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GRADIENT DYNAMICS OF INFINITE POINT SYSTEMS

By J. Fritz
Mathematical Institute of the Hungarian A cademy of Sciences

Nonequilibrium gradient dynamics of d-dimensional particle systems is
investigated. The interaction is given by a superstable pair potential of finite
range. Solutions are constructed in the well-defined set of locally finite
configurations with a logarithmic order of energy fluctuations. If the system
is deterministic and d < 2, then singular potentials are also allowed. For
stochastic models with a smooth interaction we need d < 4. In order to
develop some prerequisites for the theory of hydrodynamical fluctuations in
equilibrium, we investigate smoothness of the Markov semigroup and de-
scribe some properties of its generator.

0. Introduction. The purpose of this paper is to study existence and regu-
larity properties of solutions to the following infinite system of stochastic
differential equations. Consider a countable set S of d-dimensional particles
suspended in a fluid, where the interaction is given by a pair potential U:
R? — (— 00, +00]. In a quasi-microscopic description of such systems the effect
of collisions with the particles of the fluid can be represented by uncorrelated
stochastic forces, and the soft resistance of the liquid medium reduces the order
of the equations of motion from two to one, see [13], [23], and [24] for some
further references. Configurations of these systems are countable subsets of R¢
such that any bounded domain contains a finite number of points only. Particles
of a configuration will be identified by labelling points by elements of S. Thus a
labelled configuration is of the form w = (w;); s With 0, € R, ie,, v € (R%)S.
Of course, not every element of this product space is locally finite. Suppose now
that we are given a family [w,: 2 € S] of independent standard Wiener processes
in R? Then the evolution law is given by

(0.1) do,=— ) gradU(w, — w;)dt +odw,, kES,

J*k
where o > 0 is a constant. We assume that the interaction has a finite radius
R > 0,ie, U(x) = 0if |x| > R. Then the right-hand side of (0.1) makes sense in
the space of locally finite configurations. Nevertheless, the configuration space
should be restricted in a much more radical way.

The study of system (0.1) has been initiated by Lang [13]. Since any Gibbs
state p with interaction U and temperature ¢2/2 is formally stationary and
reversible, one could construct the associated diffusion process with initial
distribution p in a certain configuration space {,. This 2, has not been specified
in an explicit form, but p(2,) = 1 holds true. The existence of nonequilibrium
dynamics was known in the one-dimensional case only, see Lippner [15] and
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Rost [20] for smooth interactions and Lang [14] if ¢ = 0 but U is convex for
x > 0. My work is motivated mainly by a recent paper of Spohn [24], where
hydrodynamical fluctuations of the particle number in the equilibrium dynamics
are described. The proof of this Gaussian central limit theorem is based on a
fairly sophisticated essential self-adjointness property of the formal generator L
associated to (0.1); similar technicalities appear in Guo and Papanicolau [10].
Although both the central limit problem as well as its hypothesis are formulated
in the framework of equilibrium dynamics, for a proof of the self-adjointness of L
a very good understanding of the nonequilibrium dynamics is needed; see
Marchioro, Pellegrinotti and Pulvirenti [16] and Fritz [7] for a related problem
of classical dynamics.

All problems will be posed in a relatively general form, see Fritz [6] for the
case of lattice systems. For smooth interactions we prove existence and unique-
ness of nonequilibrium solutions if d < 4; for a singular U we need d < 2 and
o = 0. Solutions are constructed as the a.s. limit of solutions to finite subsystems,
the semigroup P’ of transition probabilities is defined in a o-compact space @ of
allowed configurations. Let us remark that P’ is neither strongly continuous nor
Feller continuous in the usual sense, but we introduce some spaces C, C C,
D2, c D? of smooth quasi-local functions such that P’C, c C and P‘D3 c D?
for each ¢ > 0. Elements of C are continuous in a restricted sense and L is well
defined on the set D2; thus we have some ingredients of semigroup theory. The
technical tools developed here seem to be sufficient for the theory of equlhbnum
fluctuations (see the remarks at the end of Section 6), but we are not going to go
into a complete discussion.

1. Generalized stochastic gradient systems. This section summarizes
some basic notation and the main results. The problem will be formulated for the
° more general system (1.6); conditions on the coefficients ¢, and o, of (1.6) will be
given in terms of the pair potential U: R¢ - R of (0.1). The phrase that U is
singular means that U(0) = + o0 and limU(x) = + 0 as x = 0, but U is twice
continuously differentiable at x # 0. If U is not singular, then it is assumed to
have two continuous derivatives at each x € R% the symmetry property U(x) =
U(—x), and U(x) = 0if |x| > R are assumed in both cases. The smgulanty of U,
if any, cannot be too strong; we need
(1.1) |x||grad U(x) | < a + bU(x),
with some positive a and b, i.e., |x|®U(x) is bounded even if U is singular; | - |
denotes the usual norm in R? The next basic property of the interaction is the
so-called superstability; this condition is used to prove the existence of Gibbs
random fields for U, see Ruelle [21] and [22]. In the present context the
superstability of U means that we have some constants A > 0 and B > 0 such
that

(1.2) nA+ Y ) U(g,—g;) = BN,
k=1 j+k

for any finite sequence, q,, gy, ..., q, of not necessarily distinct points of R%
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here N denotes the number of pairs (j, k) such that |g, — ¢;| < R. These
properties of the interaction U will be assumed throughout the paper.

Now we are in a position to describe the set @ of allowed configurations.
Consider first the quantity

(1.3) H(w,m,p)= Y 1+A+ Y U(w, — w))|; -

k: |wp—m|<p J*k, |wj—m|<p

it is a weighted sum of potential energy and particle number in the ball of
center m and radius p. In view of (1.2) this H is nonnegative and dominates
the number of points and the number of interacting pairs as well. Let g(u) =
[1 + log(1 + u)]*/¢ and

(1.4) H(w) = sup sup [(rg(im|) *H(w, m, rg(im|)) + 1],

mezdreN

where N denotes the set of positive integers, and Z is the integer lattice in R
the set of allowed configurations is defined as € = [w € (R?)S: H(w) < + ]
Since (1.2) implies U(0) > 0, the elements of Q are locally finite in the sense that
each point can occur in a sequence w € € with a finite multiplicity only;
multiple points are excluded if U is singular. Notice that if U is bounded, then
does not depend on U anymore.

The topology we are introducing in @ is the following mixture of the product
topology and the weak topology of integer valued measures. Let B(p) denote the
open ball in R with center 0 and radius p, and define G(e, p) as the set of pairs
(0, @), w, w € @ such that |0, — ®,| < € whenever at least one of w, and w, lies
in B(p). This family of relations forms a base of a uniform structure, a
neighborhood base at @ € @ of the associated topology consists of the sets
[wE Q: (w,®) € G(g,p)), & p > 0; we equip € with this separable and metriz-
able topology and the associated Borel structure. Notice that (™ — w in this
topology means that ¥ — w), for each & € S and Lo(w{®) » Ze(w,) whenever
@ is continuous with compact support. If w € Q, then supp w denotes the set of
points of w with multiplicity and Q) = [supp w: @ € Q] is the symmetrized
configuration space. The elements of this symmetrized space are identified with
integer valued measures, N (dx) = (supp w)(dx) by the formula L¢(w,) =
Jo(x)(supp w)(dx). We give Q) the weak topology of measures, then w — supp w
is a continuous mapping of © onto Q).

The space Q of labelled configurations is very convenient when we have to
identify the trajectories of the particles, e.g., in the construction of strong
solutions. On the other hand, the most natural probability measures, the Gibbs
states, are defined on the symmetrized space Q) only. Since the evolution law
(0.1) does not depend on the enumeration of particles, there is no conflict as far
as we are dealing with symmetric functions only; a function ¢ on Q is symmetric
if @(w) = ¢(w) whenever supp w = supp @. Such notational questions play a
minor role in Section 6. It is more relevant that € and Q®) are large enough to
carry a wide class of probability measures. Indeed, if u is a probability measure
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on (R%)S and for some A > 0 and ¢ > 0
(1.5) fexp[}\H(w, m,p)|p(dw) < exp(cp?), if me R p>1,

then the Borel-Cantelli lemma implies p(2) = 1. The superstable estimates of
Ruelle [22] imply (1.5) for a wide class of Gibbs states with different potentials
including the equilibrium potential U, see [4], [6], [8], [11], [12] and [16].

The strategy of the proof of existence of solutions is the usual one. We
consider finite subsystems of (0.1) and prove compactness of this family by
means of an a priori bound for H; further a priori bounds concern the first and
second variational systems of (0.1). For the delicate estimates of Section 6 we
need a family of partial dynamics such that the equilibrium state of (0.1) turns
out to be a reversible measure, and moreover, the differentiability of solutions
with respect to initial data remains in force. These requirements can be fulfilled
only if we let the diffusion coefficient depend on the configuration. A fairly
general form of evolution laws of this kind reads as

(1.6) dw, = c(w)dt + op(w) dw,, k€S,

where c¢;,: € > R? and o,: @ - R are some measurable functions. The rest of
the paper treats (1.6) rather than (0.1). Of course, this system cannot be
investigated in a full generality, we need an additional structure mimicking that
of (0.1). We are not going to consider the most general structure, it will be .
discussed elsewhere. .

The first condition we need is the so-called locality of the interaction. This is
relevant for all infinite models fron: the statistical physics category. For simplic-
ity, we assume that the interaction has a finite radius R > 0, i.e, ¢, and o,
depend on w; only if |w; — w,| < R.

The most serious problem is the second one, namely, the problem of explo-
sions. Explosions may appear if the drift is not bounded, they are especially
characteristic for point systems in which a critical accumulation of infinitely
many particles in a bounded domain may take place in a finite time. To avoid
this phenomenon, in the one-dimensional case it is sufficient to control the
magnitude of the drift and the diffusion coefficient, see [11], [15] and [20]. If
d > 2, then the drift must be oriented in such a way that the particles have a
global tendency to move from densely occupied domains towards desert areas.
Since the potential energy dominates the number of particles in view of the
superstability condition (1.2), it is natural to assume that the drift is not
radically different from the negative gradient of potential energy, cf. (0.1). Let
Si(w) denote the set of such j€ S that |w;— w, < R and put Ny(w) =
card S,(w) and

(1.7) Hy(w) = E U(wy — ‘*’j)°

J*k

We say that (1.6) is a generalized stochastic gradient system (see [6]) if we have
constants C > 0, § > 0 and measurable functions 8,: & — R such that |o,(w)| <
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0 (w) < C, and
(1.8) (ViHy(@), c4(0)) < —883(w)| v, Hy()[* + CNy(w),
(1.9) lex(w)] < C8(w)| v Hy(w)| + CN/*(w),

where Vv, is the vector of partial differential operators corresponding to ¢oordi-
nates of w, € R? and ( , ) is the usual scalar product in R,

The third assumption is a kind of local Lipschitz condition, only its quantita-
tive nature, the factor A below, might be a little bit surprising. Let A, =
H(w, w;, R) + H(®, w,, R) and suppose that for two arbitrary configurations we
have

lex(w) = (@) [ +]0p(w) — (@)’

1.10 _
(1.10) < Ch Y low; — @2
JES(w)USK(w)

The validity of conditions (1.8), (1.9) and (1.10) will be assumed throughout
this paper; they can easily be verified in the case of system (0.1).

