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A NONLINEAR RENEWAL THEORY

By Cun-Hul ZHANG
State University of New York at Stony Brook

Let T be the first time that a perturbed random walk crosses a nonlinear
boundary. This paper concerns the approximations of the distribution of the
excess over the boundary, the expected stopping time ET and the variance of
the stopping time Var(T'). Expansions are obtained by using linear renewal
theorems with varying drift.

1. Introduction. Let X, X, X,,... be independent identically distributed
random variables with EX = p > 0 and Var(X) = 02> 0. Let {¢ = {{,, n > 1}
be a sequence of random variables such that £, is independent of X,, ., X, o,...
for each n. And let A = A(t; A\), A € A, be a family of boundary functions,
where A is an index set. Define

(11) T=T\,=inf{n>1:Z,> A(n;\)}, inf@ = oo,foreach A € A,

where Z, =S, + £, and S, = X, + --- + X, for each n. This paper concerns the
approximations of the distribution of the overshoot, the expected stopping time
ET, the variance of the stopping time Var(T') and other quantities related to the
stopping time T as the boundary tends to infinity.

Nonlinear renewal theory concerning boundary crossing times has been studied
by Chow (1966), Chow, Hsiung and Lai (1979), Gut (1974), Hagwood (1980),
Hagwood and Woodroofe (1982), Lai and Siegmund (1977, 1979), Lalley (1980),
Siegmund (1967, 1969) and Woodroofe (1976, 1977), among others.

Lai and Siegmund (1977) studied the limiting distribution of the overshoot for
the constant boundary case. In Section 2 we give sufficient conditions for the
weak convergence of the overshoot, which generalize the main results of Lai and
Siegmund (1977). For the expansion of ET, up to o(l), different sufficient
conditions were given by Woodroofe (1976, 1977) for £, = 0 and by Lai and
Siegmund (1979) and Hagwood and Woodroofe (1982) for A(t; A\) = constant.
Their conditions are unified, weakened and generalized to stopping times of form
(1.1) in Section 3. Lai and Siegmund (1979) also pointed out that the validity of
the expansion of Var(T') up to o(1) was unknown for any special case that the
boundary A(%; A) is nonlinear or £, # 0. In Section 4 the expansion of Var(T) is
obtained under reasonable conditions.

Define

(1.2) (c,u) =inf{n>1:S,—un>c}, c=>0,u<np.

Unlike previous authors, we first consider the difference between T, and T, =
7(c,, d,) for suitable c, and d,, establish the uniform integrability of |T, — 7,|P

Received December 1985; revised November 1986.

AMS 1980 subject classifications. Primary 60K05, 60G40; secondary 60J15, 621.10, 62112, 62L15.

Key words and phrases. Nonlinear renewal theory, excess over the boundary, uniform integrabil-
ity, expected sample size, variance of sample size.

793

[Z8 (¢
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Probability. RINOIN

www.jstor.org



794 C.-H. ZHANG

(in Section 2) and then derive nonlinear renewal theorems directly from parallel
results in the linear case by making use of the uniform integrabilities and the
weak convergence of the overshoot. As a result, our theorems are uniform with
respect to the drift u — d, of the random walk S, — d,n, which defines 7.

We shall also study the approximations of the expectations of

18)  U=U-=1+ ¥ I{Z, < A(m; \)),

n=1
(1.4) N=N,=1+sup{n>1:Z,<A(n;\)}, sup® =0,

and Blackwell-type renewal theorems relative to the boundary A(# A) and the
process Z,. A number of examples are given in Section 5.

2. Uniform integrabilities and weak convergences. Let us define

(2.1) b=>b,=sup{t=>1: A(t; \) > pt}, sup® =1,
(2.2) d=d,=(3A/3t)(by; \), ‘
(2.3) d=sup{(dA/dt)(; \): t = by, A € A},

(2.4) R=R,=2Z,- A(T; \),

(25) R(c,u)=S8,, ., —ur(c,u)—c, u<p,c=0,
(2.6) r(u) = ER*(0,u)/(2ER(0,v)), u<p,
27)  G(x,u) = f”p{R(o, u) > y) dy/ER(0,u), w<p, x>0,

where 7(c¢, u) is defined by (1.2).

We shall always assume that A(f; M) is twice differentiable in ¢ and b, is
finite so that d and d are well defined. Our first theorem is a Blackwell-type
nonlinear renewal theorem. A random variable Y has an arithmetic distribution
if ¢Y is integer-valued for some constant ¢ # 0.

THEOREM 1. Let R = R, be defined by (2.4). Suppose there exist functions
p(8) >0, b2<y(b)<bd, y(b)/b—>0 as b— oo, and constant d* < p =
EX € (0, ) such that

(2.8) (Ty — 8))/7(b)) = 0p(1), asb, - o,
(2.9) h'IlnP{ 15]_2‘1)?%7('1) |60 — &al 2 8} =0, forany8 >0,

(2.10) sup{|y2(b)(82A/3t2)(t; M|: |t — b < Ky(b), A€ A} <o,VK,

and
lim d, = d*.

b— o0
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If X — d* does not have an arithmetic distribution, then
(2.11) P{R, > x} = G(x) + o(1), asby,—> o foranyx >0,

where G(x) = G(x,d*) and G(x,u) is defined by (2.7). If, in addition,
(T — b)/y(b) converges in distribution to a random variable W as b — oo, then

(2.12) liinP{R)\ >x, Ty = by + ty(by)} = G(x)P{(W = t},
for every real number t with P(W = t} = 0.

REMARKS. Since b~ 4T — b) = ox(1) implies (2.8) with y(b)/b* — 0, Theo-
rem 1 implies the main results of Lai and Siegmund (1977). For the special case
v(b) = b2, sufficient conditions for the asymptotic normality of T are given by
Proposition 1 at the end of the section.

PROOF. We shall first fix § > 0 and ¢ real. Let m(b) be an integer-valued
function and n; = n (), Jj=0,..., k, be integers such that

(2.13) [0v(b)] <n,—n;_, <2[6v(b)], 1<j<k ny=[b+ty(d)],
where [x] is the integer part of x,
(2.14) P(n; < Ty<n;+2m(by)} =0, asb, > oo,
and 0 < m(b) = 0. [m(b)/y(b) — 0.] Define
d;= [A(nj; A) = A(n,_y; >‘)]/(nj - n;_1),
Aj(n; N, 0) = A(n; A) + 0, n<n;,,

=A(n,_;N) +(n—n;_,)d;+v, n=x=n

(2.15) , , j J—1
& =&, 7= bminn, n,_ -1 + OI{n < n;_},
Z;=Z;’j=sn+£:;,j’

T/ = T/(v) = inf{n: Z, ;> Aj(n; A, 0)},
and

R} = R)(v) = Z, — A(T}; A, 0).
Then, by (2.10) and (2.13) for n;_, <n < n,
|A(n; A)— [A(nj_l; A+ (n— nj_l)cij] | < 0’M,

for some constant M which does not depend on 6 and A, and we can choose
0 > 0 such that

(2.16) 8/2 + Ai(n; X\, —8) < A(n; ) < Aj(n; X, —98) + 26,
(2.17) Aj(n; N\, 8) — 28 <A(n; \) <Ai(n; N, 8) —8/2,
for n;_; < n < n; Setting § < p(8/2)/2 and B; = {max,, ., .l — £, |

J
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§/2}, we have by (2.9), (2.13) and (2.15)—~(2.17) for n > n;_, and x > 39,

(2.18) P(B} -0, asb— o0, j=1,...,k,

(219) T)(-8)<T, onBfn{n; ,<T<njorn; , <T(-8)<n;,

(220) T<T{8), onBfn{n; ;<T<njorn;, , <T(8)<n},
P{R)(-8)>x,n<T(-8) <n;}

2.21
(2:21) <P(R>x-35,n<T<n;} +o(l)
and
P(R>x,n<T<n;}
(2.22)

< P{Rj(8) > x — 38, n < T/(8) < n;} + o(1).
For n > n;_,, we have
P{R; > x, T} > n}
2.2
(2.23) —f y, J >x}dP{T’>n Aj(n—1;N,0) = Z,_, <y}.

