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LARGE DEVIATIONS FOR SYSTEMS OF NONINTERACTING
RECURRENT PARTICLES

By TzoNG-Yow LEE
Princeton University

We consider noninteracting systems of infinite particles each of which
follows an irreducible, null recurrent Markov process and prove a large
deviation principle for the empirical density. The expected occupation time
(up to time N) of this Markov process, named as h(N), plays an essential
role in our result. We impose on A(N) a regularly varying property as
N — oo, which a large class of transition probabilities does satisfy. Some
features of our result are: (a) The large deviation tails decay like
exp[ — NA~Y(N)I(-)], more slowly than the known exp[—NI(-)] type of
decay in transient situations. (b) Our rate function I(A(-)) equals infinity
unless A(-) is an invariant distribution. (c) Our rate function is explicit and is
rather insensitive to the underlying Markov process. For instance, if we
randomized the time steps of a Markov chain by exponential waiting time of
mean 1, the resultant system obeys exactly the same large deviation principle.

Introduction. In a noninteracting infinite particle system (abbreviated as a
system) we assume that each single particle independently follows a Markov
process. When the Markov process is transient, it is known that the large
deviation tails decay exponentially like exp[ — NI(-)] (see, e.g., [1, 4, 6]). When it
is recurrent (two examples were studied in [1]), however, the tails have
exp[ — NA~Y(N)I(-)] decay with A(N) > o0 as N — oo.

Our goal is to establish the scaling constant A(N) and understand the large
deviation rates I(-) in terms of the transition probability. We assume each
particle follows an irreducible time homogeneous Markov process, which is null
recurrent and satisfies a regularly varying property [for the definition, see (RV)
in the following paragraph]. Some examples that we have in mind are:

(1) Discrete time chain with countable state space, e.g., random walks on z°
(d = 1,2) with mean zero and finite second moments: Let #{™), = #{™) be the
m-step transition probability. Note the regularity varying property (see, e.g.,
(7D

N m _ [const.logN ifd=2,
Z ny -~ : 1/2 . _
m=1 const. N ifd=1.

(2) Continuous time chain with countable state space, e.g., Poisson random
walks which are constructed using exponential waiting times of mean 1
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instead of rigid time steps. Its transition probability and resolvent are

e

o0
pt,x, y) =Y
mepo m!

[oe] x —
/0 e *p,(t,x,y)dt= ) (s+1) (mH)vrx(;").

m=0

(3) Continuous time parameter and continuous state space, e.g., recurrent Bessel
process which is a diffusion generated by L = D? + (6/x)D, where —1 <
0 < 1. Its transition probability and resolvent are, asymptotically,

p(t,x, y) ~ const. y¥%=(0+D/2 a5¢ > oo,

const. y%s®V/2 when -1 <6 <1,

o0
e *p(t,x, y)dt ~ 1

1(; »( y) const. yIn— when 6 = 1.
s

Note that a(x) = x? is an invariant density, i.e., fCa(x)p(t, x, y)dx = a(y).
(4) Discrete time and continuous state space, e.g., the examples in (3) at discrete
time.

Since any attempt for a unified proof seems to involve obscure notation, we

decide to give detailed proofs for the discrete time chain with countable state

space and demonstrate, in the end, how the result can be generalized. We now

focus on a discrete time chain with countable state space. Let X be the state

space and wx(;”) be the m-step transition probability of the Markov chain X(m).
We assume a regularity varying property:

(RV) There exist 0 < B < 1, a slowly varying function /(N) as N = o0, x, y €
X, and ¢ > 0 such that

N
lim ) 7@"/NF(N) =c.
m=1

N- oo

A large class of transition probabilities satisfies this property. Among them are
recurrent random walks [see (1)]. Let 7, = 7)) and let a(x) be an invariant
distribution, i.e., X, ¢ ya(x)7,, = a(y) with a(x) > 0. Some consequences of our
assumptions are: In view of the null recurrence, this invariant distribution a(x)
exists uniquely up to multiplicative constants and is an infinite distribution, i.e.,
Y. e xa(x) = oo. Also a(x) is positive for all x € X due to the irreducibility.

Doeblin’s ratio theorem now implies that

. I a(y)
lim —5 =
Noow Lr{™  a(b)

forall a, b,xand y € X.
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Thus, the condition (RV) is equivalent to:
(RV1) There exist 0 < B < 1 and slowly varying I(-) at oo such that
ZN (m)
lim —2_
N-ow NFI(N)

From Abelian and Karamata’s Tauberian theorem, we obtain another equivalent
condition:

(RV2) Let h(t) = tFl(¢)T(B + 1) with B and I(-) as in (RV1).

Z:=Oe_sm77§;,n)
li_rf(l)—ﬂs—_IT—- =a(y) foralx,ye X.

To state and prove our result we need some notation.

