THE CUBE OF A NORMAL DISTRIBUTION IS INDETERMINATE

By Christian Berg

University of Copenhagen

It is established that if X is a stochastic variable with a normal distribution, then X^{2n+1} has an indeterminate distribution for $n \ge 1$. Furthermore, the distribution of $|X|^{\alpha}$ is determinate for $0 < \alpha \le 4$ while indeterminate for $\alpha > 4$.

1. Introduction. Let \mathcal{M}^* denote the set of probability measures on the real axis having moments of all orders. The kth moment of $\mu \in \mathcal{M}^*$ is the number

$$s_k(\mu) = \int x^k d\mu(x), \qquad k = 0, 1, \dots.$$

Two distributions $\mu, \nu \in \mathcal{M}^*$ are called equivalent if $s_k(\mu) = s_k(\nu)$ for $k = 0, 1, 2, \ldots$, and μ is called *determinate* (in the Hamburger sense), if the equivalence class $[\mu]$ containing μ is equal to $\{\mu\}$, and *indeterminate* otherwise.

It is well known that there exist indeterminate distributions. This observation goes back to Stieltjes (1894/1895), who proved that the distributions on $(0, \infty)$ with the densities

$$a \exp(-t^{1/4})$$
 and $b_k t^{k-\log t}$

are indeterminate [see Stieltjes (1894), Sections 55 and 56]. Here $a, b_k > 0$ are normalization constants and $k \in \mathbb{Z}$. For k = -1 we get the density of a log-normal distribution. Heyde (1963) pointed out that distributions commonly used in statistics need not be determinate, and as an example he gave the log-normal distribution.

If X is a stochastic variable with a normal distribution, then $\exp(X)$ has a log-normal distribution. The purpose of this note is to point out that even simpler transformations of X may lead to indeterminate distributions, viz. X^3 has an indeterminate distribution. Murad Taqqu has observed that the Carleman condition fails for X^3 , and this suggests that X^3 is not determinate, although it is well known that the Carleman condition is not necessary for determinacy.

More generally, we prove that X^{2n+1} has an indeterminate distribution for $n \ge 1$, and the distribution of $|X|^{\alpha}$ is determinate for $0 < \alpha \le 4$ while indeterminate for $\alpha > 4$. We are thus in the strange situation that X^3 and X^5 are indeterminate, whereas $|X^3|$ and X^4 are determinate.

Received October 1986; revised December 1986.

AMS 1980 subject classifications. Primary 60E05; secondary 44A60.

Key words and phrases. Determinate and indeterminate distributions, normal distribution, powers of a normal distribution.

2. Statements and proofs.

PROPOSITION 1. If X has a normal distribution, then X^{2n+1} is indeterminate for $n \ge 1$.

PROOF. We may assume that X has the density $(1/\sqrt{\pi})\exp(-x^2)$, and then X^3 has the density

$$d(x) = \frac{1}{3\sqrt{\pi}}|x|^{-2/3}\exp(-|x|^{2/3}).$$

The function

$$d(x) \{ 1 + r \left(\cos(\sqrt{3}|x|^{2/3}) - \sqrt{3}\sin(\sqrt{3}|x|^{2/3}) \right) \}, \qquad x \in \mathbb{R},$$

is easily seen to be ≥ 0 for $|r| \leq \frac{1}{2}$, and it is a probability density with the same moments as d for these r. To see this, it suffices to prove that

$$s_k = \int_{-\infty}^{\infty} x^k d(x) \left(\cos(\sqrt{3} |x|^{2/3}) - \sqrt{3} \sin(\sqrt{3} |x|^{2/3}) \right) dx = 0, \text{ for } k = 0, 1, \dots.$$

This is clear for k odd, and we find

$$\begin{split} s_{2k} &= \frac{2}{3\sqrt{\pi}} \int_0^\infty \! x^{2k-2/3} \! \exp(-x^{2/3}) \big(\cos(\sqrt{3}\,x^{2/3}) - \sqrt{3} \sin(\sqrt{3}\,x^{2/3}) \big) \, dx \\ &= \frac{1}{\sqrt{\pi}} \int_0^\infty \! x^{3k-1/2} \! e^{-x} \! \big(\cos(\sqrt{3}\,x) - \sqrt{3} \sin(\sqrt{3}\,x) \big) \, dx. \end{split}$$

Using

$$\int_0^\infty x^{c-1} e^{-xz} \, dx = z^{-c} \Gamma(c), \quad \text{for} \quad c > 0, \, \text{Re} \, z > 0,$$

we get for $z = 1 + i\beta$,

$$(*) \qquad \int_0^\infty x^{c-1} e^{-x} \left(\frac{\cos}{\sin}\right) (\beta x) \, dx = \left(1 + \beta^2\right)^{-c/2} \Gamma(c) \left(\frac{\cos}{\sin}\right) (c \arctan \beta).$$