Since m(b) — oo and S, is the sum of i.i.d. nondegenerate random Variables,

li;nP{T}'Zn,OsA}(n—l;A,u)—Z;_lso}, nx=m(b) +n;
< liin supP{y < S,y <y + ¢} =0, forevery c.
y

It follows from (2.23) and Theorem 7 stated at the end of Section 4 that
P(R;>x, T/ > n} = G(x)P{T; > n} + o(1),

(224) nz=m(b) +n;_,.

By (2.14), (2.18)—(2.20) and (1.2)

Pn,_, < TA(-8) < n,_, + m(b))

<P(Bj} +P{n;_, <T<n;,+2m(b)}
(2.25)
+P(T;(8) — T)(-8) > m(d))
= o(1) + P{7(28,d;) = m(b)} = o(1)
and .
P{n; ,<T/(8)<n;} <P{n;_;<T<n;}+o0(1)
(2.26)

<P{n;_, <TI(-8) <n;} +o(1).
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Therefore by (2.21)-(2.22) and (2.24)—(2.26) we have for x > 38,
G(x+38)P{n;_,<T<nj

< G(x+38)P{n,_, + m(b) < T)(-8) < n;} +o(1)

(2.27) < P(Rj(-8)>x+38,n;_,<T(-8) <n,;} +0(1)
<PR>x,n;, , <T<n;} +o(l)
<G(x-38)P{n;, , <T<n;}+o0(1),

which implies by summing up over j that

G(x +38)P{ng<T<n,} <P(R>x,n,<T<n,}+o(1)
(2.28) < G(x—38)P{n,< T < n,} + o(1).

Hence the proof is complete by taking limits in the order b - o0, & — o
[t & — oo for (2.11)] and then § — 0. O

To study the uniform integrabilities of the powers of the differences of linear
and nonlinear stopping times, we shall first give the regularity conditions on &.
The process £ = {£,,, n > 1} is said to be regular with p > 0and 1/2 < a < 1 if
there exists a random variable L, a function f(x) and a sequence of random
variables V,, n > 1, such that

(2.29) ¢§,=f(n)+V,, forn>Land EL? < oo,
(2.30) max | f(n+Jj)-f(n)|<K, K<om,
1<j<h
(2.31) { max |V, ", n> 1} is uniformly integrable,
1<j<n®
(2.32) nPP{ max V> 0n"‘} -0, asn— o0,V0>0,
0<j<n
and for some w > 0, w <p—dif a =1,
0
(2.33) Y. nPP(-V, > wn®} < 0.
n=1

The sequential procedures that motivate the decomposition (2.29) have been
discussed by Pollak and Siegmund (1975) and Lai and Siegmund (1977). In
Proposition 1 (2.31)-(2.33) are replaced by a single-moment condition in some
special cases.

We shall set f(n) to be the median of £, when ¢ is not regular and extend f
to a function on [1, ©) by linear interpolation. Therefore we can define

(2.34) T=T)\= T(C)‘, d)\),

where 7(c, u) is defined by (1.2) and ¢, = b,(p — d,) — f(b,). The following
theorem will be proved in Section 6.
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THEOREM 2. Suppose that £ is regular with p >1, 1/2<acx<1,
E|X|(P*D/* < o0 and that there exist constants 8 and p* with 0 <8 <1 and
p* < p such that

(2.35) bPP{T < 8b} - 0, asb— o,
and
(2.36) (0A/at)(t; \) < p*, t>68b, A€ A.

(i) If E|X)?? < o and
(2.37) sup{|b,(324/0¢2)(; \)|: by — Kb <t < by + Kb}, A € A} < oo
for any K > 0, then
(2.38) {]TA -nf:ae A} is uniformly integrable.

(ii) (2.38) still holds without the condition that E|X|?P < o, if 3?A/9t2 =0
ont > 8b.

(iii) If, in addition to the conditions in (i) or in (ii), the condition (2.33) is
strengthened to

(2.39) Z n”‘lP{sup —-j V> w} < o0,

n=1 j=n

for some w > 0, w < p— dif a =1, then

(2.40) {IN\ = T\ I’ X € A} is uniformly integrable
and
(2.41) {lUx -T,f:\e A} is uniformly integrable.

COROLLARY 1. (i) Suppose that the conditions of Theorem 2(i) or (ii) hold.
Then '

(2.42) ET, = b, — (k—d,) 'f(b,) + O(1), ifp=1,
(2.43) Var(T,) = (p — d,) “o2b, + BY20(1),  ifp = 2.
(i) Suppose that the conditions of Theorem 2(iii) hold. Then
(2.44) EN, (and EU,) = b, — (p— d,) ' f(5,) + O(1), ip=1,

(2.45)  Var(N,)[and Var(U,)] = (p — dy) *02b, + BY20(1),  ifp = 2.

Proor. It follows from (2.30) that
(2.46) i(b) = 820(1).
Therefore
n=(p—dy) 'er+O0(1) = by — (p—d,) ' f(by) + O(1)
and

Var(r,) = (p — dy) “o%, + ¢f?0(1) = (p — dy) "o, + bY?0(1). O
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REMARKS. The stopping time 7, can be written as
(2.47) m=inf{n > 1: S, + f(b,) > pb, + d\(n — b))},

where pb, + dy\(t — b)) is the two-term Taylor expansion of A(#; A) in the
neighborhood (b, — Kb%, b, + Kb}) in which the residual A(# A) — pb, —
d\(t — b)) is dominated by O(1)(¢ — b,)?/b,. Therefore T, should be very close
to 7, in view of the compactness of (T) — b,)?/b, and &, — f(b,). In Sections 3
and 4 we will see that more detailed expansions of A(f; A) lead to higher-order
expansions of quantities relative to 7. The stopping times 7(c, u) have been used
by Woodroofe and Lai and Siegmund to obtain the expansions of ET up to o(1).
But they did not associate each T, with a 7, = 7(¢c,, u,) and consider the
difference between them. Also our theorems are uniform in the drift of the
random walk in the sense that we can always set A’ = (A, u) and A( \) =
A(t; A) + ut so that

Ty =inf{n>1:Z,—un > A(n; M)}

2.48
(2.48) =inf{n > 1: Z, > A(n; X')}.

PrOPOSITION 1. Let T = T, be defined by (1.1) and Var(X) = 6% < oo.
(i) Suppose that lim A(n; A) = o0 as b - « for every fixed n > 1,
liggi;lf inf{A(n; A)/(2nlog,n)"?: n < 8b>\} >0,
and
P{hmsupé,,/(nlogzn)l/2 } =1.

Then P{T) < 8b,} — 0 as b, — .
(ii) Suppose that P{n~%, —» 0} = 1, lim P(T, < 8b,} = 0 forany0 <8 <1
and for some d* < p,

(249) lim hmsupsup{l(aA/at)(t A) —d*|: |t — b)| < 8by} =0.

550 booo
Then b5 '/*(Ty — b)) converges in distribution to N(0, 62/(p — d*)?).
(iii) Let Y,,Y,,... be a sequence of i.i.d. random vectors with mean zero.

Suppose that |V,| <||Y, + -+ +Y,||2/n for each n and E|Y|**/* < oo with
p>1land1/2 < a < 1. Then (2.31)~(2.33) and (2.39) hold.

Proor. (i) follows from the law of the iterated logarithm. (iii) follows from
Chow and Lai (1978), Theorem 1, and Doob’s inequalities for submartingales. (ii)
may be proved as follows:

P(T> (1+8)b) < P{ max Z, < pb + (d* + o(1)) ab}
n<(1+68)b

=o0(1), by SLLN.
By the conditions given and (2.50)

(2.50)

(2.51) Ty/b, - 1, £T/b}\/2 -0, (A(T§ A) - be)/(Tx - bx) - d*,
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in probability as b, — co. By the definitions (1.1) and (2.4)
Sp—pT=R+A(T;A) —pb+p(b—T) — ¢
=R+ (p—d* +0p(1))(b—T) + op(1)b'/2.
Since (2.51) still holds when T is replaced by T — 1 and EX?2 = o(1)b,
(2.53) R = 0p(1)b'/%, as b — oo, where T" = min(T,2b).
Therefore by (2.52) and (2.53)
(S = pT) /82 = (p — d* + 0p(1))(b = T) /5% + 0p(1).