Finally, we have to restrict the configuration space as well as the concept of
solution. Indeed, if the energy of particles of the initial configuration increases
too rapidly with the distance from the origin, then the system as a whole can
collapse in a finite time. This kind of explosion is excluded by the logarithmic
growth condition of (1.4). In fact, our space € of allowed configurations is
essentially the smallest one such that u(Q) = 1 for a reasonable class of probabil-
ity measures. The additional condition of temperedness is needed to ensure
uniqueness of solutions, see [6] and [12] for counterexamples. To define the
concept of solution let C(R,,R?) denote the space of continuous mappings of
" [0, + 00) into R? with the usual topology corresponding to uniform convergence
on compacts, and let W = [C(R,R%)]S with the product topology and the
associated Borel field &. The smallest o-algebra on which all projections w,(s),
k €S, s <t of we W are measurable will be denoted by .«Z,. Finally, suppose
that we are given a probability measure P on 7 such that our Wiener processes
are realized as components of the random element w = (w), < g of W.

DEFINITION 1. An 2/ adapted mapping w(¢) = w(¢,w) of W into itself is
called a tempered solution to (1.6) with initial configuration z € @ if w(0) = 2,
almost each trajectory w(-, w) satisfies the integral form of (1.6), and H(w(?)) is
bounded on finite intervals of time with probability one.

In the deterministic case, i.e., when ¢, = 0, solutions do not depend on the
random element w € W, and we have the following existence theorem, cf. Lang

[14],

THEOREM 1. If d<2 and 06,=0 for all k €S, then for each initial
configuration z € Q there exists a unique tempered solution to (1.6).
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The proof of this result is based on an a priori bound for H(w(t)), to estimate
the gain of H the spatial flow of potential energy should be controlled. Heuristic
ideas behind this proof are roughly as follows. Imagine a globally homogeneous
system, and let H, N,V denote the energy, the number of particles, and the
typical magnitude of the drift in a given volume A. Then the energy of particles
in the shell of unit width at the boundary of A is proportional to H'~1/¢, thus
the energy flow through the surface of A may be an order of VH!~1/%. On the
other hand, the dissipation of the energy of one particle is at least an order of
V2, thus dH < O(VH'~V? — NV?)dt < O(N"'H?~%9) dt, whence by N > 1
we obtain dH < O(H) dt if d < 2. Since a differential inequality dH < O(H") dt
has a global maximal solution if A < 1, we can hope for an a priori bound if
d < 2. If U is smooth then N > O(HY?), thus dH < O(H3/2~%/?) dt, whence
d < 4 follows in the same way as above. The mathematical manifestation of
these arguments will be presented in the next two sections; the second one also
extends to stochastic systems. Singular potentials are very hard to tackle in the
stochastic case, because then AU, the Laplacian of U, appears in the stochastic
differential of H. Therefore, independently of the dimension, we can hope for a
differential inequality dH < O(H) dt only if AU < a + bU holds. If d = 1, then
this inequality cannot be satisfied by a singular potential, but potentials with a
logarithmic singularity are allowed if d = 2. We are not going to discuss this
very particular case here, because the proof of uniqueness of solutions is rather
difficult. Let us remark that (0.1) with U(x) = —log|x| plays a role in the vortex
theory of the Navier—Stokes equation, see Marchioro and Pulvirenti [17]. How-
ever, this interaction is so strong at large distances that we do not have tools at
all to handle the related infinite system. Another open problem is that of the
existence of solutions to one-dimensional stochastic gradient systems with a
singular potential. If U is smooth, then we have:

THEOREM 2. If d < 4 and U is not singular, then for each initial configura-
tion z € Q there exists a unique tempered solution, w(t) = w(t, z,w) to (1.6).
The general solution w(t, z,w) is a jointly measurable function of its variables.

The fundamental a priori bound has the following structure. Let @, = [« € Q:
H(w) < h], then for each tempered solution there exists a .2 measurable random
variable N, and an explicitly given continuous function h = h(h,T, N) such
that z € Q,, implies w(¢, z, w) € @, for all ¢ < T with probability one. This N
has an exponential tail, and the distribution of the tail can be bounded in terms
of the universal constants d, 8 and C of conditions (1.7)-(1.10). When we speak

" about universal constants or functions we always mean explicit expressions of
d, 8, C; the function A is universal in this sense, too.

The fundamental a priori bound will be proven in the next two sections; first
for finite systems satisfying (1.7)-(1.10), then we show convergence of solutions
by: means of an iteration technique which goes back to Lanford [11] and [12] and
Fritz [6]. There are essentially two different methods to define the partial
dynamics. We can pick a finite I S and put ¢, =0, =0 if £ ¢& I. Then
particles outside I are frozen, while particles from I move according to (1.6) in
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the field of other particles. Another possibility is to let ¢, and o, depend on w,
in such a way that both turn into zero as w, is crossing the boundary of a
bounded domain D c R For instance, we can multiply ¢, and ¢, by smooth
functions of w, vanishing outside D. In such cases particles cannot escape from
D, outer particles are frozen; thus we can realize a continuous transition from
vivid particles to the frozen ones. This trick allows us to save both reversibility
and smoothness of the partial dynamics, cf. [13] and [16], where violation of this
nice property causes some technical difficulties. The a priori bounds, of course,
do not depend on the size of the finite subsystem we consider.

Now we turn to the problem of smooth dependence of solutions on the initial
configuration. Since the modulus of Lipschitz continuity of the right-hand side of
(1.6) does depend on the actual energy level H, and the interior of each Q, is
empty, we cannot hope for a continuous dependence on initial data. Because of
the enormous complexity of the prototype (0.1) we are not able to present a
counterexample, but continuity of w(#, z) in z € @ could allow one to extend the
general solution from © to (R¢)S, which seems absurd. To formulate the modified
Feller property of the semigroup, let |||, = sup[|p(w)|: @ € Q,] for measurable
9: @ >R, and define Pp = Pip(z) = E[g(w(t, 2))] = [p(w(Z, 2, w))P(dw)
whenever the expectation makes sense. ‘

DEFINITION 2. Let C(2) denote the space of ¢: € > R such that the
restriction of ¢ to each nonempty Q, is uniformly continuous and bounded,
C () is the set of bounded elements of C(2). The set of ¢ € C(Q) such that
lloll» is bounded by a polynomial of % is denoted by C (), while elements of the
space C,(Q2) are characterized by a subexponential growth condition |||, <
exp(c,h?) with p < 1. Each of these spaces is equipped with the scale || - ||,
h > 1, of seminorms, convergence means convergence with respect to each of
. these norms.

Now we turn to continuity properties of P see [6].

THEOREM 3. Under conditions of Theorem 2 the operator P*, t > 0, is well
defined and strongly continuous on C (). In fact, we have P‘C,(Q) c C(Q),
P'C Q) C Cy(R) and lim,_, o|[P'p — ||, = 0 for each h > 1 and ¢ € C(R). If
d < 4, then P'C(Q) c C ().

The next question is that of differentiable dependence on initial data. Its
solution is needed to clarify the relation of the semigroup P! to its formal
generator, L, defined as

(1.11) L= X ((C/qu‘P> + %oﬁAk‘p),

keS
on the space DZ(Q) specified below, where A, denotes the Laplace operator for
the coordinates of w,. Here and in what follows, Vv, and v,v ¥, denote the
d X d matrix and the d X d X d hypermatrix of the second and third partial
derivatives of ¢ with respect to the coordinates of w,, w;and w; forany k, j € S
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and %, j,i € S. Even if A is a matrix or hypermatrix, |A|?> denotes the sum of
the squares of its elements.

DErFINITION 3. Let DJ(Q), ¢ = 1,2, 3, denote the space of ¢ € C,() possess-
ing derivatives of order less than or equal to g, each of these derivatives belongs
to C,(R). Moreover, there exists an ¢ = ¢, > 0 such that for all 2> 0 and
i, J, k € S, we have

(i) lIvsp(@)lexp(elw) |, < Cyle, h), forg=1,2,3,
(ii) |||V,~qu>(w)|exp(e|wk| + e|wj|)||h < C,(¢&, h), forq=2,3,
(iii) |||V,~Vjvkq)(w)|exp(e|wk| + elw)] + €|‘°i|)"h < Cy(¢, h), forq=3.
If ¢ € DJ(Q) and we have a p < 1 such that the first ¢ inequalities from the

triplet (i)-(iii) are satisfied with some C,(¢, h) = exp[c,(e)(1 + £)”], then we say
that ¢ € DJ(Q).

Since ||c,||; is bounded by a polynomial of %, see (1.9) and (1.10), L¢ is a
well-defined element of C,(2) whenever ¢ € D%(Q). For explicit calculations, cf.
[10], [23], and [24], one usually needs the Kolmogorov equations

(1.12) Plp=o+ f‘PSL¢ds=¢+ f’ws‘pds,
0 0
as well as the commutation relation LP% = P‘Le for some nice ¢: @ — R.

THEOREM 4. Suppose that U has four continuous derivatives and d < 4,
then the semigroup defined by (0.1) satisfies P'D32(2) c DZ(Q) for all t > 0.

Such results are based on some a priori bounds for the variational systems of
(0.1). Theorem 4 and its extension to (1.6) will be proven in Sections 5 and 6. In
this part the particular structure of our system plays a minor role and will be
exploited only in the derivation of the a priori bounds of Sections 2 and 3.

In the theory of equilibrium fluctuations some further, more quantitative
information is needed, but the problems are posed in the more familiar space
L2(p) of square-integrable functions with respect to the reversible equilibrium
state of our system. If u is a Gibbs state for U with unit temperature, then a
formal condition of reversibility of (1.6) in the state p reads as

(1.13) crw) = %eH”(w)Vk[olf(w)e-H”(w)],
see [7] and [13] for some further references. In this case L turns into
(1.14) Ly =1} T efv,[ofe v,0],
keS
andthe bilinear form associated to L in L2(p) reduces to

(1.15) Jodoedu=—1 T [(Vup1, Vapr)ok di;
keS8
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thus P will be self-adjoint in L%(p). The missing step in Spohn’s approach to
equilibrium fluctuations for (0.1) is that a certain space Dy of smooth local

functions forms a core for the closure of the quadratic form Q(¢) = —(¢|L¢)
defined by
(1.16) (P1lopz) = fad[f%Tu% du— [, du [e, du] du,

where T, denotes the shift by u € R Because of its very technical character, we
postpone the discussion of this question to Section 6, where some other results
are also presented.