Putting $c = 3k + \frac{1}{2}$, $\beta = \sqrt{3}$ we see that

$$s_{2k} = \left(1/\sqrt{\pi}\right)2^{-c}\Gamma(c)\left(\cos\left(c\frac{\pi}{3}\right) - \sqrt{3}\sin\left(c\frac{\pi}{3}\right)\right) = 0.$$

EXTENSION. The density of X^{2n+1} is

$$d_n(x) = \frac{1}{(2n+1)\sqrt{\pi}}|x|^{-2n/(2n+1)}\exp(-|x|^{2/(2n+1)}),$$

912 C. BERG

and in this case we consider

$$d_n(x) \left\{ 1 + r \Big(\cos \Big(\beta_n |x|^{2/(2n+1)} \Big) - \gamma_n \sin \Big(\beta_n |x|^{2/(2n+1)} \Big) \Big) \right\},$$

with

$$\beta_n = \tan \frac{\pi}{2n+1}, \quad \gamma_n = \cot \frac{\pi}{2(2n+1)}.$$

PROPOSITION 2. If X has a normal distribution and $\alpha > 0$, then $|X|^{\alpha}$ is determinate for $\alpha \le 4$ and indeterminate for $\alpha > 4$.

PROOF. If X has the density $(1/\sqrt{\pi})\exp(-x^2)$, then $|X|^{\alpha}$ has the density

$$d_{\alpha}(x) = \frac{2}{\alpha\sqrt{\pi}}x^{1/\alpha - 1}\exp(-x^{2/\alpha}),$$

with respect to Lebesgue measure on $]0, \infty[$. For $\alpha > 4$ we consider

$$d_{\alpha}(x)\left\{1+r\left(\cos\left(\beta_{\alpha}x^{2/\alpha}\right)-\gamma_{\alpha}\sin\left(\beta_{\alpha}x^{2/\alpha}\right)\right)\right\}$$

where

$$\beta_{\alpha} = \tan \frac{2\pi}{\alpha}, \qquad \gamma_{\alpha} = \cot \frac{\pi}{\alpha},$$

and this is a nonnegative function on $]0, \infty[$ for $|r| \le \sin \pi/\alpha$ with the same moments as d_{α} for these r, since

$$s_k = \int_0^\infty x^k d_{\alpha}(x) \left(\cos\left(\beta_{\alpha} x^{2/\alpha}\right) - \gamma_{\alpha} \sin\left(\beta_{\alpha} x^{2/\alpha}\right)\right) dx = 0, \quad \text{for} \quad k = 0, 1, \dots.$$

This shows that $|X|^{\alpha}$ is indeterminate for $\alpha > 4$. Notice that $|X|^{\alpha}$ is indeterminate even in the Stieltjes sense, i.e., there exist different probabilities on $[0, \infty[$ with the same moments.

To see that d_{α} is determinate for $0 < \alpha \le 4$ we use

$$s_k(d_\alpha) = \int_0^\infty x^k d_\alpha(x) dx = \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{\alpha k + 1}{2}\right), \qquad k = 0, 1, \dots,$$

and by Stirling's formula $s_k(d_\alpha)^{1/k} \sim ck^{\alpha/2}$ for $k\to\infty$, where c is a suitable constant. This shows that

$$\sum_{1}^{\infty} s_k(d_{\alpha})^{-1/2k} = \infty,$$

for $\alpha \leq 4$, so by a theorem of Carleman [see Shohat and Tamarkin (1943), page 20] d_{α} is determinate in the Stieltjes sense. That d_{α} is the only measure on the whole real line with the same moments as d_{α} is then a consequence of a result of Chihara (1968), page 481, stating: If μ is determinate in the Stieltjes sense and indeterminate in the Hamburger sense, then μ is a Nevanlinna extremal measure and in particular discrete. \square

REFERENCES

- CHIHARA, T. S. (1968). On indeterminate Hamburger moment problems. Pacific J. Math. 27 475-484.
- HEYDE, C. C. (1963). On a property of the lognormal distribution. J. Roy. Statist. Soc. Ser. B 25 392-393.
- SHOHAT, J. A. and TAMARKIN, J. D. (1943). The Problem of Moments. Amer. Math. Soc., New York. STIELTJES, T. J. (1894 / 1895). Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 8(J) 1-122, 9(A) 1-47. (In Oeuvres Complètes 2 (1918) 402-566. Noordhoff, Groningen.)

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COPENHAGEN UNIVERSITETSPARKEN 5 2100 COPENHAGEN Ø DENMARK