By Anscombe’s theorem and Slutsky’s theorem the proof is complete. O

(2.52)

3. Expansions of ET, EU and EN. The following theorem is obviously a
consequence of Theorems 1 and 2.

THEOREM 3. Let T, U and N be defined by (1.1), (1.3) and (1.4). Suppose
that (2.9) holds with y(n) = n'/? and p(8) = 1, (2.29) holds with p = 0 and that
there exist constants di < p and dj such that

(3.1) lim max_|f(n+]) = f(n)] =0,

n—oo 0<j<

(3.2)  V, converges in distribution to an integrable random variable V,
(3.3) blim d, = d} and X — d} is nonarithmetic, and
— 00

(3.4) bli_)njosup{lbx(62A/8t2)(t; ) = di|: (¢ = 8)" < Kby} =0,

for any constant K.
@) If Var(X) = 02 < oo and (2.38) holds for p = 1, then
(3.5) ET,=b,— (p—dy) 'f(by) + Co+ 0(1), asby > o,
where
Co=(p—d) 7 (r(d}) + (n - d¥) "dyo’/2 - EV),

and r(+) is defined by (2.6).
(ii) If Var(X) = 02 < oo and (2.40) holds with p = 1, then

EN, = by~ (p—d,) (b)) + G,
(3.6) - [TEN(=x,d0) d6(x) + o(1), asb,->co,
where G(x) is given in (2.11) and
(3.7) | N(x,u) =sup{n:S,—un<x}, sup@ =0,u<p, —00 <x < o0.
(iii) If Var(X) = 0% < oo and (2.41) holds with p = 1, then
(3.8) EU,=by— (p—dy) 'f(b)) + C, + o(1), asb, > oo,
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where
C, = (u—d}) "o + (= a)’ + (n = df) 'dyo® — 2(n — d})EV] /2.

COROLLARY 2. Under the conditions of Theorem 3(ii), for x > 0,

(39)  lim ,glP{A(n;A) Cx<Z < AN} = (n-d)
and
liin ni::lP{A(n; AN <Z,<A(n;\) +x}=(p— d) 'x.
COROLLARY 3. Under the conditions of Theorem 3(ii)
lim i P{T>n, A(n;\) - Z, < x}
(3.10) b n-1

= (k= dy)" [P(min(8, - din) = —y}dy..

REMARKS. Theorem 3 still holds when f(n) is the sum of cn!/? and a term
satisfying (3.1), since cn'/% can be absorbed by A(n; A). Theorems 2 and 3 imply
Theorem 3 of Lai and Siegmund (1979) and Theorem 2 of Hagwood and
Woodroofe (1982).

Proor oF THEOREM 3. (i) By the definitions
Sy=R+ A(T;\) — ¢¢
and
S, = R(c,,d) + ub+ d(7—b) — f(b).
It follows that
(3.11) Sy—8 —d(T—-1)
=R - R(c,,d) + [A(T; A) — ub — d(T - b)] — [&7 - f(b)].

Since
Sy — uT = 8, + p7 = [(Smasz, ry = pmax(T, 7)) = (8, = pr)]
- [(S‘r - H‘T) - (Sm.i.n(T, ™ ® min(T’ T))]’

it follows from Chow, Robbins and Teicher (1965) that

E(S;y— 8, — p(T - 7))’ = %[ E(max(T, 7) — ) + E(r — min(T, 7))]

=o?E|T — 7.

Therefore by (2.38)
(3.12) S; — 8, — d(T — 7) is uniformly integrable.
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By Anscombe’s central limit theorem (7 — b)b~1/2 converges in distribution to
(p — d})"'oN(0,1). It follows that, as b — oo,

(3.13) (T - b)b? - 6*N(0,1), in distribution, by (2.38),
(3.14) lim P{R > x} = lim P{R(c,d) > x} = G(x), by Theorem 1,
. _ _ _ *( ok 2
(3.15) A(T; N) — pb — d(T - b) > d3(s*N(0,1))°/2,
in distribution, by (3.4),
(38.16) ¢r — f(b) » V, in distribution, by (2.9), (3.1) and (3.2),

where ¢ = ¢, = (1 — dy)b, — f(b,) and ¢* = (p — d}) 0.
It follows from a simple renewal argument that R(c,, d,) is uniformly
integrable. Hence by (3.11)—(3.16)

E(Sy— 8, - d(T - 1)) = (p - df) "o’d}/2 - EV + o(1),
ET=Er+ (p—d}) %e%d/2 - (p— d¥) 'EV + 0(1),
and
Er=(p—d) e+ (p—d) 'r(d*) + o(1)
= b= (p=d) ' f(b) + (p —d}) 'r(d}) + 0(1).

This completes the proof of (i).
(ii) Define for v < p — df,

(3.17) Nj(v) = sup{n: &+ Sy, , < A(T; \) + (df + v)n}, sup @ = 0.
Then by (2.9), (3.3), (3.4), (3.13), (2.40) and (3.7)
(3.18) liznP{Ni(—u) <N-T<Nj(v)} =1, foreveryv>0,

(3.19)  P{Nj(v) <m) = fo°°p{zv(-x, d} +v) < m)dP{R < x).

By (3.7) N(x, u) is monotone in x and in u and continuous in u at d} a.s. when
w_1P(S, — dfn = x} = 0. Since G(x) has a density,

(3:20) lim lim P(Nj(0) < m} = jo “P(N(-x,d}) < m)d(1 - G(x)).

Therefore by (3.18)-(3.20) the limiting distribution of N — T is given by the
right-hand side of (3.20) and (3.6) follows from the uniform integrability of
N — T. The proof of (iii) is similar and omitted. O

PRrOOF OF COROLLARIES 2 AND 3. Let A’ = (A, x) and A(f; X)) = A(t; \) — x.
Then b, = by — (p — df) 'x + 0(1), dy = d, + b5'0(1) and (b)) = f(by) +
o(1). Therefore (3.9) follows from (3.8). For (3.10) we shall write (3.10) in two
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parts,
P{T>n, A(n;\) — Z, < x}
n=1

= Y P{A(m ) —x < Z, < A(m; \))

n=1

- i P{T <n, A(n;\) —x<Z,<A(n; \)}.

n=1

The limit of the first term is given by (3.9) and the techniques in the proof of
Theorem 3(ii) bring the second term to the linear case. The final formulation is
taken from Woodroofe (1976), Theorem 3.1. O

4. Expansion of Var(T'). We shall study the case
(4.1) T=T,=inf{n>1:8,>A(n;\)}, inf@ = oo,

where S, = X, + --- +X, and X, X, X,,... is a sequence of iid. random
variables with EX = p > 0 and 0 < Var(X) = 02 < co.
For A(t; A) = At%, 0 < « < 1, the first term in the expansion

Var(T) = (1 — @) *(o/p)"(A/p) 74" "(1 + 0(1)) as A - oo,

was obtained by Woodroofe (1976) and Chow, Hsiung and Lai (1979) under
certain moment conditions on X. For the linear case that A(¢; A) = A = constant,
the second-order expansion of Var(T),

(4.2) Var(T) = p %%A + p72C} + o(1) as A — oo,

was obtained by Smith (1959) for P{X < 0} = 0 and by Lai and Siegmund (1979)
for P{(X < 0} > 0. The variances of boundary crossing times have also been
studied by Chow (1966), Siegmund (1969), Gut (1974) and Lai (1975). The
following theorem gives the expansion of Var(T') up to o(1) for the general case.