Let P, (E, resp.) be the probability distribution (expectation resp.) and let
(mu)(x) =L, xm, u(y). Fora A: X — [0, o0), let the number of particles at site
x be Poisson distributed with mean A(x) and let the distribution be independent
for distinct sites. We write p(A) for this distribution and n(-): X - {0} U N for
a configuration. We denote by Pﬂ( N (En(,\)) the probability distribution (expecta-
tion) of a system with initial distribution (). Also let n(m, x) be the number
of particles at site x at time m and write n for {n(m,x): m>0, x € X}. Itis

elementary to check that P,,, is an ergodic Markov process. As in [4] and [6],
we define the empirical density

=a(y) forallx, y € X.

N
(ED) Dy, (x) =N X n(m,x).

m=1
Dy, ,, is regarded as an element of M = {A: X > R*} on which we impose the
topology M induced by projections A — A(x). This paper defines quantities
h(N) in terms of ,, and characterizes I(-) such that (£, ° Dy, M) obeys the
large deviation principle with scaling constants NAh~Y(N) and rate function I(-),
ie.,
(UB) limsup N~ *h(N)log B, ,{Dy,, € C} < — inf, I(N)

[

N-

for any closed set C,
(LB) liminf N"'A(N)log B, ( Dy, , € G} > — inf I(\)

N-ooo AeG
for any open set G and {A(:): I(A) < I} is compact in the M topology for any
0 < I < 0. The last property will become obvious in view of our explicit formula
for rates. .

Note that Dy ,(x) converges to a(x) for a.e. n wrt B, and our interest is
the rate of convergence. Our scaling constant A(N) is found using a cumulant
generating function approach (see, e.g., [5]) in which A(N) is characterized by
the existence, for small e, of

Jim h(N)N~log E,fexp[eh (N)NDy, ,(x)]}.
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By an expectation formula for Poisson variables, the last is
lim A(N)N™! gxa( )| E,{exp[en(N)NDy ()]} - 1]
y
1 .
- lim [sa(x) + R (N)N-1 Yo y)Ey{ E[NDN,n(x)]Z} + 0(82)].
The second cumulant (order e? part) now pinpoints A(N) as

AN) ~ N7 Za()B{ 5-NDY ()] =N £ a(y) £ alponird

. yEX my+my<N
N N-m N
Ca(NT T T A= a()NT L 3 a9~ a(x) T ale.
m=1 my=1 m=1 my=1 my=1

Note this heuristic argument argument works as well for the transient cases
where X% _ 70 < o0.

We estimate the cumulant generating function in Theorem 1 and use it to get
an upper bound in terms of the Mittag—Lefller distributions in Theorem 2. In
Theorem 3 this upper bound is proved to be a lower bound and hence the true
rates. The rate functionals are found to be finite only on an extremely thin set
(Lemma 2). Theorem 4 is a generalization of Theorems 1-3 to Markov processes
of continuous time parameter and /or continuous state space. In Theorem 5 we
prove that the large deviation rates remain unchanged when the rigid time steps
are replaced by exponential waiting times of mean 1 to form a new Markov
chain. As a consequence, a system of random walks in dim 1 or 2 share the same
rates with the corresponding Poisson systems of random walks. The latter is
studied in [1].

1. Cumulant generating function of Dy, (Theorem 1). We first intro-
duce the Mittag-Leffler generating function f; and the scaling constant A,

00 k

fﬁ(c) = E

——— forl>B>0and c €R.
= T(&B + 1) B

REMARK f1/2(c) is the generating function of the truncated normal density
72 ~*"/4dx x > 0, and, by a simple calculation,

fo(c)={(1_c) c<l1,

+ o0, c>1,

which is associated with the exponential distribution: e * dx, x > 0.

. To simplify many expressions which we shall use, let

(5) wWNﬂ—{mzmmmﬁ
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and note the property of u,
6) u(W,m,x)= ) e"r u(W,m—-1,y) and u(W,0,x)=1.

yeX

The generating function of Dy , now takes a shorter form,
Eﬂ(a){exp NY W(x)Dy n(x)}

rn [E{p > W(X(m»}]n(x)}

A

= S

™) = m
= Eyof IT (W, N, 2)")

= exp{z [u(W,N,x) - l]a(x)}.

We now state Theorem 1.

THEOREM 1. If V(x) is supported on a finite set and V = La(x)V(x), then

(CG) limy_, ,N~"'h(N)log E, ,{exp Nk~ (N)E, c xV(%)Dy, ()]} =
Vfolfﬁ(aﬁV) da, where B is the exponent appearing in h(t).

Proor. In view of (7) we shall prove that
(&) lim N"(N)X [u(h"(N)V, N, %) — 1]a(x) = V[ 1,(a?V) da.
— 0 x 0
We need a preliminary lemma.