2. The deterministic problem. Now we start the proof of the fundamental
a priori bound for H. In this section we consider the contribution of the drift to
the spatial flow of the energy. The energy flow will be controlled by a partial
differential inequality, see [4]-[8]. This differential inequality will be proven for
a smooth version @(w, m, p) of H(w, m, p). The definition of this @ is based on
the following—fairly sophisticated—modification of the indicator function of
the ball of center m and radius p, see [4] and [6-8].

Let g € (0, 1] and consider a nonincreasing and twice continuously differentia-
ble f,: [0, + 00) = (0,1) such that

f(u) =e? 9" ifu>2,
fu)=(1+q+qg%2)e? ifux<i;

f, is a convex function if u > 3 and it is concave if u < %. Finally, 0 <
—f/(v) < qf (u) < qe?™ 7, f(u) = e 779" and |f,"(w)| < f(u) for all u> 0.
Then, for x, m € R and p > 1

(2.1) f(x,p) = qudfq(lx = yl/p)e" " dy,
(22)  Qw,m,p)=p"+ kZ‘,sf(wze —m,p)[1 +A + B+ Hyo)].

The following elementary properties of f are more or less direct consequences of
the definition, see [7]. We have

(2.3) ci(d)exp(—qlx|/p) < f(x,p) < cy(d)exp(—qlx|/p),
(24) f(x,0) <f(y,p)e*®,  f(x,0) <f'(y,p)e??,
(2.5) |grad f(x,p)| < min[f "(x,p), %f(x, p)},

(2.6) |Af(x, p)| < df(x,0),

2.7) g”(Ix|)|grad f(x — m, p)| < 4g7(Im| + p)f'(x — m, p),

where 0 < ¢,(d) < c(d) < +o0, 0<p<d, f’ is the derivative of f with
respect to p, grad f and Af denote the gradient and the Laplacian of f with
respect to x. It is less trivial, see Lemma 2.13 in [7], that the superstability of U
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and (2.4) imply that if ¢ > 0 is small enough, then

(2.8) Q(w, m,p) > —kzsf(wk —m, p)Ny(«),
(2.9) Q' (w, m,p) > —kESf (w0 — m, p)Ni(w),

where @’ is the derivative of @ with respect to p.

Now we are in a position to calculate and estimate the temporal derivative, @
of @ along a tempered solution w(¢) of (1.6). Here and in what follows, the
abbreviations f, = f(w, — m,p), f{ =f'(w,—m,p), grad f, = grad f(w, —
m, p) will be used.

LEMMA 1. There exists a universal constant K > 0 such that along any
tempered solution w(t) to (1.6) with 0, =0, k € S,

Q(w(t), m,p) +8 Y f,57 (w)IVka(w)l

keS

< KQ(o(£), m, p) + fgzqmu + 0)H(w(£)Q(6(2), m, ).

PROOF. A direct calculation yields Q(w(t), m, p) = I, + I, + I,, where

(2.10) I,= Y (grad f,,c,)(1 + A + B + H,),
kesS
(2.11) I, = 2kEka<Vka, Cr)s
- (2.12) L=Y Y (fi—f;)(eradU(w, - w),c;).
keS j+k

Using (1.8) and (1.9) and xy < Cx?/268f, + 8f,y?/2C, we obtain
I, <CY |grad fi| |1 + A + B + H,|[8,|v,H,| + N2

keS
<C%! ad f,|%f;'(1+A + B + H,)’
(2.13) k§S|gr fel*fx ( k)
+ = E fk8k|Vka|2 + 3 Z [ Ngs
kes keS

Li<sCX Lifi—flleredUle, - o)|[31v,H] + NV

keS j+k
2
(2.14) <C% 'Y it Y- fjllgradU(wk - ‘*’j)l
JES k+#j

6
+§Efj |VJH|2+—Z
JjES

JGS
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while

(2.15) I, < =28 Y 83|V H,? + 2C Y, F,N,.
keS keS

Now we can exploit (1.1) to derive

(2.16) (1 +A + B+ H,)’ < K,g%w,)H(w)[1+A + B+ H, + K,N,],

[ Z Ifx — fjl'gradU(wk - ‘*’j)']z

k+j

217) <| ¥ (a+dU(w,- w,))H Y lgrad f,,%(a + bU(w, — «;))
keSy(w) keSj(w)

_ 1
< Kagd(l‘*’ﬂ)H(‘*’);fjfj'[“N} + bH)],

where grad f,; is the intermediate value of grad f in the Lagrange theorem, in
the second step (2.4) and (2.5) were used. Taking into account (2.8) and (2.9), the
statement follows by an easy calculation. O

The partial differential inequality of Lemma 1 can be solved by the method
of characteristics. Namely, if p = p(f) decreases fast enough, then
e~ XiQ(w(t), m, p(t)) turns into a decreasing function of time. Indeed, let

(2.18) Z(t) = fo ‘H(w(s)) ds,

(2.19) p(t,m) = g(ml)[r* - 2Kg*(r)Z(¢)]"*, reN, t<T,

where [0, T,) is the maximal interval such that the difference under the square-
root exceeds one. Since g(|m| + p) < g(|m|)g(p), for ¢ < T, we have

(2.20) Q(w(t), m, p(t, m)) < e*Q(w(0), m, rg(Im|)).

To solve (2.20) let n € N and denote r(¢, n, m) the first r € N such that
p,(t, m) > ng(|m|). Since both T, and p, go to infinity with r, r(¢, n, m) is well
defined and 7T, , .,y > ¢. Therefore, choosing r = r(¢, n, m) in (2.20) and using
(2.3) we obtain

(2.21) H(w(t)) < K e**H(w(0)) sup sup [%r(t, n, m)] d.

mez® neN

In view of the definition of r = r(t, n, m) we have
(222) (r-1)" < n?+2Kg*(r — 1)2(t) < K;[n? + (r - 1)2(2)].
At the last step the elementary inequality

1
(2.23) 1+log(l+u)<-(1+u)’ ifu>0, 0<e<l,
e

has been used with ¢ = }. Since r > n, we obtain r — 1 < 2K;n(1 + Z). Thus
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substituting this rough bound again into (2.22),

(2.24) (r—1)* < Kgn?[1 + Z(t)g%(2(2))]
follows directly and (2.21) results in
(2.25) H(w(t)) < MeK‘ﬁ(w(O))[l + Z(t)gz(Z(t))] d/z,

with some universal constant M. In view of (2.18), (2.25) is a differential
inequality for Z, and the variables of (2.25) can be separated by dividing by
[1 + Zg*(Z)]4/2. Since

(2.26) [l1+28%2)] " de = +o0, itdsy,
0

(2.25) has a continuous maximal solution on [0, + ), i.e., we have an a priori
bound for H.

PrOPOSITION 1. Under conditions of Theorem 1 we have a universal con-
stant A > %, and a universal function h = h(h,T) such that for all t < T and
k € S, we have H(w(t)) < h(h,T) and

|x(0)] = BA(h, T)log (e +wx(0) )
(2.27) <|ay(t)]
<|wp(0)| + RM(h, T)log*(e + R(h, T))log*(e +|w,(0)]),
whenever w(t) is a tempered solution with H(w(0)) < h.

ProoOF. Only (2.27) needs a proof. Observe that (1.9) and (1.10) imply
(2.28) lex(w)| < ClHM @, wy, R),

with some C; and A = max[},;C], where C is the exponent of A, on the
right-hand side of (1.10). Hence the first part of (2.27) follows directly, the factor
C,T can be absorbed into A. On the other hand, if ¢ = max[|w,(¢)|: ¢ < T'], then

(2.29) g <|w(0)| + C,TRM R, T)(1 + log(1 + q))*,

whence by (2.23) we obtain (1 + q)1/2 < + |wl0)))/2 + C3hNh, T). Sub-
stituting this bound into (2.29) and usmg log(e + u + v) < log(e + u)log(e + v)
if u, v > 0, we obtain (2.27). O

Observe now that all conditions of Proposition 1 remain in force if we let some
coefficients vamsh For each finite I C S consider ¢/ =¢, if k€I, ¢j =0 if
k & I; 0, = o} = 0 for all £ € S in this section. The correspondmg solution with
initial configuration z € € will be denoted by «! = w’(t 2). It is obviously a
tempered one, and the a priori bound does not depend on I. Consequently, (2.28),
Proposition 1 and the Arzela—Ascoli theorem imply that the family «’ is
precompact in W, consider the limiting trajectories as I — S. In view of (1.10)
and the a priori bound, the integrated form of (1.6) shows that any limit point w
of w! in W satisfies (1.6). Since H is a lower semicontinuous function of w, these
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limiting solutions are tempered solutions. Thus Proposition 1 also holds for the
limiting solutions.

The uniqueness of the tempered solution can be proven by means of the
iteration technique of Lanford [11] and [12]. Suppose that w(¢) and @(¢) are
tempered solutions with w(0) = w(0) =z € Q, let S(z,r)=[k € S: |zk| <r]
and introduce

(2.30) D(t,r)= ¥ supluw(s) — @4(s)["

keS(z,r) s<t

In view of (227) wehave r < r’ <r’ + R < 7 = (r'/2 + K;)? such that, at least
as long as ¢ < T, the particles with & € S(z, r) cannot escape from the ball
B(r’), and the particles from the set S\ S(z, ) cannot hit the ball B(r’ + R).
Therefore by (1.10)

(2.31) D(t,r) < D0, r) + Lp[log(e + r)]*** fO‘D(s, 7) ds

follows for ¢ < T with some universal L. Since D(t, r) < 47%h(h, T)Fif t < T
and z € ©Q,, (2.31) can be iterated infinitely many times, thus D(0, r) = 0 implies
D(t,r) =0 for all r > 0 and ¢ > 0, which completes the proof of Theorem 1.

REMARK 1. If d = 1, then h(h, T') can be bounded by a polynomial of » and
T. Thus the finiteness of all moment measures of the initial point process is
conserved for all times; this property is not known if d = 2.

REMARK 2. The above proof of uniqueness works without any essential
change in the case of deterministic systems of second order, cf. [11] and [12] and
[4] and [8]. The case of stochastic systems is more complex, see [13], [15] and [6].