THEOREM 4. Let T be defined by (4.1). Suppose that for some constants
0<38<1,p*<np,d} dsandd},

(4.3) bli_)n:g biP{T, <8by} =0, 0<8&<1,

(4.4) (0A/0t)(t; \) < p* <pu, foranyt>8byand A € A,

(45) limd, =df and limb,(39%4/9t2)(by; A) = df, asb, - oo,
(4.6) sup{b2|(3%4/3¢%)(; N)|: |t — by < 8b, A€ A} < c0, some 8> 0,
(4.7) 1iznsup{|b§(83A/8t3)(t; A) —di|: (¢-b)° < Kb} =0, anyK,

where b = b, and d = d, are defined by (2.1) and (2.2).
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If X has a density p(x) with respect to Lebesgue measure dx such that
o0

(4.8) Y sup p(x)<o and EX*< oo,

n=—o n<x<n+l

then
(49)  Var(Ty) = (p - d)) "0, + 43°C* + 0(1), asb, — o,
where p, = p — df and C* can be written as

(a10)  C TG 2070 — wgd3E(X — )’ + uy'die

+po *d3o*(7d3 + 11p0) /2,
with
C; = a?r(d})/mo + 3(r(d}))* + 2 [ a*dG(x, df)
0

+2r(di")Ema3)((ndi" -8,)"
nx=

—2/0°°ER(x, d;")P{%(nd;" - S,) 2 a} dr,

C; =po X P(S, — nd} <0} + ¥ n'E(S, - nd?)",

n=1 n=1

and R(-, ), r(-) and G(-, -) given by (2.5)—(2.7).

REMARKS. When A(; A) = ¢, + tdf, dj = di = 0 and C* agrees with C},
which has the same expression as the constant in Theorem 5 of Lai and
Siegmund (1979). Keener (1987) pointed out that C} can be written in terms of
moments of ladder variables. Usually, (4.3) can be verified by Lemma 5 of Chow
and Lai (1978). But a special argument is often required for each family of

boundary curves so that the lemma can be used.

We shall split the proof of Theorem 4 into several lemmas. Under the

conditions of Theorem 4, our lemmas also imply the following statements:
(a11) BB = 00)/by = w*[30%r(dD) - E(X - ']
+3ug%* + 9uy®dia?/2 + o(1), as by > .
Under the further assumption that
(4.12) inf{A(¢ X)/t* t> by, A€ A} > —oo,
Cov(Ty, Ry) = 3" [ [ER(x, d}) — r(d})] P max(S, - nd) < x) d

)

(4.13) +(0/py) d [(1 - (o/uo)z)/z + ) P{S,— nd} <0}

n=1

+0(1), asb, - .
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The proof of Theorem 4 is contained in Section 7 where the linear renewal
theorems in Zhang (1986) are used. We shall state these results here for
reference.

THEOREM 5. Let R(c, u) and r(u) be defined by (2.5) and (2.6). Suppose that
X is strongly nonlattice in the sense of Stone (1965) with E|X|* < oo and that for
somek < wand —o0 <a<b<y,

(4.14) sup{foC> | E exp[itR(0, u)] Fdt:a<us< b> <o, i*=-1.

Then
(4.15) foosup{|ER(y,u)—r(u)|:yzx,asusb}dx<oo.
0

THEOREM 6. Let R(c, u) and r(u) be defined by (2.5) and (2.6). Suppose that
X has a density p(x) such that (4.8) holds. Then (4.14) holds and for any
—o<ax<b<y,

S sup{|(3/3u)(ER(x, u) — r(u))]:
(4.16) n=0

n<x<n+l,a<u<b}<o.

THEOREM 7. Let R(c, u) and G(x, u) be defined by (2.5) and (2.7), respec-
tively. Assume that c, and u,, are two sequences of constants such that c, — o
andu, - u* < pasn— oo. If X — u* does not have an arithmetic distribution,
then :

(4.17) P{R(c,,u,) > x} > G(x,u*), asn— .
REMARK. The existence of EX is assumed in Section 1.
Basically, Theorems 5 and 6 can be proved by the Fourier method.
5. Discussion and examples. We shall first compare the results in this

paper with previous studies. To fix the ideas, let us consider the expectations of
stopping times which can be written as '

(5.1) T, = inf{n: S, > A(n; \)}
(5.2) = inf{n: ng(S,/n) + f(n) > ¢}
(5.3) =inf{n: S,—nd* + £,>¢}, c=cy,

for some smooth functions g(¢) and f(¢), where S, is a random walk. Woodroofe
(1976, 1977) considered the case that A(t A) =Aa(t) for a regular varying
function a(?), took the Taylor expansion of a(¢) and used a local limit theorem
to obtain the expansion of ET). Lai and Siegmund (1979) took the Taylor
expansion of g(t), rewrote T, into the form (5.3) and used the classical (linear)
renewal theory to obtain the expansion of ET). In this paper, linear renewal
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theorems with varying drift are used to derive the expansion of ET,. Since better
linear renewal theorems are used, we can take Taylor expansions of either
A(t; \) or g(t) and we do not need the help of local limit theorems. As a result,
our theorems give a unified treatment for stopping times of a more general form
(1.1), require less and weaker regularity conditions and allow the shape of the
boundary curve and the slope of the random walk to change. For example, (2.9)
used in our Theorem 3 is much weaker than corresponding (3) in Hagwood and
Woodroofe (1982) with @ = 1 and (17) in Lai and Siegmund (1979) in view of the
proof of Proposition 1 in Lai and Siegmund (1979). However, taking Taylor
expansions of A(¢; A) has two technical advantages when T, can be written as
both (5.1) and (5.3). The first is that the regularity conditions with respect to
A(t; M) are often easy to check. The second is that we can include more terms in
the Taylor expansion of A(# A) to obtain further expansions of quantities
relative to the stopping times T by the techniques in Section 7, whereas the
second-order expansion of £, is almost impossible to describe.

We shall demonstrate the methods of checking the conditions in our theorems
by the following examples, which also give comparisons of our results with
previous studies. We shall always put S, = X; + --- +X,,, where X, X,, X,,...
is a sequence of i.i.d. random variables.

ExaMPLE 1 [Robbins (1970)]. Let T = T, be defined by (4.1) with EX =
p>0,0<Var(X)=02< oo and

(5.4) A(t; \) = (tQlogt + 22\, A >o0.

Then as A - oo,

(6.5) by =p"2(log by + 2)\) = p~%(2\ + log(2A) — 2log u) + o(1),
(5.6) dy = u/2 + (2uby) " > df = p/2.

It follows from Theorem 2 that

(5.7) ET, = p~2(2X + log(2))) + 0(1),

(5.8) Var(T,) = 8u~ %2\ + O(N/2), if EX* < oo.

Suppose that X — /2 does not have an arithmetic distribution. Then, by
Theorems 1-3 we have, with s, = S, — un/2 and r = inf{n: s, > 0},

(5.9) ET,=p~2[2) + log(2)) — 2logp — po?/2 + uEs?/Es,] + o(1).
Furthermore, if X has a density p(x) satisfying (4.8), then

(5.10) p?Var(Ty) = 4p7%2(2\ + log(2\)) — 8u~202logp + 8u~%2 + 4C}
5.10

+8u"%02CE + 4p'E(X — )’ — 180 2%* + 0(1),
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where

C} = p'02Es2/Es, + (3/4)(Es%/Es,)’ — (2/3)Es®/Es,

—(Esf/Es,)Emir(}sn - 2fwr*(x)P{min s, < —x}dx,
n> 0
Cy=2"") P(s,<0}+ ) n'Es,,
n=1 n=1
and
r*(x) = E(s,,, — x), withr(x) = inf{n: s, > x}.
Proor.

(5.11) (0A/3t)(t; N) = A( M) /(2¢) + 1/(2A(% N)).

Also, we have
02A/9t2 = —(A/t* + A73%) /4,

b(3%A4/0t2)(b; ) = —p/4 — (44b2) " > df = —p/4,
and
3°4/9¢ = (3/8)( A/t + (tA®) " + A7%) + (8t%4) .

