M = (X — Y)/2, we have that
Eo(Z,) = INJ2 - (p* = D) IM,5.

Consequently, if

(6) Ev(Z,) <0

for all ¢ > 0, then (1) holds.

Instead of proving (6) directly, we shall prove an analogous inequality for a
majorant u of v (see [2]) with the following key property: If x, y, h, 2 € R and
hk < 0, then the mapping

s> u(x + hs,y+ ks)

is concave on R. The function u: R?2 - R is continuous and satisfies the
symmetry condition

u(x, y) = u(y, x) = u(-x, -y),
so0 it is enough to recall its definition on the set where |y| < x: If
p*(x - )
2x ’
where a, = p[ p*/(p* — 1)]'7?, then, for 1 <p < 2,
u(x, y) =o(x,y) fQ-2/p*)x<y<x,
=w(x,y) f-x<y<(1-2/p*)x.

w(x, y) = ax? [1 -

For p > 2,
u(x, y) =w(x,y) if(1-2/p*)x<y<u,
=o(x,y) if —x<y<(1-2/p*)x.
The final step in the proof of (1) is to show that
(7) Eu(Z,) < 0.

Although this follows from the discrete case, proved in [2], it may be instructive
to give a direct proof here. We shall do this in Section 4 using It6’s formula.
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3. Strictness of the inequality.

PrOOF OF THEOREM 1. Because ||M]||, is finite, the almost sure limit M,
exists and satisfies || M|, = ||M]||,- By (1), a similar statement holds for N,_,
hence also for X and Y. It is clear from the definition of u that |u(x, y)| is

majorized by a constant multiple of |x|? + |y|?, so
(8) u(Z)] < e,(IX7 + ¥)7) < ¢, [(X*)” + (Y*)7],

where X * = sup,| X,|. Using (7), Doob’s L”-inequality for the maximal function
of a martingale, and the dominated convergence theorem, we see that Z_ =
(X,,Y,) satisfies

(9) Eu(Z,) <0.
(i) Consider the case p > 2. Then, in addition to (9), we have that
(10) EX Y, <0O.

This follows at once from
EX Y, = EN2 — EM2
=E (V2-1)d[M, M].,.
[0, o)

Here the integrand is nonpositive and [ M, M] is the nondecreasing quadratic-
variation process. From the assumption on | M|, in the statement of the
theorem it follows that || X, — Y|, > 0. So P(X,, # Y,) > 0 and, by (10),

P(X,Y, <0,(X,,Y,) + (0,0) >0,

for otherwise EX_Y_ would be strictly positive. Here p* > 2 and it is easy to
check that if xy < 0 and (%, y) # (0,0), then v(x, y) < 0. Therefore,

(11) P(v(Z,) <0)>0.
It is also easy to check (see [2]) that
(12) o(x,y) >0 = o(x, y) <u(x, y).

We can now prove that ||N |5 — (p* — 1)P||M,||5 is strictly negative by
showing its equivalent:

(13) Ev(Z,) < 0.
This will give (2) in the case p > 2.

By (9) and the fact that u majorizes v, the implication (12) gives (13) if
P(v(Z,) > 0) > 0. On the other hand, if P(v(Z,) < 0) = 1, then (13) follows
from (11). This completes the proof of the theorem in the case p > 2.

(ii) Now suppose that 1 < p < 2 and, with no loss, that ||N_|, > 0. Let

My, = (sgn N )N |2~ /N5~
Then ||N_||, = EN,M, and |M}|,=1. Let M’ be a right-continuous
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martingale with left limits satisfying

M; =E(M.|%#,) as.
for all t > 0. Let N’ =V - M’. Then

EN M/ = EM,_N,/

o0 * 00

since each side is equal to
Ef Vd[M, M'],.
[0, o)
Therefore, by (i),
1N, < 1Mol ol Nl
< (g = DIMlI I ML,

= (p* = DIM,|l,,-
This completes the proof of the theorem.
4. A supermartingale. We shall now prove (7) using It6’s formula applied

to a smooth approximation of u. For each positive integer n, let g” be the
Gaussian density on R? defined by

g"(x, y) = nexp|—nw(x? + y?)].
Let u™ denote the convolution of u with g”. Then u” is infinitely differentiable

and u”™ — u pointwise as n — oo. Denote its derivatives by uf, u},... . Then
(14) [u"(x, ¥)I < c,(|xI7 + |¥IP) + ¢p,
(15) lup(x, Y)| < (61771 + 191771) + ¢,

-with a similar bound on u}, where the symbol c, denotes a positive real number
but not necessarily the same number from one use to the next. It is important to
note, however, that ¢, can be chosen to be independent of n. Furthermore, if
x, ¥y, h, k € R and hk < 0, then the mapping

s> u™(x+ hs,y+ ks)

is concave on R, implying that

(16) u(x+h,y+ k) <u™(x,y)+ ul(x, y)h + u}(x, y)k
and
(17) ul(x, y)h® + 2ul (x, y)hk + ul},(x, y)k* < 0.

These properties of u" follow easily from the properties of u that are proved in
[2].

By It6’s formula as extended by Kunita and Watanabe [5] and Meyer [6] (see,
in particular, the recent treatment in [3]),

(18) u™(z,) =u™(Z,) + I+ J,+ 1Q,+ S,
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where

L= [ uXZ )(V,+1)dM,
©,1]
= [, 42V, -1 au,

e 0 55

+un (2, )(V, - 1)’|d[ M°, M°],,
and
S,= X [un(2,) - u"(2,.)

O<s<t
—u(Z,_)(V, + 1) AM, — u™(Z,_)(V, - 1) AM,].

In this formula, M° denotes the continuous part of the martingale M, and
AM, =M, — M,_.

The product of (V, + 1) AM, and (V, — 1) AM, is nonpositive so, by (16), we
have that S, < 0. By (17), the integrand of @, is nonpositive. Thus, @, is also
nonpositive. Now consider I,. By (15),

WX(Z, ) < e, [(X*)" 7+ (Y)Y + e,

Let U * denote the right-hand side. Then

12
Bl < B[ (452,00, + )0, 1],

< 2¢EU*[M, M]/2

The square-function inequality for LP”-bounded martingales implies that
[M, M]}/2 € L?. Since

[X,X], = f[o L 1’d[M, M],

<4M,M],,

the square-function inequality implies also that X * € LP. Similarly, Y* € L?
so U * € L9. Therefore, by Hélder’s inequality, E|I,| is finite and we have that
(1), is a martingale starting at 0. Accordingly, EI, = 0 with a similar result
for J, and Eu’(Z,) < Eu(Z,). In view of (14) and the analog of (8), we obtain

Eu(Z,) < Eu(Z,).

Since u(x, y) < 0if xy < 0 and XY, = (VZ — 1)M¢ < 0, we have that u(Z,) is
nonpositive, so (7) holds.
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REMARKS. It is clear from (18) and the fact that both @, and S, are
nonincreasing in ¢ that (¢"(Z,)),., is a supermartingale. This implies that
(u(Z,)), o is a supermartingale.

If u: R? > R is any function such that the mapping

(19) s> u(x+ hs,y+ ks)

is concave on R for all x, y, b, k € R with hk < 0, then (u(Z,)),. , is either a
supermartingale or a local supermartingale under a variety of conditions on M,
with Z being defined by (4) and (5) as above. Such is the case, for example, if M
is bounded or has continuous paths. If V has its values in {—1,1}, then it is
enough to assume that, for Ak = 0, the mapping (19) is concave. Thus, for this
special class of predictable processes V, it suffices to have u biconcave.
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