3. A priori bounds for stochastic systems. The notation of the previous
section is used with the exception that

(3.1) 2(t) = [H(w(s)) ds,

in the definition (2.19) of p,. If w 1s tempered, then the following stochastic
differentials make sense, and

d[e ¥Q(w(t), m, p(t, m))]
- ~Ke¥Qui— —g(mi)g*(r) A" d

+e K1 + I, + I,) dt
+e KYdlI, + dI, + dIy)

(3.2)

+e K(I, + I, + L) dt,
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where I}, I,, I, are the same as in Section 2, and

(3.3) dl,= Y (grad f,,0,dw,)(1+ A+ B+ H,),
keS

(3.4) dly =2 Y, [{V,Hy, 0, dwy),
keS

(3.5) dlg= Y X (fi— fj)(gmd U(w, — ), 9 dwj>7
keS j*k
(36) I7 = é E Afkolf(l +A+B+ Hk) = K7Q(w’ m, pr):
keS
(3'7) I8 = kz <grad fk’kak>o/? < KgQ((O, m, pr))
€S
(3.8) Li=3 ) fp X AU(w, - wj)(“l? + "jZ) < KyQ(w, m, p,).

keS j*k

The last three inequalities are direct consequences of the properties of the cut-off
function f; see the beginning of Section 2. Estimation of the deterministic
integrals I,, I, and I, is essentially the same as in Section 2. The only difference
is that, due to the boundedness of U, we have

(3.9) Y (a + bU(w,, — wj)) <K, N(e) < K, HY(o, wj, R).
kESj(w)

The last bound is a consequence of the superstability of U,
(310) [1+ A + B+ H(w)]” < K1,87%(j0) H*(w)(1 + A + B + Hy()),
and
2
(3.11) [kz*:ij - fjllgrad U(“’k - "-’j) l]
< Klagd/2(|‘*’j|)ﬁl/2(w)fjfj'Pr_l[aNj(w) + ij(“’)],

cf. (2.16) and (2.17).
The stochastic integrals I,, I;, I can be estimated by means of the maximal

inequality

A
(3.12) P[sup Y ft(pk dw, — —pids) > u] <e™M
t>0 res'0 2

provided that the processes p, are #/-adapted and °

P[ Yy ftp,%ds< +o0| =1,
kes®0

for all ¢t > 0; see, e.g.,, McKean [18] for finite sums, whence (3.12) follows by
continuity. The squares of the coefficients of dw; in dI,, dI; and dI; can be
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estimated by means of (3.9), (2.15) and (3.11), respectively. Introduce now
N(m,r) = sup fte‘Ks[dL - Q(w(s), m, p(s, m)) ds]

t<T, "0

(3.13) + sup /te'Ks[dL; -8 Y {0k v, H,ds
0 kes

t<T,

t —
+ sup [le~*[dl; ~ o, g*(mi)g*(r) H(o(s)Q (w(s), m. o) ds].
t<T,

Then following the proof of (2.20) we obtain such universal constants K > 0 and
¢ > 0 such that
(3.14) su;T)e‘K‘Q(w(t), m, p,(t,m)) < @(«w(0), m, rg(m|)) + N(m, r),

t<T,
where P[N(m, r) > u] < 3e *forall m € Z¢, r € N and u > 0. Now we are in
a position to prove the fundamental a priori bound for (1.6).

PROPOSITION 2. Under the conditions of Theorem 2 we have a universal
constant ¢ > 0 and universal function q = q(h, T) with the following proper-
ties. For any tempered solution w = w(t), there exists an s-measurable random
variable N > 0 such that P[N > u] < e ™ and H(w(0) < h implies
sup, . pH(w(2)) < q(h, T)1 + N)'** for all ¢ > 0 with probability one. If d < 4,
then g (h, T) < p(T)1 + h)@*/*~< with some universal p,.

PrRoOOF. Introduce

(3.15) N = max|0, sup sup [N(m, r) — orig?(m|)]|.
reN ez
Then from (3.14) we have
sup e ¥Q(w(t), m, p,(t, m))
(3.16) t<T,

< Q(w(0), m, rg(jm|)) + N + vrig%(m|),

simultaneously for all €N and m € Z¢ with probability one. Finally,
P[N > u] < e”* if v is large enough. Using again (2.3) we obtain, along almost
every realization, that

(3.17) H(w(2)) < K14e"‘[N + h sup sup [%r(t, n, m)]dJ

mez? neN

holds for all ¢ here r(t, n, m) is the same as in (2.21), and the same estimation
method yields the differential inequality

(318) 7 < Ke 2| N+ h(1 + 2g%(2))"]”,  2(0) = o,

where Z denotes the temporal derivative of Z, i.e., Z = H'/2. Since the realiza-
tions of Z are absolutely continuous, the method of separation of variables can
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be applied to solve (3.18). Indeed, let V=1 + (N/h)>¢+ Z, then an easy
calculation yields

3.19 Z =V < K,;,eX"2p/2ve/4(1 + log V)2,
6

If d = 4, then we have an explicit maximal solution, namely

(320) 1HleV)= [@ + 10 v(0))* + g(2)]’

< (1 +A)Q +logV(0)) + (1 + A Y)g?(e),

for all A > 0 with some universal function ¢, whence the first bound follows
directly. If d < 4, then (2.23) can be used to find an explicit bound, see [7]. O

A localization bound like (2.27) can be proven in a similar way, see the next
section. Notice that if d < 4, then the existence of all moment measures at ¢t = 0
is conserved for all positive times.

REMARK 3. If d < 4, then the a priori bound of Proposition 2 for H is
actually a linear function of N, see [6]; presumably the same holds even if d = 4.
We conjecture that in all stochastic cases the variable N can be replaced by an
/r-adapted process Ny having a T-dependent normal tail, i.e., the a priori
bound for H also has a normal tail, see Remark 6 in Section 5.

REMARK 4. If d < 4, then the function g in the definition (1.4) of H can be
replaced by a power law depending on d, which results in a much larger set of
allowed configurations, see [4].

4. Passing to the thermodynamical limit. Here we combine the iteration
method of [11] and [12] with that of [6] to construct limiting solutions to (1.6),
see the proof of the uniqueness part of Theorem 1. The very same technique
yields continuous dependence on initial data. First, we need a localization bound
like (2.27). Consider a tempered solution w(¢) with w(0) = 2, and define

(1) ¥(0) = sup [log(e + fo)] " max| ['oy(a(s) s,
(4.2) X(t) =t + Y(¢) + /0 ‘H2(0(s)) ds.

Then we have:

LEMMA 2. If U is smooth and w(t) is a tempered solution to (1.6) with
w(0) = 2, then forallt > 0 and k € S,

|24l — MX(t)log(e + |24]) < min|w(s)| < max|w(s)]|
< |24 + MX(¢)log(e + X(t))log(e + |z4]),
with probability one, provided that M is large enough.
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Proor. Since (2.28) holds with A = ; in this case, the statement follows in
the same way as (2.27). O

We need some information on the tail of X(#).

LEMMA 3. We have a universal constant M such that

P[Y(¢) > 1C% + u| < MH*(2)e "

Proor. Since |0,| < C, the maximal inequality (3.12) yields

)
P[max o,dw, > 1C%+ u| <e’¥,
s<t Y0

but the superstability of U implies
0

Y exp[—ulog(e + |2,])] < M{H*(2) ¥ (e + r)* " "“log(e + r),

keS r=1
which completes the proof. O

Now we develop an estimate for the difference of two solutions. Suppose that

we are given two systems of coefficients, (c;, 0,),cs and (C,,0,) satisfying
(1.8)-(1.10) with the same U, 8, C. Here and in what follows, the bar refers to the
other system d, = ¢,(®) dt + 0,(®@) dw,. It is very important that the Wiener
trajectories are the same in both cases. Let w = w(¢) and @ = @(¢) be tempered

solutions to the corresponding systems with «w(0) = z and w(0) = z. Following [6]
we introduce

(4.3) dy(t, M) = E|supI(s, )| wy(s) — @4(s)[*],

s<t
where I(t, A) = 1if A(¢) < A, I(¢, \) = 0 if A(t) > \, with
A(t) =1+ X(¢) + X(¢) + sup[ﬁlﬂ(w(s)) + H2(a(s))],
s<t

and X is the process defined for @(¢) by (4.2). Notice that I(z, A) is a nonantic-
ipating process, and I(¢, A) = 1 implies I(s, A) = 1 for all s < ¢. Consequently,

(8, V)| wg(2) = 8(0)[ < 310, )] ,0) = @(0) "
+3¢['T(s, W[ en(w(s)) - &(a(s))]" ds

3] [, Mlow(0(s)) = 54((s))] |

Thus I%(¢, A) = I(t, \) and the maximal inequality

E[sup(j:pk dwk)2] < 4E[f0‘p,3ds],

s<t
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see, e.g., [25], imply that

dy(2,A) < 3d,(0,A) + 3:]0‘5[1(s, Nlex(w(s)) = e(@(s))[}] ds

(4.4) , ,
+12 B[ L(s, M]ou(0(s)) ~ a4(@(s)[] ds;

that is, we may exploit (1.10).

LEMMA 4. Let py=p, p,.1= (/2 +AL)? if n>0 and suppose that
(z,2) € G(R, p,,,)- Moreover, ¢, = ¢, and o, = o, if k € S(p,), where S(p) =
[£ € S: min[|z,|, |Z,|] < p]. Define

D(t, A, p)= Y dy(tA)
keS(p)

and suppose that L is large enough. Then

r Ln
D(t,A,p) <3 X D(0,A, p,) — (2 +¢%)"(N log(e + e)""

n=0

r+2

+4

r Lr+L+1
LA, "(Mlog(e + p,11)) ot R,

ProoF. In view of Lemma 2 we have p, < p, < p, + R < p,,, such that, as
long as I(¢, A) # 0, the particles with 2 € S(p,) cannot escape from the ball
B(p,,), while the particles from S\ S(p, ) are not able to hit the ball B(p} + R).
Therefore from (4.4) by (1.10) and Lemma 2 we obtain

D(t,X,p,) <3D(0, A, p,) + L(1 + t)(Nlog(e + p,))" [ D(5, A, py11) s,
0

at least if n < r. Starting with n = 0, this inequality can be iterated r times; the
last term contains the integral of D(s, A, p,, ;). Since |w, — ®,| < 2p,,, in this
sum, and the number of summands of D(s, A, p,, ;) is bounded by a multiple of
ApZ, \log(e + p,,,), we obtain Lemma 4 by an easy calculation. O

Now we are in a position to conclude the existence of a unique tempered
solution, w = w(t, z) for each initial configuration z € Q. This solution will be
constructed as the a.s. limit in W of the following sequence of partial solutions.
Let z € Q be fixed, and put c{” = o{™ = 0if |z,| > e”, while ¢{™ = ¢,, 6{® = 0,
if |2,| < e™; the corresponding solution to (1.6) will be denoted by ™ = w(™)X(¢, 2).
For the pair (w, @) = (0™, ©"*D) we use I (¢, A\) = I(¢,\) and D,(¢, A, p) =
D(¢, A, p) as defined above. Comparing Proposition 2 and Lemmas 2 and 3 we
obtain

(4.5) f‘, P[L,(¢t, n) # 1] < + o0,

n=1
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for all ¢ > 0. Since w(™(0, 2) = W™+ (0, z) = 2, Lemma 4 yields
[o¢]
(4.6) 2 [Di(t, n,0)]"* < +00.
n=1
Thus for each ¢ > 0 and p > 0 we have

(4.7) P i Y sup|ef(s, 2) — @t 0(s, 2)| < +oo|=1;

n=1keS(p) sst

put @ = w(t, z) = lim w(™)(¢, z) and notice that the limit exists in the topology
of W as well as in that of Q. As a limit of finite-dimensional partial solutions, w
is a jointly measurable function of its variables, and the a priori bound and the
lower semicontinuity of H imply that « is a tempered solution to (1.6) with
initial configuration 2. The uniqueness of this tempered solution follows simply
by letting r go to infinity in Lemma 4, which completes the proof of Theorem 2.