Since A(tb,; A)/b, is uniformly continuous at ¢ = 1, (4.4)—(4.7) are satisfied with

3 = 3u/8. Rewriting T into the form of Lai and Siegmund (1979), page 61, and
applying Lemma 5 of Chow and Lai (1978), we have (2.35) with p = 1,2 under
the condition that E|X|?? < 0. O

ExaMPLE 2 [Woodroofe (1977) and Chow, Hsiung and Yu (1983)]. Let
(X,Y),(X,,Y)),... beiid. random vectors with EX = u > 0 and EY = 0. Let
§, be a sequence of uniformly bounded random variables such that ¢, is
independent of (X,,.,,Y,.1),(X, .9, Y,.5),... . Assume that a(¢) > 0, f(¢) and
h(t) are three functions such that ¢~#a(¢) is slowly varying for some 8 > 0 and
f(t)/t = o(1) as t = oo and that A(¢) is bounded and continuous at ¢ = 0. Define
for each 0 < A < o,

(5.12) T = inf{n > n,: U, < Aa(n)},

where U, = X, + h(Y,£,)Y2 + f(n)/n and n, = K\~ for some 0 < y < 1/B.
Suppose that E(X*)? < oo, E|Y|” < co and lim ¢~ Pa(t) = 1 as t - c0. Chow
and Yu (1981) and Chow, Hsiung and Yu (1983) showed that

(5.13) E|N/AT, — p/81” = 6(1), asA — 0.
Let us apply our theorems. We shall first rewrite the stopping time as
(5.14) Ty = inf{n: Z, > A(n; M)},
where Z, = 2np — nU, and A(% N\) = 2tp — Ata(t). Assume there exist two



808 C.-H. ZHANG

functions u(t) and o(¢) such that

(5.15) t2(d/dt)(f(t) — u(t)) =o(1) and u(t)=o(1), ast— o,
(5.16) a(t) = the*®,  t'(t) =0(1) and t%"(t) =o0(1), ast— .
Then

(5.17) p/A = a(by) = bfexp[v(d,)],

(5.18) dy=p(l = B—byw'(dy)) = (1 - B +0(1)),

the conditions (2.36), (2.37), (3.3) and (3.4) are satisfied, and nh(Y,£,)Y? is
regular with @ = p = 1 if EY? < oo by Proposition 1. Assume, in addition, that
E|X|”" + E|Y|P" < oo for some p* > 1 + 1/(yB8). Then (2.35) holds with p= 1.
Therefore if X — p(1 + B) does not have an arithmetic distribution, then all
conditions in Theorems 1-3 hold with p = 1. We have

Ty = by + [u(B + by'(5y))] "'f(By) — (pB) *(B + 1)Var(X) /2

+(uB) EY?h(0) + (uB)'Es?/(2Es,) + o(1),
where s, = u(1 + B)n — (X, + --- +X,) and 7 = inf{n: s, > 0}.

(519) ©

Proor. We only need to check (2.35) since other statements in the example
are obvious. It follows from Lemma 5 of Chow and Lai (1978) that for some
>0,

[

P(T) < 8b,) < ¥ P(max(S: j < 2¥*1n,) > 62*n,}

k=0
+ Y P{max(|S;'|: J< 2k+1n)\) > 02kn>\}
k=0
< Y 28, P{p — X > 02%n,/(2/)) + 0(1) ¥ [2*n,]
k=0 k=0

+ ) 2810, P(|Y] > 02%n,/(2)})
k=0

<4(2j/6)E|\X|I{X > 0n,/(2))} + O(1)ny’
+4(2j/0)E|Y|I{|Y]| > 6n,/(2))}

= o()ny™"" = o(1)b3},

where S, = n(p — X)), S = nY,, j is an integer large enough and 8§ < 1. Since
(0A/88)(8; N) = 25 — Ata(t)[(1 + B)t™* + v'(¢)]
and
(8%4/082)(t; ) = —Ata(8)[(1 + B)t ™ + v'(8)]”
- Aa(8)[-(1 + B)t72 + v'(2)],
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the constants in (3.5) are given by (5.18) and df = u(l — B8) and dj =
—pBQQ + B). Note that Z, = S; + §; with S =2un — S, and & =
—n[h(Y,£,)Y,2 + f(n)/n], we have (5.19). O

ExXAMPLE 3.

(5.20) T\,=inf{n: S,>Anf}, 0<pB<1.

Then the conditions (2.10), (2.36), (2.37), (3.4) and (4.4)~(4.7) [all conditions in
Theorems 1-4 on A(¢; A)] are satisfied and the constants are given by

(5.21) b=1by=(A/w)""?,
(5.22) d=d,=d,=d*=d*=pu,
(5.23) di=B(B—1)p and di=pB(8-1)(B - 2)p.
PRroOF. Clearly, (2.1) implies that ub, = Ab%, which implies (5.21). By (5.20)
(5.24) (04/3t)(&; N) — Bu = Bu((t/b)) " - 1),

(5:25) by(9%4/01)(6; \) — BB — D = B(B — D (e/8)" 2~ 1],
b3(3°A/0t°)(t; \) — B(B — 1)(B — 2)u

= B(B - 1)(B - 2)u[(¢/5,)"° - 1].
The proof is complete. O

(5.26)

6. Proof of Theorem 2. We assume that EX = p = 1 in this section without
loss of generality. The following lemma states some useful results on random
walk and renewal theory, which may be found in Chow (1973), Chow and Lai
(1978) and Chow, Hsiung and Lai (1979).

LeEMMA 1. LetS,=X,+ --- +X,, n>1, and 7(c, u) be defined by (1.2),
and let p and o be two constants withp > 1and 1/2 < a < 1.
() If E|X|(P*V/« < o0, then

o0
Y n"'lP{max|Sj -Jj = Hn“} < o0, anyf >0,
n=1 Jjsn

and

0
Yy nP'lP{supj“"l.Sj -Jjl = 0} < o0, anyf>0.

n=1 Jjzn

(i) If c®*V/*P(|1X| > ¢} - 0 as ¢ > oo and EX? < oo, then
n"P{l}lgr}l(LSj —-Jjl = 0n“} -0, asn— oo forany >0,
and for any § > 0 and K > 0,
lim sup cPP{7(c, u)<(1-u)"le- 00“} =0.

€7X K lc1-u<K
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(iii) If E|X|?P < oo, then for any K > 0,
{((’T(C, u) - (1- u)_lc)z/c)p; c>1,K'<l-ucx< K} isu.i.

LEmMA 2. Suppose that ¢ is regular withp > 1 and 1/2 < a < 1 and that
conditions (2.35) and (2.36) hold. If E|X|(P*V/* < oo, then

lim bPP{T < b — 0b*} =0, forany8 > 0.

b— o0

ProOF. On the event {L < 8b < n < b — §b°}, by (2.36)
A(n;N) 2b+p*(n—b) = n+ (1 — u*)6b°.
By (1.1) and (2.9) :
bPP{8b < T < b - 6b*, L < 8b}
< bPP(S, + V, +f(n) > n + (1 — p*)b*, some 8b < n < b}.
And by (2.30) f(n) = O(n'/?) and {max,,_,.,lf(n)| = 6%} = @ for large b
and any given §’ > 0. It follows from (2.35), (2.36), Lemma 1(ii) and (2.32) that
bPP(T < b — 6b°)
< b?P(T < 8b} + b”P(L > 8b} + b7P max|S, = n| > 0'b%)
+b7P( max V, > 6% + b"P{smax f(n) > 0'b"‘}

db<n<bd b<n<bd
= o(1),
where §’ = (1 — p*)6/3 > 0.0

LEMMA 3. Suppose that ¢ is regular withp > 1 and 1/2 < a < 1 and that
condition (2.36) holds. If E|X|P*V/* < o, then there exists a constant K > 0
such that

lim ) nP 'P{T>n) =0,

b— 0 n=n*

where n* = [b + Kb*].
Proor. By (2.33) there exists a w > 0 such that
i nP 'P(V;>wn*} <o and w<1l-difa=1.
n=1
Let K be large enough and 6 > 0 be small enough such that for large b,
1-d)(n-b)>(6+w)n®, foranyn > b+ Kb*,

(6.1) A(m;N)<b+d(n—b)=n-(1-d)(n-b)

<n- (0 + w)n*, anyn > n*.
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By (2.29), Lemma 1(i), (2.33) and (2.30)
P{T>n,L<n}
<P{S,+ V,+f(n) <n-(8+w)n*}, anynzxn,
Y, nP'P(T > n}

*

n=n

*

(6.2) < Y nPP(L > n} + Y0P 'P(n - S, > 6n°/2}

+ in”_lP{Vn‘ > wn®} + in”'lP{—f(n) > 6n°/2}
= o(1). O

LEMMA 4. Under the conditions of Theorem 2(i),
{((T=7)7") s AeA}isui
ProoF. Let n, =[b— 6b°], n* = [b+ Kb*], T' = max(n,, min(T, n*)) and
7/ = max(n,, min(t, n*)). For n > b + 0b* we have
P(r>n} <P(S,—dn<b(1-d) - f(b)}
<P(n-8,= (n—-b)1-d)—f(b)).
It follows from Lemma 1(i) and (2.30) that for n, = [b + 6b°],

(6.3) blim Y nP7'P{r>n} =0, foranyd>0.
And by Lemmas 1(ii), 2 and 3

(6.4) liII)nEIT -TWP= 11an|1- —7'P=0

and

P(T' > 1" +n} < P{L>n}+P{r<n}
+P(L<n,<t<7+n<T <n*}.

Making use of (2.29), (2.30) and Lemma 1(ii), we find that

Y nP 'P{T" > 1’ + n}
o
=Y nP 'P{T" > 1" + n}
(6.5) -
= 0(1) + an_lp{s‘r+n + Vr+n + f(T + n)

no

<A(r+n;A), 7€ (n,n* —n)}.
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On the event {n, < 7 < 7 + n < n*}, we have by (2.36), (2.34) and (2.30)
A(r+n; M) <p*n+ (A(1;N) —b—dr) + S, + f(b),
and by (2.37) there exists a constant K* < o such that
|A(m; A\) — b—dm| < K*(m - b)°/b, n,<m<n*,
(6.6) |[f(r+n)—f(b)| < K*|T+ n — bln; V2
<n(l-p*)/5+ K*|7 — bln; /2,
and
St Voun+f(r+n), on{T > +n},
<p*n+ (A(1;\) —b—dr)+ S, + f(b)
<p*n+ K*(r—b)’/b+ S, + K*|r — bjn; V2 + f(7 + n) + n(1 — p*) /5.
Therefore, letting 8’ = (1 — p*)/5, we have by (6.5)
f_‘,n”‘lP{T’ >1 +n} < in”‘lP{S, +n-S8,,,>0n}

ny no
+§n”‘lP{ max V-‘>0’n}

. J
*
e n<j<n

+ )OfnP—IP{K*(T — b)’/b > 6'n}

no

+ 2 nP 'P{K*|r — b|n; /% > 'n} + o(1).
o
It follows from Lemma 1(i), (2.31), Lemma 1(iii) and the condition E|X|?? < oo
that

0

YnP'P(T > 1"+ n} >0, asmin(ngy, b) > .

no
This proves the uniform integrability of {((T — 7)*?} since the uniform integra-
bility of {T'7; b < b*, A € A} for any given b* is implied by (6.2) in the proof of
Lemma 3.0

LEMMA 5. Let Y be an integer-valued random variable with finite pth
moment, p > 1. Suppose that there exist constants c, § and 8* such that
0 < 8* <1, 8(46*)? < 2 and for some m > 1/(1 — 8*),

Y nPP(Y<n}<c+80 Y nP 'P(8*Y > n} < .

n=m n=m

Then
Y. nP'P(Y > n} < 2c.

n=m
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Proor. Clearly,

Y nP P{8*Y > n} < 277! foo yP7IP{8*Y > y} dy
m m-1

< 2”_1(8*)‘”'[(oo 1)/‘sy‘y""‘P{Y > y}dy
m—

< 477 (&) LnP 'P(Y 2 n) < (46) 22 0P 'P(Y 2 n}.
O

ProOF OF THEOREM 2. (i) Let n, =[b—60b*], n,=[b+60b°], T' =
max(n,, min(7, n,)) and 7' = max(n,, min(r, n,)). Though n, is different from
n* in Lemma 3, (T — T)*< (T — 7)*+(7 — n,)*, and by Lemma 4, (6.3) and
(6.4) we have

(6.7) lim E|T — T’/ = lim E|r — 7| =0.
b— 0 : b— 0
Clearly, .
P{7">T +n} < P{L>n}+P{T<n,} + P{r>n,}
+P{L<n, <T<T+n<rt<ny,}.

By (2.29), Lemma 2 and (6.3)

[oe]

Y. nP~'P{r’' > T’ + n}

n=ny
ng—n

Y nP P+’ > T + n}

n=ng

(6.8)

ny,—n,
Y nPP(L<n, <T<T+n<rt<n,} +o(1).

no

IA

Ontheevent {L <n, <T<T+n<r7<n,}
69) Sp.,+f(0)<b+d(T+n-0)
<p*n+ (b+d(T-b)—A(T;\)) + Sp+ Vo + f(T),
and there exists some finite constant K* that does not depend on # such that
[(T) = {(r) < |t = TIK*n; '/, by (2.30),
f(r) — f(b) < K*|r — b|b~/2, by (2.30),
(b+d(T-b)—A(T;\)) — (b+d(r—b) — A(7;N))
(6.10) < |r— T|(6K*b*"1), for small 6 by (2.37),
(b + d(7—b) — A(r; A)) < K*(r — b)*/b, by (6.6),
(b+d(T - b) — A(T; \)) + f(T) — f(b)
< 87" — T'| + K*(r — b)’/b + K*|7 — b|b™'/2,
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where 8* = §K*b* ! + K*b~'/2, and by (6.9)
ST+n - ST < [L*n + VT + 8*|’T, - T’l
+K*(r = b)’/b+ K*|r — bb™ V2.
Therefore it follows from (6.8) and (6.11) that for ' = (1 — u*)/5,

(6.11)

Y nP P(+' > T + n)

no

< Y nP'P(Sp+n—S;,,>0n}

no

(6.12) + Zn”'lP{ max V> 0'n} + Y nP'P{8*(T — 7) > 0'n}
o

7o n <j<n,

+ Y P 'P{K*(r — b)’/b + K*|r — bjn""/2 > 6'n}

no

+ Y nPIP(*(1" — T') 2 6'n} + o(1), asmin(n,, b) - co.

no

Since @ is arbitrary, we can choose 6 small enough such that (48*/6")? < 2 for
the 8* specified in (6.10). Hence it follows from (6.12), Lemma 1(i), (2.31),
Lemmas 4 and 1(iii) that

Y nP P{r' = T'>n} < Y. nP 'P(8*(r' — T') = 0'n} + o(1),

asmin(n,, b) = .
And by (6.7) and Lemmas 4 and 5

Y nP'P{7" — T" > n} = o(1)
no
and
{IT—7I’; A € A} isui.
(ii) For the case where 324/dt*=0, the term (r — b)?/b disappears
throughout the proof of (i).
(iii) Let n* = [b + Kb%]. By (6.1)

P(N>n, L <n) SP{supj—Sj— (8 + w)j*+ V- = f(J) 20},
j=n
any n > n*.
The term sup; . ,V;-,/j is controlled on n, < 7 < n* by
supV,,/j< max Vo ./j+ sup  Vo/j
jen n<j<K*d Jj=max(n, K*b*)

<  max Vi /n+supVj/j* sup (7 +7)*/).

n<j<n*+ K*b* j=n J2K*b®
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Since K* is arbitrary, we can take K* large enough such that
sup (n*+j7)°/j<1+4+8* a=1,
J2K*b®
< 8%, a<l,
for any given §* > 0.
The rest of the proof is similar to the proof of (i) and is omitted. O

7. Proof of Theorem 4. We shall keep all the notation and definitions
introduced in Sections 1-4 and assume Z, = S, so that the stopping time T is
defined by (4.1).

Let n, = [b, — 0b,] and n, = [b, + 0b,] for some small § > 0, where [ y] is
the largest integer in (— o0, ¥]. We shall use the notation

(7.1) T'=T; =inf{n > n,: S, > A(n; \) or n = n,},

(7.2) R =R, =S, — A(T'; M),

(7.3) 8(5;A) = A(; A) — (pby + dy(£ - by)).
LEMMA 6. Suppose that (4.3) and (4.4) hold. If EX* < oo, then

(7.4) Var(Ty) — Var(T};) = o(1), asb, - oo,

(7.5) Cov(Ty, R\) — Cov(T}, R}) = 0(1), asb, - oo if (4.12) holds,
and
E(Tx - b)\)?’/b)\ - E(Tf\ - b)\)?’/b)\ = 0(1), as by - .

Since by (4.12) RI{T > n,} < |X;| + KT? for some K < o0 and
ET\X|I{T > n,} < E|X|E(T? - n})",

the proof of Lemma 6 is similar to the proofs of Lemmas 2 and 3 and is therefore
omitted.