The restricted Feller continuity of P* follows again from Lemma 4 by means
of the a priori bound. Proposition 2 shows that Pp(z) = E[p(w(t, 2))] is well
defined and |[P%||, < + oo for each A >0 if ¢ € C(R). Moreover, if d < 4
and ¢ € C,(2), then the a priori bound is a polynomial of A, thus [P,
is also polynomially bounded. To prove the restricted continuity property, let
€ C(Q) and A > 1, £ > 0; we have to find an ¢ > 0 and a p > 0 such that
IPp(2) — P(Z)| < e whenever 2, Z € €, and (2, Z) € G(E, p). First, we choose
h in such a way that

(48) E[fi(o(t, 2))lo(a(t, 2)] < ¢, ifzeq,

where I, = I,(w) denotes the indicator of the set 2\ ©,. In view of the
definition of C () we have ¢’ > 0 and p’ < + oo such that

€
(4.9) lp(w) — (@) < 3 if w,® € Q; and (0, w) € G(¢’, p’).
Now we can apply Lemma 4 to find ¢ > 0 and p < + oo such that
€

(4.10) IellaPl(w(2, 2), w(t, 2) & G(e', )] < 3,
whenever z, z € Q,, and (2, Z) € G(g, p), which completes the proof of the Feller
property of Theorem 3.

The intrinsic relationship of the transition semigropp P? to its formal genera-

tor L is revealed by:

. ProPoOSITION 3. If ¢ € C (), then P’ draws a continuous trajectory in
C(Q). Let ¢ € D%(Q), then Ly € C(Q) and

Plo=9¢+ ftIPsIch ds.
0
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Thus
Lo = lim ~(P'p — ¢)
= lim — -9),
P P P—@
where the integral and the limit make sense in C().

PROOF. Let ¢ € C,(2) and let ¢, A, h, ¢/, p’ be as above, then (4.8) and (4.9)
may be assumed for all ¢ < T Since

E[lwx(t, 2) — wils, 2)[] <2(¢ - s)js‘E[cg(w(u, 2))] du + 2C%(t - s),

in view of (1.9) and the a priori bounds we have a T, > 0 such that z € Q,,
s<t<Tandt~—s<T,imply

(411) I91P[(0(2, 2), 0(s, 2)) & G(, )] < 3,

which completes the proof of the strong continuity of P .

Suppose now that ¢ € D2(2) and let P} and L, denote the semigroup and its
formal generator for the partial dynamics ™. Since lim v™ = w, we have
lim P/p = P, at least if ¢ is continuous and bounded. However, Proposition 2
permits us to extend imP/p = Pp to ¢ € C,(Q), while the It6 lemma yields

(4.12) Plo=9+ tP,fantp ds, if p € D3.

0
On the other hand, each term ¢;v,p + 62/2A,9 of L ¢ belongs to C,(2), and
the remainder is uniformly bounded in view of our a priori bounds, thus the
dominated convergence theorem implies the final statement by letting n go to
" infinity in (4.12). O

REMARK 5. Lemma 4 yields a rate for P/ —» P and p, = O(n?) can be
relaxed to p, = O(nlog n), which improves this rate. In the next section we
prove an exponential rate for this convergence by different methods.

5. A priori bounds for the variational systems. The main task of this
section is to understand the structure of the expression of LP‘. We are going to
develop estimates in L2(W, P) for the derivatives of the trajectories with respect
to some parameters. These a priori bounds will then be used to derive Theorem 4
and some further results on the equilibrium dynamics. For this second purpose it
will be very convenient to let the coefficients depend on a continuous parameter
characterizing the size of the system with which we are dealing. Of course, we are
given an infinite system (¢, 0),<g, but for each p > 1 we introduce a finite
subsystem (cy(+, p), 04(*, P))res. in such a way that cy(w,p)=cyw) and
o(w, p) = ay(w) if |w,| < p, while ¢, (w, p) = 0 and o, (w, p) = 0if |w,| = p + R.
We assume that these coefficients satisfy all conditions of Section 1 with the
same U, 8, C. The interaction U is smooth and additional conditions are listed in
the following propositions.
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Let w = w(¢, 2, p) denote the general solution to (1.6) with the above coeffi-
cients, ie., w(0,2,p)=2€Q, and let v?, n€S, r=12,...,d, denote
the operator of differentiating with respect to 2{” = (z,,e,), and Vv, =
(VO,v3, ..., v D), where e, e,,...,e, are the elements of our orthonormal

base in R?. We are interested in the following quantities:

Uy = 6rgr)“’k(t’ 2, P), U, = 6rszs)""k(t’ 2, p)’ Wy = a—pwk(t’ 2, p)’

Op = vl$13)uk = vrng)vr(zr)wk(t’ 2, P)’

] _ J _
= ot = Ve = T8 2, 0),
, o (8)y,7 d o ) (1)
vy = a—pvk =Vp Up = %Vm Vi w(t, 2, p),

where n, m, r, s are arbitrary, but fixed. For finite systems with smooth coeffi-
cients the existence of these processes follows by standard methods, see Section
16 in [9] or Chapter 7 in [1].

Since the variational systems are not dissipative like (1.6), we need a new trick
to control boundary effects. For x € R% A > 0 and o > 0, define

(5.1)  0(x,A) = exp[—)\(l + log(2 + A + [x[2)) — o(1 + |x|2)1/2],

and set 8’ = d8/d\; the operators grad and A are acting on 8 as a function of x.
It is easy to find a universal constant, C such that for all x, A, ¢ we have

(5.2) (1 + log(1 + |x|))0(x,A) < —6’(x, ),
(5.3) |grad 6(x, A)| +|A6(x, A)| < C(1 + 0)*0(x, M),
(5.4) 6(x,\) <6(y,Nexp[(1 +0)x —y|].

The following a priori bounds are formulated in terms of

Z(t,z) =t+ j(';tﬁ"ﬂ(w(s, z,p))ds

and

V(t,2) =1+ Z,(t,z) + H*(w(¢, z, p)).

The abbreviations

g,(w) = Hl/?(w)(l + log(1 + |wk|)l/2), Z,=92,/9¢

are also useful.
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PROPOSITION 4. Let ¢, ; = V,ci(w, p), 0;; = V,04(w, p), and suppose that

(i) > |ckj(‘*’»P)| < Cqy(w), )y |ckj(w’ P)I =< C(Ij("-’)’
JES keS

(ii) > Iokj(“” P)l < Cqy/*(w), )y |okj(w’ P)I < C‘I}/z(“’)o
JjES keS

Then for each ¢ € DL(2) we have somep € (1,2), ¢ > 0 and K < + o0, depend-
ing only on ¢, such that

[V.P4o(2)| < exp(—o|z,|)E[exp( KV,(t, 2))],
where Plp(2) = E[p(w(t, 2, p))].

PROOF. Observe that VVp(w) = L(V,p(@), u,) if @ = w(t, 2, p). Thus ¢ €
D2(2) and the Cauchy inequality yield

V| < expey(e)Z,] L e drju,
keS

(5.5) /2

< exp[cq,(s)Zp] [Zk:e"""*']lﬂ[%e_"“"'uﬁ]l ,

with some ¢ > 0 and p € (1,2). On the other hand, from (1.2)

(5.6) Y e ¥l < K, H'*(w) Y. e *r% llog(e + r),
keS r=1
while (1 + ¢2)!/2 <1 + ¢ and log(1 + ¢) < ¢ if ¢ > 0 result in
e—0+2
(6.7 el < (x, }\)exp[o +A(1 + log(1 +A%)) + A lOg_;T]

for all x € R A > 0 and 0 < o < &. Consequently,

(5.8) V"%l < exp[ K2, + K, Z,log(e + Z,)| RY*(t, KZ,),
where
2
(5.9) R(t,\) = kE 0(wi(t, 2, p), M)|uy(t 2, 0)[ "
€S :

Thus it is sufficient to show that
(5.10) E[R(¢, KZ\(¢, 2))] < exp(—o(2,]).

We have to calculate the stochastic differential of R, when dw, is given by
(1.6), while

JjES

JjEeS

The following abbreviations will also be very useful in the forthcoming proofs. If
an /-adapted process has a stochastic differential dI = adt + b, dw,, then
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d I = adt denotes the deterministic part of dI. For R, we have d R(t, KZ,) =
—Z,1,dt + (I, + I, + I + 1,) dt, where

I,= Y I,, forg=0,1,2,... and I,,= —K6u},
kes

I, = ((grad 8,, ¢,y + 1A6,02)uz,

L, =26, E (U, ijuj>»
jes

Jjes

2
I, = dé, Z <okj: uj>] ’

I, = (grad 0, u,)o, )y (Orjs Uj)s
JjES

and, as in Section 2, 0, = 0(w,, KZ,), 0} = 6'(w,, KZ,), and so on. Notice that
I,= —KdR,/dA, thus I, < Z,I,/4 implies (5.10) as R,(0,0) = exp(—o|z,|).
This bound is trivial for I, the other terms here and below will be estimated by
means of the following patterns. If x,, ;, a,;, b,; are positive numbers and
|w, — @] < R, then from (5.4) we obtain

(A) 20,x,a,,5 < 0,a,,(x2 + y?) < 8,xla,; + Cra, 8,57,

(B) 0 [gbuyj Zbkj] {?bkﬂﬂf]’

J

2
< C

with some C, depending only on o. Indeed, applying (A) to I, and I, and (B) to
I, the desired bounds follow from (i), (ii) and (5.2)-(5.4) by a direct calculation,
which proves (5.10). Thus Proposition 4 follows by the Cauchy inequality. O

The next problem is the rate of convergence of P/p — Pp.