LeEMMA 7. Suppose that the conditions (4.3)—(4.6) hold and that X has a
strongly nonlattice distribution with EX* < co0. Then
Var(Rj + g(T3)) = — [ x*dG(x, df) - r*(d})
(7.6) 0

+ (0/p0)"(d3)’/2 + 0(1), asb - o,

where p, = p — df.

PrOOF. Let 7=, =1(c\,dy), 7(c,u) be defined by (1.2) and c, =
b,(p — d,). By the definitions

( ) ST' - S‘r - d(T,_ T) + R(C)‘, d)\) = R& + g(T)\'),
7.7
P{R(c,u) > x} < f Etr(y—x,u)dP{X —u<y)}.
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Since

sup{Et(c,u)/c: u < p*, ¢ > 1} < o0,
(7.8)
{(R(cr, d)))", A € A} isui.

By Theorem 2 and Lemma 6
{((T¢ = )", A e A} isui.
It follows that

{(Sp - 8,)", A e A}isui,
(7.9)
(R +&(Ty))’, A€ A} isud, by (7).

Taking a Taylor expansion, we have
8(Ty) = d# (T} — 8)’b7(1 + 0(1)) /2.
It follows from Theorem 1 that
P{R; > x, g(T}) > t(ds/2)(0/ko)"} = G(x, d*)P{(N(0,1))" > ¢} + o(1).
This and (7.9) finish the proof. O

LEMMA 8. Under the conditions of Theorem 4, the following relation holds:

Cov(T)\’, 3\) =C3* /o — (0/#0)2 ds [(1 - (°/P0)2)/2
(7.10) 3}
+ Y, P{S,— nd}* < 0}] + 0o(1),

n=1

as b —> oo, where p,=p — d* and
Cx= f°°[ER(x, dx) - "(dl*)]P{max(S,, - nd¥) " < x} dx.
0 n

Proor. For j=0,...,4, i = 1,2, there is a finite K such that

b7%8, |* < Kb® + (8, — pn,)'Kb~?I{|S, — pn,| = b}.
It follows from (4.8) and Chow and Lai (1978) that
(7.11) b’?E|S, |*7I{T' = n;} -0, fori=1,2and0 <j <4.
Let d(t; A\) = A(; A) — A(t— 1; A) and
(7.12) F(x;n) =F(x;n,A)=P{T\>n, A(n—1;A) - S,_, <x}.
Then we have

P{R4 > x, T} = n}

(7.13) _ /0°°p{R(y, d(n; \)) > x}d[F(y; n,\) = F(y; n + 1,\)],

for n, < n < n,.
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By (7.11) and (7.13)
ER{Ty
ny,—1 o
T LS [TRBR(y, (s N)ALRG; n) - O34 1]+ o(0),
n=n,+1
and similarly,
Er(d(Ty; \)Ty
7.15 n2l
19 = T [“wr(a(rs ) LR )~ Flyino+ 1)] + o).

n=n;+1

It follows from Theorems 5 and 6 and (4.8) that there exists a decreasing
function A(x) > 0 such that for any u with —c0 < u* <u < p* <p,

(7.16) |Er(x,u) = r(u)| < h(x) and [ “h(x)dx < co.
0 ~

By (4.4)—(4.6) we can choose u* such that

(7.17) u* <d(n;\) <p*, forall|n— b,|<60b and b large.

Let n be an integer with b/2 < b — n < 0b. By (4.4)

(7.18) A(n; X)) —pn > (p— p*)(b - n) > (n — p*)8b/2.

For u* < u < p*,

b

/(;OO(ER(x, u) — r(u))dF(x; n + 1)
< bfo°°h(x) dP{A(n;\) - S, <x)} [by (7.16)]

< bh(b6’) + bh(0)P{A(n; ) — S, < b}
< bh(0'b) + bh(0)P(S, — pn > (n — p*)0b/2 — 0'b} [by (7.18)]
< o(1) + bh(0)P(S, — pn > 6'b}
=o0(1), by taking 6’ < (p — p*)8/4.
Also, for 6b/2 < n — b < 6b,
(7.19) A(n; A) <pb+ (n— b)p*, by (4.4),
and
P(T' > n) < P(np— 8, < (n - b)(s — 4*)} = o(5~Y).

Therefore, for 0b/2 < |n — b| < 0b, u* < u < p*, we have

(7.20) b

f0°°(ER(x,u) — r(u)) dF(x; n)| = o(1), by (7.16) and (7.17).
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It follows from (7.14), (7.15) and (7.20) that
Cov(R}, TyY) — Cov(r(d(Ty; X)), Ty)
= Cov([ R} — r(d(T}; V)], TX)

ny—1

= ¥ [T(n- ET)IER(x, d(n; \)) - r(d(n; M)]
n=n;+1
(7.21) o X d[F(x; n) — F(x; n + 1)] + o(1)
= X [TER(xd(n;)) - r(d(n; \)) dF(x; n)
n=n +1°0
ny,—1 o
+ X [(n=ET' = 1)8*(y;n,\) dF(3; n) + o(1)
n=n;+1 0
=1+ I,+ o(1), say,
where
8*(x; n,A) = /‘“'“ M (3/9u)[ER(x, u) — r(u)] du.
d(n—1; )
By Theorem 6 there exists a function A*(x) such that
(7.22) |(8/0u)[ ER(x,u) — r(u)]| < A*(x) for u* <u < p*,
and
(7.23) Y sup h*(x) <K < oo.

n=0n<x<n+1

By (7.17) and the definitions
‘ |8*(x; n,A)| < A*(x)|d(n; A) — d(n—1; X)|, forlargeb.
And by (4.5) and (4.6), we can bound the second term in (7.21) as

ny—1 o
ILI< Y fo |n — ET! — 1|h*(x)Kb~' dF(x; n, \)
7.24 nem
( ) nEI 0 + Z fonb + Z fol/b
n=n+1"0"0  |n—b|<66"0 0'b<|n—b|<0b"0 .

We shall prove that the three terms given previously tend to zero as b, tends to
infinity by choosing suitable §’ and 6”. Clearly,

P{A(n;\) —S,>0"b} < P{pn— S, > pn — A(n; X) + 6”b}.
For |n — b| < Kb we have by (4.5) and (4.6)

(125 1A N) = (b +d(n = b))] =|g(n; )|

< K*(n - b)’/b, forsome K* < o0,
and
np—A(n;A) > —(p—d)|n — b — K*(n — b)’/b> —0"b/2,
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provided that |n — b| < §b and that
(7.26) 0<0(p—d+ K*9) <0”/2.
Hence
P{A(n;\) —8S,>0"b} < P{pn— 8, > 0"b/2}
=0o(b7?), n,<n<n,.
And the first term on the right-hand side of (7.24) is o(1). Let ' = (A, x) and
A'(t; M) = A(t; A) — x. Then by (4.4)
0<b-b<x/(p—p*), forO0<x<(p—p*1-0)0,

where b’ = sup{t: A'(¢; \') < pt}.

Therefore, if 6” is small, the family {A'( \), 0 <x < 68”b, A € A} still
satisfies the conditions (4.3)—(4.7). It follows from Corollary 2 that

ny,—1
Y, P{A(n;N)<8S,<A(n;N) + 1}
n=n;+1
ng—1
= ) Plx-1<A(n;A)-8,<x)
n=n;+1

<K<oo, foranyx <6”b and A € A.
The second term on the right-hand side of (7.24) is bounded by
(6b+|ET"-1-b|)Kb"'K Y, sup h*(x)
j=0Jj<x<j+1
<60’'K3+ o(1), forsome K not depending on 6’.
It follows from (7.25) that
|A(n; X) — pn| 2|(p — p* — K*6/b)(n — b)|,
P{T>n, A(n;\) — S, <x} =F(x;n+1)
< P{|S, —pn| > (p— p* — K*0/b)0'b}
=o(b71),
for 8'b < |n — b| < 6b.
The third term on the right-hand side of (7.24) is bounded by

K2Y  sup R*(x) + K%(n, — n,)o(b-1) = o(1).

j=mJj<x<j+1

Note that the constant 6 is arbitrary when we define the stopping time 7" in
(7.1) and the choice of #” only depends on the parameters in the conditions
(4.3)-(4.6), we can always find a 6” such that (7.26) is satisfied. By letting
b, — oo first and then 8’ — 0, we have I, = o(1) and it follows from (7.21) that

Cov([R4 — r(d(Ty; M), TY) = I, + o(1).
Since by (7.22) and (7.17)
I[ER(x, d(n; N)) — r(d(n; M\))] = [ER(x, d¥) — r(d*)]|
< h*(x)|d(n; N) — d¥|,
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we can repeat the argument again and have
Cov([R' — r(d(T’; M\))], T)

ny

Y, F(x;n, A)} + o(1).

n=n,

N fow[ER(x, dr¥) - r(d*)] d

It follows from Corollary 3 that
Cov([ R = r(d(T'; M), T)io

(7.27) _ /:O[ER(x, d*) - r(dl*)]P{m:lX(Sn —nd*) < x}dx +o(1).