PROPOSITION 5. Let cj = 3/dp cy(w, p) and o} = 3/dp o,(w, p), and in
addition to (i) and (ii) of Proposition 4, suppose that |cj(w, p)| < Cqp(w),
lof(w,p)] < C. If ¢ € DL(R), then we have some p € (1,2), 0 >0 and
K < + o0, such that

';’;Ppﬁp(z) < exp(—op)E[exp(KVp(t‘, z))] .

ProOF. Since d/dp p(w) = L{V,p(w), w}), this bound follows from

(5.12) . E[R,(t, KZ\(t, 2))] < Me %% log(e + p)E[Z,(¢t, 2)],
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in the same way as Proposition 4 has been derived, where
(5.13) Ry(t,A) = T 0(wi(t, 2, p), M) wi(t, 2,0) [,
keS

(5.14) dwj =ctdt+ ) cywfdt+ofdw,+ Y (o}, w)ydw, keS.
JjES JES
To prove (5.12) observe that dyR,=(—-Z,I,+ I, + --- +I, + I,) dt, where
., I, are as in d,;R,, but with w}, in the place of u,, while I, = X I, and

i + 20} Y (0, /)|

JjES
In view of the proof of (5.12) we have I, < Z,1,/5 if q 1,2,3,4 and K is large,
while I, can be estimated by applymg lw k| <1+ w}? to each term which is
linear in w}. Indeed, all quadratic terms arising in thlS way can be dominated by
Z,1,/5 via (A) and (5.2)-(5.4). Consequently, as R,(0,0) =

(515) B[Ryt KZ(t.2)] <K, T I E[oklk(wk)qk(w)l ds,

Iy, = 26,{c}, w}) + 2(grad 8, w, )00} + do,

where /, denotes the indicator function of B(p + R)\ B(p). This means that
0, <e* if I, # 0, whence (5.12) follows by the superstability of U, which
completes the proof. O

In the second variational system o, ;; = V,v,0,(w, p) is a matrix, while c,; i =
Ve, p) is a vector formed by d matnces namely c{%) = vv(c,, e,),
q= 1 2,..., d. We denote

d
(5.16) [ckjiuj’ ai] = Z eq<c§e§'3uj’ u;y, |ckji'2 = Z |C§5‘3|2:
g=1

q=1
ie. [cgj;*, ]is an R%valued bilinear form. ~
PROPOSITION 6. In addition to (i) and (ii) of Proposition 4, let
(i) chkji(w, P)I < CQk(w), Zlckji(w: P)I =< ng/z(w)qjl'/z("-’),

(ii) Zlok,,(w p)| < Cgy*(w), Zlok,,(w p)| < Cql/*(w)g)/*(w).
If o € D(Q), then with some p € (1,2), 0 > 0 and K < + 0,
|Vn9,:9(2)| < exp(=ol2,| ~ 0|z, E[exp( KV,(t, 2))].

PrROOF. Here we start with

?yg’s)—v—y)‘?’(‘*’) = Z (V/e‘P("-’):”k> + Z E <V,Vk¢(w)uk,l_¢j>;
keS keS jeS

estimation of the first sum follows (5.5). For the second one we apply the Cauchy
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inequality to derive
(5.17) l(Vijtp(w)uk, 17]>| < exp(cq,Zp) —Hodl|y,le 1N,

whence we obtain a factorizable bound. Therefore, if 0 < 0 < ¢/2, then using
(5.6) and (5.7) and a'/2 + b2 < (2a + 2b)*/? we obtain

(5.18) VIVl < exp|KsZ, + KyZ,log(e + Z,)| RY?(¢, KZ\(t, 2)),
where R, is defined by (5.9) with &, in the place of u,,
(519) Ry(t,A) = L 0%(wx(t, 2,0), N)|og(t, z,0)[ + By, M)Ry(£,A)

keS
and
= Y qudt+ Y X [epuu), ;)] dt
(5 20) JjES jeSieS
+ Y (oppvydwy + Y Y oy, By dwy,  kES;
JES JeES ieS

therefore it is sufficient to prove
(5.21) E[R4(t, KZ\(¢, 2))] < exp(—o0|z,| — o|2,,])-
The summands of d R can be cast into three groups. The first consists of

s = 2[0x(grad 8, ¢,y + 6,A0,07 + |grad 6,1°67] of,
or = 29132(”/” ij”j) + 20132 Z(Uk» [ckjiujr 7‘;‘]):
J J 1

2
3k = d03[2<0k,«, Oj> + E Z(ijiuj» L_‘i>] ’
J J 1

Jy, = 40,(grad 0, vk>0k2(<°kj’ v;) + Z(okjiujv l_‘i>)
J i

and J, = XJ ;. The second group consists of the terms oJ;, , = I, I_i’l +1 B
g=1, 2 3,4, where the bar refers to u, cf. the proof of Proposition 4 We have
four mlxed terms, namely

Jor = |grad 0k|2°13ulf‘_‘l2e’
Jior = 40z, ﬁk)[Z("kﬂ uj>HZ<°kj’ ‘_‘j>]’
J VA
Jiir = 20,(grad 01u ak)”iokz:(“kj: u;),

and dJ}, is obtained from J;; by interchanging u and u.
We have d,R;= —Z,J,dt+ (J, + Jy + -+ +J,,)dt and we need J, <
Z,J,/12, where Jo=—-K 8R3/ dA, which follow by the patterns (A) and (B) as
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well as by their extensions (C) and (D):
(C) 20kxkakjty1yt < akxkakjl + Clakjlo yj 0i5'i2:

(D) 0k Ebkjty]yt] <Cz Zbk]l] Zbkjl alyl]!

gyt Jyi

where a,j;, by ; Jir Xk Yo ¥; are nonnegative numbers. The cases of /; and J, are
trivial, the estimation of J, with ¢ = 5,6,7,8, reduces to that of I, and I, see
the proof of (5.10). The desu‘ed bounds for the first sums in o/, and J4 follow by
(A), for the first sum in J; we use (B). The second sums of J, and J, can be
bounded by means of (C), while for the second sum in <J; we need (D); the sums
over three indices can be factorized by means of (i) and (ii). Notice that c,;; # 0
or o,;; # 0 imply |w, — «] < R and |w, — w;| < R, the factors g,, q;, g; are of
the same order. Finally, using Ya,b, < Xa,)Xb,) if a,, b, > 0, the desired
bounds of Jj,..., J;, follow directly by (A), which completes the proof. O

A rate for V,,Plp » V,P'p as p > + oo is given by:

PROPOSITION 7. Let c;; = 3/dp c,j(w, p), 0;= 3/dpo,{(w, p), and in ad-
dition to all conditions of Propositions 4-6, suppose that

i) X leifw,p)| < Caulw), stlc;ej(w,p)l < Cgy(w),

JES
(i) X |oifw,p)| < Ca*(w), X |oifw,p)| < Cqi*(w).
JjES keS

Then, for each ¢ € D2(Q) we have some p € (1,2), 6 > 0 and K < + o0, such
that

< exp(—op — olznl)E[exp(KV;,(t, z))] .

0 5 .0(2)
apvn‘P z
ProOF. Since we have
J
_V(r)‘P(‘*’) =X <Vk‘P(‘*’) uk) + Y X <VVk‘P(°-’)uk» ])
keS keS jes

following the proof of Proposition 6 we see that the statement reduces to

(522 E[R,(t, KZ(t, 2))]

< Mexp(—op — olz,|)p Hlog(e + p)[tE[Z,(t, 2)]]"",

wﬂere K and M are universal constants,

(523) R4(t’ >‘) = kzsoz(wk(t: 2, P), A)lu;e(t’ 2, P)|2 + Rl(t’ A)R2(t’ >‘)
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and for all 2 € S,
du}, = Ec,;jujdt+ EZ[ckﬁ , 0! ] dt + Eckju dt
J J i

(5.24)
+ 20k, up) dwy + X Yoy 505, 0F) dwy + X (04, uf) dw.
J joi j

Most terms of d, R, have appeared already in d,R; with the notational
difference that now uk plays the role of v, and w} that of #,. We have
dyR, = (Jy + Jy + -+ +dyy — Z,dp) dt + (Jy3 + Jyy + R I + Ji5) dt, where
the additional terms are those containing some of the coefficients c}, oy, c;, 04,
namely

Jis = 20kz [0k<u1'u ity + 2(grad 0, uj)o,(o; , uj>] )
J
2
Jiar = da/f[Z(“/ﬁp uj)]
J

+2d03[2(aéj, uj)][Z(@kj, uj) + Z<akﬁuf’ w{))],
J J i
Jisr = 20,(grad b, w%)”/%"k"/ﬁ + 4013(”1@’ u/’e)Z("kj» uj>°1§,

J

and J, = XdJ,, for ¢ = 13,14,15. We know that J, < Z,Jd,/16 if q < 12. For
q > 12 including J,q = R,I; we prove that

(5.25) J, < 52,dy + Me %" log(e + p)Z,R;;

but E[ R?] < e~ 21 from (5.21), which implies (5.22) by the Cauchy inequality.
To prove (5.25) for J,; it is sufficient to separate u}, from u; by (A) in both sums
and observe that 0, < e”°” whenever c;; # 0 or o} ; # 0. For q = 14 observe that
JM,e can be written as J;,, = A2 + 2AkBk + 2Aka < 3A% + B} + C?, where
Y A2 and LB} can be estimated by means of (B), while for ZCk we need (D). For
the ﬁrst sum of JJ;; we use |w}| < 1 + &} and La,b, < (Ta,)Xb,) if a,, b, > 0,
for the second one (C) yields the desired bound. Finally, the estimation of Jq
reduces to that of I, see the proof of (5.12), which completes the proof of
Proposition 7. O

The convergence of second derivatives of Pj is controlled by the third
variational system involving four new quantities and two trilinear forms.
Let o4, = d/3dp 04;i(w, p) and ckﬂ— 3/0p ¢ i(w, p); Opjip = Vhokj,(w p) and
Chjin = ViCrji(w, p), where oy, is an r X r X r matrix, while ¢, ;, is a vector
consisting of such matrices. The associated trilinear forms will be denoted as
(Onjinltt)s By, @3y and [cginlt), U, 0] = Le Vv ,ciP\u;, U;, 0},). Of course,
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by the Cauchy inequality
I(akjihluj’ u, WZ>| < |oginl ] [@3] |03l
|[exsinlteys Bis ] | < lewjinl Il 1 1603

PROPOSITION 8. In addition to all conditions of this section, suppose that we
have a universal C such that

(@) ?;lc/’eﬁ(w, p)| < Cqy(w), %lc}eﬁ(w, p)| < Cgi/*(w)a}*(w),
(ii) ?;loléﬁ(w, p)| < Cai*(w), %Iozéﬁ(w, p)| < Cgi/*(w)ai*(w),
(iii) jzi:hlckjih(‘*”P)l < Cqy(w), jlzhlokjih("’, P)l < Cgy/*(w),

(iv) %lckﬁh(w,p)l < Cqi/%(0)qi"*(w) i/ *(w),

v) %Iokﬁh(w,p)l < Cq;/%(w)qi"%(w) g/ ().

Let ¢ € D3(Q). Then with some p € (1,2), ¢ > 0, K < + o0 we have

< exp(—op — oz, — o|zm|)E[exp(KV;,(t, z))] .

]
’—vmvnfp(z)
dp

ProOF. We are faced with a fairly involved expression, namely

STETe(0) = L (V) oh) + T T (Tme(e)on )

d keS keS jeS
+ Y Y (v, i) + ¥ ¥ (vvp(o)u,, i)
keS jeS keS jeSs

+ ¥ T T A(vvme(e)|us g, o).

keS jeS ieS

Fortunately, we do not need any new trick to estimate this sum. Using ¢ € D3(2)
and (5.6) and (5.7), an easy calculation results in

(5.26) < exp| K, Z, + K, Zylog(e + Z,)| RY*(t, KZ\(, 2)),

9,
PRCULR

where o < ¢/3 and

Rt = T 0%aylt 2 0), Mokt 2, 0)
(5.27) keS
+Ry(t, \)Ry(t,A) + R, (t, \)R,(¢,A) + R,(t,\)R,(¢, ),



506 J. FRITZ

where the bar refers to & and %’, respectively, and
CZD;z = chjvf dt + Ecl’ejvjdt"' EZ[ckﬁvj, w:] dt
oJ J J i

+ %: Zl: [c,’eﬁuj, ;| dt + %‘,Zi:[ckﬁu;, L_ti] dt + %:Zi:[ckﬁuj, uf] dt
(5.28) + 2}: Zl: Zh: [crjinle;, @;, wh| dt + ?(akj, of) dw,, + %:(o,gj, v;) @k

+ %: zi:<°kji°j’ w;) dw,, + ?;(‘Jl;jiuj’ u;) dw, + ?;(okjiuj’ ul) dw,

+ 2}: Zi:@kjiu,"» u;) dw, + §§§<okﬁhlup U;, wp,) dwy,.

Just like Proposition 7, it is sufficient to show that

(5.29) d R5 < Me "% 'log(e + p)Z,R,,

where A = KZ\(t, z) and K, M are big constants. Indeed, using

(5.30) E[R3(t, KZ\(t, 2))] < exp(—20lz,| — 20]z,)

and the Cauchy inequality, we obtain Proposition 8 by comparing (5.26) and
(5.29).

First we prove (5.30). We need d4R% < 0 for large K. For every stochastic
differential dy, = ¢} dt + o} dw,, y, € R% k € S, we introduce the differential
operator D} = 67V}, where v} is the gradient operator associated with Vi
Then we have

dsR}=2Ryd, R, + ¥ |D¢R, + R,D{R, + R, DR, + D{R,? dt
keSS
(5.31) _ __
<2Ryd;Ry+4 ¥ (IDiRy* + |R.D{R,* + |R,DIR,|* + |DiR,|?) dt;
keS
each term here should be bounded by a multiple of R sZ,J;. The case of D, R, is
known from the proof of Proposition 6, the next three sums are trivial, while
|DFR;|* = 464v}(0})?, and the right bound of |v,| [o}| follows by (A) and (C).
This completes the proof of (5.30) via (Za2b?) < (ZaZ)(ETb).

Now we turn to the proof of (5.29), and most terms are quite familiar from
previous calculations. The sums over four indices will be estimated by means of
the patterns
(E) 207%,,04;i; 320 < Opxiay i + Cay;ind; 576,50,23,

(F) U [Ebkjihyjyizh]z <Cf [Zbkjih] [Zbkjihojyj20iyi20hz£]’
where a,;;;, > 0, b, ;> 0, |w, — w| < R for f =i, j, h, and the sums in (F) are
over the triplet j, i, h. The majority of the summands of d +R 5 will be estimated
by a multiple of Z,L,, where L, = —dR,/d\. In the remainder the symbols ¢’
and o’ are involved; for such terms 6, < e~°*; and the quantity on the right-hand
side of (5.29) also appears in the bound. New terms of d,R; are L, = XL,



GRADIENT DYNAMICS 507

g = 1,2,3,4, see (5.28) for ¢§ and o} defined by dv} = c{’ dt + of dw,.

Ly, = (dab?)oi’, Lok =200}, cf),

Ly, = 2d03(f’)?, Ly, = 30grad 6,, v})o,07 .
The case of L, is trivial, while 2(grad 8,, v} Yot < CO,} + CO,(0}')? reduces
the treatment of L, to that of L. The first two sums in the expression of L, can
be estimated by means of (A), to the next four terms we apply (C), while the
seventh sum can be treated by means of (E), in this last case a threefold product
appears. The treatment of L, is analogous, but here (B), (D) and (F) should be
used, respectively.

The second, and last, group of new expressions is formed by the terms of
ddR2_R3 - E2ddR3 - RgddR2, ddeR4 - RlddR4 - R4ddR1 aIld ddR1R4 -
R, d,R, - R,d R,. Similarly as in (5.31), we have

ddR2R3 - R2ddR3 - R3ddR2
(632)  — ¥ (D¢R,+ D¥R,, DR, + R,D'R, + R,D'R, + D{R;).
keS

The cases of the second and third expressions are completely analogous, there-
fore we have to estimate DR, and D}R, for y = w, u, 4, w’, v, u’, u’ and for
q = 1,2,3,4; then we can apply (Xa2b2) < (Zai)(XTb?). The cases with y = w are
trivial, in all other cases we have to apply (A) and (C) to conclude (5.29), which
completes the proof of Proposition 8. O

REMARK 6. In view of Proposition 2, the Laplace method can be applied to
evaluate E[exp(K V.(t, 2))], but the explicit form of this expectation is useless, we
need -only its finiteness. In the case of the equilibrium dynamics the initial
configuration, z is also random, and the nonequilibrium a priori bound of
Proposition 2 yields + oo for the expectation of exp(KV,(¢, 2)) if p > 1. There-
fore it is very important that sup, _ ,H(w(s, 2)) is not involved in the expression
of V(¢ 2). Another class of problems is implied by the dependence of the
diffusion coefficient on the configuration because then the variational systems
are also stochastic. These two problems are responsible for the sophisticated
technicalities of this section; we could not apply a more standard iteration
method, cf. [7] and [16].

REMARK 7. The results of this section are very general. Concerning the
structure of (1.6) we have only used

(l) Ick(w’ p)l < CQk(w)’ lok(w, p)l = C
This means that as soon as we have an a priori bound for V, we can conclude
that Pjp - P'p, v,Pj9p » v,Pp and v,v,Pjo > V,v,Pp as p > + o0, pro-
vided that ¢ belongs to the corresponding functional space D3(2), ¢ = 1,2,3.

@

REMARK 8. Since

. . + o0 8 ¢
Pp =Py + f s @ ds,
o
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Proposition 5 yields a new construction of the transition semigroup P but the
conditions for this approach are more restrictive than those for the iteration
technique of Section 4. This iteration method is needed also to prove the
uniqueness of tempered solutions. On the other hand, the results of Section 5
imply explicit exponential bounds for the rate of convergence of the partial
dynamics P, to P*.

6. On the generator of the transition semigroup. Now we are in a
position to conclude Theorem 4 and some further results on LP?% the general
framework related to (1.6) will be adopted, thus Theorem 5 below will be a
proper generalization of Theorem 4. The interaction potential U is assumed to
be smooth and superstable. This U is used in the definition of V,, but the
particular structure of (1.6) will not be exploited any more. All the specific
information we need on the dynamics is contained in the a priori bound

(6.1) E[exp(KVp(t, z))] < E,(t,2),

where either E, or its distribution does not depend on the partial dynamics we
consider. We are assumins that we are given a set of measurable coefficients
¢ 2> R? and o,: @R, k€S, such that v,c,(w) =0 and v,0,(w) =0
whenever |, — w;| > R, i.e., the interaction has a finite radius R. Moreover,

(6.2) lex(w)] < Cgp(w), lox(w)| < C,

(6.3) Zslvjck(w)l < Cqy(w), kZSIVjCk(‘*’H < qu(w)’

(6.4) Y |viou(w)| < Cgi*(@), X |vjou(w)]| < Cgi/*(w),
JES keS

(6.5) Zzlvivjck(w)l < Cqy(w), %lvivjck(w)l < ng/z(w)qjl-/z(w):
(6.6) ¥ X|vvou(0)] < Cq*(w), %lvﬁjok(w)l < Cgi/*(w)g;*(w),

LY Y|vwme(e)| < Caw),

(6.7) bty

%Z ZIVhVV Uk("-’)l < Cgi/*(w),
(6.8) ZthVV cp(w)] < Cgi/¥(w)g}*(w) g (),
(6.9) EIVhVV op(w)] < qu/e(w)q,/"(w)qjl/“(w)

with some universal constant C, the functions q,, % € S, have been defined
before Proposition 4. It is easy to verify that if U is not singular and it has four
continuous derivatives, then the coefficients of (0.1) satisfy the above set of
conditions.
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Now we introduce the coefficients defining the partial dynamics by means of a
cut-off function f = f(x,p), x € R% p > 1; this f differs from that used in
Section 2. Let f(x, p) = fi(|x| — p), where f,: R — [0,1] is nonincreasing and
three times continuously differentiable, and fy(y) =1 if y <0, f(y) =0 if

> R, then oy(w, p) = f(ws, p)oy(w) and cy(w, p) = f>(wp, p)ey(w) +
02(w)f(wp, p)grad f(w,, p) coincide with o,(w) and cy(w), respectively, if
|w,| < p, and both vanish if |w,| > p + R. Since the bounds of the derivatives of
f do not depend on p, it is quite easy to verify the conditions of Propositions 4-8,
The reason for this artificial definition of c,(w, p) consists in the requirement
that the reversibility condition (1.13) should remain in force if it was presup-
posed for the original coefficients c, and o,

Consider now the transition semigroup P/ defined by

(6.10) dw, = cy(w, p) dt + o4(w, p) dw,, kES,

with initial condition w(0) = z € Q, i.e., P/p(2) = E[@(w (¢, 2))]if w(-, z) denotes
the solution to (6.10) with initial condition w(0, 2) = z. Since the elements of
are locally finite, (6.10) is a finite system, thus we have no problems concerning
the smoothness of P/, see Chapter 4 of [6] or Chapter 7 of [1]. More exactly, P,p,
v IPptp and Vv, P @ are all uniformly continuous on each 2, if ¢ € C(Q),
¢ € D(2) and ¢ € D2(Q), respectively. The results of the previous section
imply:

THEOREM 5. Suppose that the a priori bound E, (¢, z) of (6.1) does not
depend on the parameter p > 1 of the partial dynamics (6 10), and ||E, (L, )l <
+ oo foreachh > 1, p e (1,2)ando € (0,1). Ifp € D 1(SZ), then Pp converges
to some limit P'p € C(Q) as p = + oo, the convergence is untform on each Q.
Similarly, we have v,Plp - v,Pp if o € D(R), n € S, while v,v,Pjo >
«V.V.P if p€D3(Q), n,m e S, again in the topology of C(S)) as p > + oo.
Moreover, P'DZY(Q) c DA(Q) for ¢ = 1,2, and for each ¢ € D3(Q) we have
somep € (1,2), 0 > 0 and K < + o0, such that

|Pp‘<p(z) - P‘(p(z)] +||L|P,f<p(z) - ILIP‘(p(z)I < E[exp(KVp(t, z))]e“’",
where L denotes the formal generator of P?, see (1.11).