Now let us consider Cov(r(d(Ty; A)), Ty). By Wiener—Hopf factorization [Feller
(1966), page 605], the derivative of r(u) is continuous and

(ar/0u)(dy) = —(1 - (o/we)})/2 — ¥ P(S, - nd}* < 0}.

n=1
It follows from (4.5) and (4.6) that .
r(d(Ty; X)) — r(d¥) = [(ar/8u)(d)] d5(TX = b)(L + o(1))/b.
Hence
Cov(r(d(T"; 1)), T’)
= —d(o/mo)’|(1 - (o/m0)")/2+ ¥ P(S,—-nd¥<0}|. O

n=1

LEMMA 9. Suppose that the conditions (4.4)—(4.7) hold and that X has a
strongly nonlattice distribution with finite fourth moment. Let Ty be defined by
(7.1) and po = p — d*. Then

Cov(Ty, &(Tx; \))
(7.28) = u3?|dgor(dy) — dFE(X - p)*/2]
+pg(dy + 3dy)et/2 + py52(dy) e + o(1)
and
E(T{ - b)*/b = pg®[30%r(d) — E(X — p)]
+pg%(30%) + pg®(9dsa?/2) + o(1).

Proor. By (4.5) and (4.6)
(7.29) &(Ty; A) = dgb~(T{ — b)’/2 + db (T} — b)’(1/6 + 0(1)),
where o(1) is uniformly bounded by a constant K. By (7.1)—(7.3)
(7.30) Sp = Ty = (b= d)(b - TY) + &(TX; N) + Ry,
(7.31) |g(Ty; A\)/b| < K%< 0 and T’/b<2, as.
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It follows from Theorem 3 that
(7.32) ETy = b+ pg{(r(d¥) + (ds(o/1e)°/2) + o(1).
Since
P{R} > x, T\ # n,, TY # n,}
(7.33) < P(X; >x} < ET'P{X > x} < 2bP{X > x},
{(R")’/b, N € A}isui, by(7.11).
By Lemma 5 of Chow and Yu (1981)
(7.34) {(Sp — wTy)' /b2, (T — b)'/b%} is ui.
And by Theorem 1 with (¢*)% = (0/p,)?,
(7.35) P{Ry>x,T{ — b> to*Vb} = G(x, d*)P{N(0,1) > ¢} + o(1).
By (7.29), (7.34), (7.35) and (7.32)
Cov(T", g(T"; M)
= dFE(T' - b)°/(2b) + d§(*)'E(N(0,1))"/6
(7.36) —dJE(T" - b)’(2b) "(ET - b) + o(1)
= dyE(T' - b)°/(2b) + d(s*)"/2
—d3(o*)’[r(dir) + dg(*)’/2] /(2mo) + 0(1).
By (7.29), (7.31) and (7.34)
{(&(T"; V)%, 1&(T';s M) ['/b) isui.
By (7.33) and (7.35)
E(g(T’;\) + R)®/b = 0(1).
Since (T — b)/b is bounded, by (7.9) and (7.35)
E(T - b)(g(T’; \) + R")’/b = o(1).
Therefore by (7.30)

(7.37) E(T' - b)’/b = [33E(T" - b)*((T'; A) + B) /b

—E(Sp — wT")’/b] /3 + o(1).
Since S, — pn, n > 1, are partial sums of i.i.d. mean zero random variables and

T’ is a bounded stopping time, it follows from Chow, Robbins and Teicher (1965)
that

(7.38) E(S; — pT")? = ET'E(X — p)* + 362ET'(Sy — pT").
Again, by (7.34), (7.30) and (7.35)

' - ’ = — r 2
(7.39) ET/(Sp. = uT')/b = —poE(T' = bY'/b + o(1).

= _Ho(“*)2 +o(1).
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By (7.29), (7.34), (7.9) and (7.35)
(7.40)  E(T" - b)*(g(T'; A) + R") /b = 3d§#(a*)"/2 + (6*)°r(d*) + o(1).

It follows from (7.37)—(7.40) that
E(T' - b)"/b=3[3d3(a*)"/2 + (*)*r(d)] /s
~E(X — p)°/83 + 30%(c*)"/ud + o().
Since 6* = o/(p — d*) = /p,, by algebra
E(T' - /b = u*[30°r(dir) = E(X — )] + *(30)
+p5°(9ds0?/2) + o(1).
Hence by (7.36)
Cov(T", g(T’; A)) = (dg/2)E(T" = b)*/b + pg*(d3o/2)
~ng*(dgo’r(dr)/2) - ug*(dgo?/2)" + o(1)
= ug®[dso?r(dr) - dFE(X - p)’/2]
+ugt[(dg + 3ds)o?/2] + uo®(2(dy)’e*) + 0(1). O
ProOF OF THEOREM 4. By (7.30) and Wald’s lemma of Chow, Robbins and
Teicher (1965)
Var(Sp — pT") = (p — d)*Var(T") - 2(p — d)Cov(T", g(T'; A) + R)
+Var(R' + g(T’; N)),
(1 — d)*Var(T’) = 62ET" + 2(p — d)Cov(T’, R’)
+2(p — d)Cov(T", g(T", \)) — Var(R’' + g(T’; \)).
It follows from (7.32) and Lemmas 7-9 that
(b~ d)"Var(T") = 0% + o*[r(d) + d3(o/ue)*/2] /1

¥ [ [5* dG(x, di) + (r(a))’ - ua4(d2*)2o4/2]

+2C — pg! d2*02[(1 - #6262) +2 Y P(S, - nd < 0}]

n=1
+pg?d [20%r(di) — E(X - p)’] + po*(ds + 3d#)o*
+pu54(4(d3)’e*) + o(1),
where

Cx = f0°°[ER(x, dy) — r(dl*)]P{I’Ill:()){(S,, — nd#)” < x) d.
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Since

r(dl*) = (P%) + 02)/(2H0) - Z n_lE(Sn - nd1*)_
n=1
and

jo “[ER(x, d}) — r(d#)] dx = (r(d))’ + jo “x2dG(x, dy)/2,
by algebra
(n— d)’Var(T") — b
_ [o2r(d1*)/u0 + [ d6(x, dr) + (r(d) + 203*]
+u5? dgot/2 — pug(dF) o?/2 — [ng" dife® — pg® dio’]
—pyldye?2 )Of P(S, — nd}¥ < 0)
et

. «
+[pgt dgo® + pg’dgot] — py*dye’2 ¥ nT'E(S, - ndi*)”

n=1

—pg? dFE(X — p)* + pg®(dy + 3d3)o* + pa*(4(ds)’e*) + o(1)
= [o7r(@)/mo+ 2 [t da(x, ) + 3(r(d))|
0

~2[“[ER(x, df) - r(di)] P(max (8, - ndi¥) "> x) dx
0 n=0
—2u62d2*62[uo Y P(S,—nd¥ <0} + X nT'E(S, - ndl*)']
n=1 n=1
—pg?dfE(X — p)’ + pg?[11dgo?/2 + dfo?]
+Tu54(dg) 0%/2 + o(1)
= Oy — 2852 dfo?Cy — pg? dFE(X — p)’ + pg dfo?
+ugtdfot(7dy + 11p,) /2 + o(1).
This finishes the proof. O
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