PROOF. The convergence of Pjp and that of its derivatives is a direct
consequence of Propositions 5, 7 and 8, respectively. To identify the limits of the
derivatives it is enough to notice that

[ #(z)VPlo(2) dey = = [ [V.0:(2)]Pfo(2) e,
and

B j';dj'; <p2(zn, zm)VmVanQP(Z) dzn dzm

d

= [ (97920 20))PS0(2) oy
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hold true for smooth test functions ¢, and ¢, of compact support. The exponen-
tial bound is now a direct consequence of Propositions 5, 7, and 8, while
Propositions 4 and 6 extend to the infinite system by letting p go to infinity,
which completes the proof of Theorem 5. O

REMARK 9. If d < 4, then the conditions of Theorem 2 imply the a priori
bound we need for Theorem 5, which proves Theorem 4. In the case of the
equilibrium dynamics below a probability estimate » will be used. Since we do not
have any closed subspace C of C(2) such that P‘C c C and P*? happens to be
strongly continuous on C, it does not make too much sense to talk about the
infinitesimal generator of P* in the spirit of semigroup theory. Notice, however,
that P‘Lp = LP%p whenever ¢ € D3(Q).

For systems in a Gibbsian equilibrium state p we have a stationary a priori
bound, namely the consequence (1.5) of Ruelle’s [22] superstable probability
estimate, see Lang [13] and Marchioro, Pellegrinotti and Pulvirenti [16]. In
addition to (6.1)-(6.9) suppose that the coefficients ¢, and o, do not depend on
the enumeration of the particles and satisfy the reversibility condition (1.13), the
dimension d of the space is arbitrary, the partial dynamics P/ is the very same
as above. Let p denote a tempered Gibbs state with interaction U at unit
temperature and arbitrary activity; this p is a probability measure on the space
Q) = [supp w: w € 2] of unlabelled configurations (integer valued measures on
R¢), see [2], [3], [21] and [22]. The elements of the Hilbert space L2(Q(), u) are
symmetric functions on £, each P} preserves symmetry as the dynamics does not
depend on the enumeration of particles. In view of (1.13) the Gibbs state p is a
stationary and reversible measure for each partial dynamics. Thus for all
?1, P2 € LX(Q®), p) we have

(6.11) [P, du = [o:Plo, du,
while (1.5) implies for each partial dynamics the bound
(6.12) fE[exp(KVp(t, z))]u(dz) < CJ(t,K,0) < + o0,

where p€ (1,2), K>0,06>0, t> 0; C, does not depend on p, and it is a
monotonic function of its variables. -

It is easy to check that each P} is a strongly continuous semigroup of
self-adjoint contractions in L%(Q(®, ). Applying the a priori bound (6.12) to the
estimate of Proposition 5 we see that P/p converges in L%, p) for each
@ € L3(Q®), p). The limit, denoted by P* = P, is again a strongly continuous
contraction semigroup in L%(Q(®), u). Since (6.11) remains in force also for P, the
infinitesimal generator, G of P’ is a self-adjoint operator in L%(Q(*), u), G is an
extension of the formal generator L defined by (1.14). Let DJ(2) denote the
space of symmetric and local functions from D&(R), ¢ = 1,2,3; that is, ¢ €
DF(Q2)) means that ¢ € DG(2) and there exists a p > 0 such that ¢(w) = (&)
whenever ¥ f(w,) = Lf(w,) for all continuous f: R - R vanishing outside the



GRADIENT DYNAMICS 511

ball B(p). Notice that L is well defined on DZ(2(®) and Ly = Go € L*(Q®), p) if
@ € DZ(Q®), but P'D3(Q®) c DXQ) is known only if d < 4.

THEOREM 6. If the space D, C D3(Q®) is dense in the sense that for each
F € D2(Q®) there exists a sequence ¢, € D, such that ¢, > F weakly in
L2(Q®, u) and Ly, is bounded in L*(Q%), p), then D, is a core for G, that is L is
essentially self-adjoint with domain D, and its closure equals G.

Proor. We have to show that for each ¢ from the domain of G there is a
sequence ¢, € D, such that both ¢, > ¢ and L, = Go in L*Q®), p), see
Section X.8 of [19]. Let || f|| = [ /f 2dp]"/? denote the norm in L%(Q(), p), then
MIFIZ < [fNf = Lf)dpif f € Dy as L < 0, see (1.15). Therefore Al|f || < [[Af —
Lf|lif A > 0. This means that Ap, — Lp, = AF — GF implies both ¢, — F and
Le, = GF. Consequently, it is sufficient to show that [Ap — Lo: @ € D] is
dense in L2(Q®, ) for some A > 0. Suppose not, then we have a nonzero
g € L%(Q®, p) such that

(6.13) [erodn=A[gpdu, ifeeD,

and a contradiction is obtained as soon as we manage to extend (6.13) to
functions of the type F = P with ¢ € D,. Indeed, then

%fgp‘qo dp = ng‘qu dp

= nglPtq) dp = ngmp dp,

whence [gP ‘o dp = e*fgp dp, which is possible only if g = 0. Let F, = Ply; it is
* obvious that F, € D§(Q), thus we have a sequence ¢, € D, such that ¢, > F,
weakly, while Lo, remains bounded. Since (fL¢, du = [@,L fdu if f € D,, but
D, is dense, we see that L, — LF,. Consequently,

(6.14) f gLPjp dp = A f gPipdy, if g €D,

On the other hand, the superstable estimate (6.1) and Proposition 8 imply the
fundamental estimate

(6.15)  |IPlp — Pp|l + [LP/p — GPp|| < C,e™*, for p € DY(Q®),

as G is closed, where ¢ > 0 depends on ¢. Thus letting p go to infinity in (6.14)
we obtain

(6.16) ngPﬁp dp = Angttp dp, for ¢ €Dy,

which completes the proof. O

REMARK 10. The most favored candidate for D, is certainly the space D§° of
symmetric functions of the type

o(w) = F(""( fl)’ @(fa)seees o( fn))’
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where n €N, o(f)=Xf(w,), and F: R® > R and f,: R® > R are infinitely
differentiable with compact supports. The condition that D is dense is a direct
consequence of (1.5) and the Stone-Weierstrass theorem, but to prove that Le,
remains bounded, a very complicated construction is needed. This is a question
of approximation theory we do not want to discuss here.

REMARK 11. It is very important that Plp is smooth if ¢ € D,. This
property is due to the continuity of the transition between the frozen and the
living parts of the system. Such a construction is possible even in the case of
Hamiltonian systems, see [16] for a different approach and the related difficul-
ties.

REMARK 12. The hypothesis of Spohn’s [24] theory of equilibrium fluctua-
tions is closely related to Theorem 6, but instead of the familiar space L%(Q(®), p),
it is formulated in terms of the scalar product (1.16) and the associated Hilbert
space H. The strong form of this hypothesis, namely Proposition 2 of [24], claims
that D is a core for G in H; this assertion is used then to extend the inequality

(6.17) |(Fig)|” < K(FILF), Febg,

to functions of the type F = Pp, ¢ € Dg’, where g € DJ(Q) is fixed and K,
depends only on g. For this purpose the full power of Proposition 2 of [24] i 1s
certainly not needed and it is sufficient to select a sequence ¢, € ID3° in such a
way that <q>n|g) - (Pp|g) and (@,|Lp,) = (P'p|GP ). Just as in the proce-
dure of passing from (6.13) to (6.16), we first have to extend (6.17) to F = Py,
which is mainly a question of approximation theory, cf. Remark 10. The second
step is to let p go to infinity and (6.15) can be used here. More exactly, we can
~ find a sequence ¢, € D§° such that

fqon .,gdu—’fp T,gdp and f<pnT|L<Pndu—>fP<pTGP<pdu,

for each u € R To conclude the statement implying Proposition 3 of [24] it is
sufficient to show that both convergence relations above are dominated, that is
we can interchange the limit and the integral over u € R defining ( - | - ) by
(1.16). This is really true in the high-temperature-low-density domain, then p
has a very strong, exponential mixing property, see Lemma 4 of [24]. Using the
trick that

o d
Pjp=Pip + f —-Plods,

and the analogous representation of the derivatives of P)p, we can easily
dominate [PjoT,gdp and [P/oT,LPjp du by integrable functlons of u € RY,
see Proposmons 5, 7, and 8 and the proof of Lemma 5 in [24]. Using the
symmetric form (1.15) of (FL Fdp, we can reduce the problem to the control of
first derivatives only, i.e., Proposition 8 involving the third variational system is
not needed here. Of course, this is only a draft of the proof.
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REMARK 13. The proof of the essential self-adjointness property stated in
Proposition 2 of [24] is very similar. Following the proof of Theorem 6 we obtain
the identity

(6.18) (gILF) = \(g|F), for F € D,

where g € H is fixed; we have to extend (6.18) to functions of type F = P,
¢ € D§. In contrast to the problem of Remark 12, here we have also to control
the second derivatives of PJp, i.e., Proposition 8 and the third variational system
cannot be abandoned. Since the function g of (6.18) is not a local one, we cannot
apply the dominated convergence theorem directly; we have to show that
(fIPfp) = { fIP%) for smooth local f,as p — + oo, while LP/o remains bounded
in H. This proof is essentially the same as in Remark 12.
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