Lemma 1. If lim,_, (m(N))/N =a > 0, then

- (9) N.—I;noo u(R"Y(N)V, m(N), x) = f4(a?V).
IfW: X>Ris supporz;ed on a finite set F, then
(10) Y oa(x)[(7u)(W, k,x) — u(W, k,x)] = 0.

Proor or LEMMA 1. Note that, if m(N) = N, (9) should be interpreted as
convergence of A~ N)LNV(X(m)) to Mittag-Leffler’s distribution as N — oo.
An application of Karamata’s Tauberian theorem, as pointed out in [2], provides
a very simple proof of (9) which we now give.

Let H, be the resolvent

(HV)) = L e smv(y)

and note, from (RV2), that (H,V)(x) ~ VA(s ) as s — 0. Let

0N, 2) = %E{[ X V(X(m) }
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which satisfies
)y aTOV( ) -+ mm V()

my+ - +mp<N

m; =0

> v,(N, x)

> Y miV(n) e m V().
my+ - +mp<N

m;>1

Applying Laplace’s transform we have
Z e *M #(N, x) ~ [(HV) (HsV)](x) -~ (Vh(s_l))k ass — 0,

where [-] is the composition of 2 “HV ”. Karamata’s Tauberian theorem now
implies that
h¥(N)V*
N ~ —_——
v,(N, x) TR + 1) as N - o0
This proves (9) in the case when m(N) = N. The full result of (9) follows easily
from the fact that
R"YN)V =ha Y (m)[h(m)h " (N)V] ~ A~ Y(m)(aPV) asm —> oo.
Because (10) can be restated as
Y a(x)m(u—1)(x) = X a(y)[u(y) -1,
xeX yeX
which is an interchange of summation formula, we need only show that
Ya(y)|u(W, k, y) — 1| < oo, which justifies the interchange and is proved as:
Using (5) we have

k
(W, k, y) — 1| <™} 3 a7,
j=1zeF
where |W] = maxxe x| W(x)| and, therefore,

Za(y)lu(W k,y)-1] < ek'W'Ea(y) Z > )

Jj=1z€F
< ek|W|k Y a(z) < . m]
zeF
We are now ready to prove Theorem 1. First note that, using (6) and (10),
Ya(x)h(N)u(h"(N)V,m,z) —u(h"(N)V,m — 1,x)]

X

Y a(x)h(N) ZF[’e"_l(N)V(y) - 1] 7 u(A"Y(N)V, m -1, y)

y h(N)[eh_l(N)V(y) - 1] a(y)u(A"Y(N)V,m -1, y).
yeF
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Using (9) and A(N)[e? "™V — 1] - W(y) and letting mN~! > a as N > oo,
it follows that
Nlim R(N)Y a(x)[u(hY(N)V,m,x) — u(h"(N)V,m - 1, z)]
(11) m~aN x
= Vig(a#V).
As a final step we have that
N-'R(N) Y a(x)[u(h"(N)V, N,x) — 1]

N }
N1 Y {Za(x)h(N)[u(h—l(N)V, m,x) — u(h"YN)V, m - 1,x)]},

m=1"' x

which, by (11), tends to V/jf,(a?V)da as N — co. Theorem 1 is completely
proved. O

2. Upper bound (Theorem 2). Let us define Iy: M > R*U{o0}:
— r1 —
(12) L) =  swp [z V@A) = V[ 'f(a*V) da].

V: finite support

Some properties of Iy(-) are:

LEMMA 2.
(13) I(A) = oo if A(+) is not a multiple of a(-).
(14) IfB +0, then I(ba) = sup {bc ~¢["fy(a%e) da}.
cER 0
(15) I(ba) = {(Jl? -5 b=20,
+ 00, b<0.

Proor. If A is not a multiple of a, then there exist x; and x, such that
A(xy)a(xy) — Mxy)a(x,) > 0. We denote by {V,} a sequence of functions defined

by
V(x,) + ka(x,), forx =x,
Vi(x) = { V(x,) — ka(x,), forx = x,, for a fixed V,
V(x), otherwise.

Noting that V, = V and that
— r1 —
Z A(x)Vi(x) - Vk‘/(; fp(aﬁVk)da

= b[A)a() ~Mez)a()] + TAV() - V[ (ahT) da,

and letting & tend to co, (13) is proved.
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_If Ax) = ba(x), the functional of V to be maximized is a function of
V=21, cxV(x)a(x). This fact yields (14). (15) can be derived by a simple
calculation. O

We now prove that Ig(A) is an upper bound.

THEOREM 2. If C is a closed subset of M and h(t) = t*l(t)['(B + 1} as in
(RV2), then

(UB) limsup N~ 'h(N)log M(a){DN ~€C} < - 1nf IB(}\)

N- o

Proor. Important for the upper bound estimate are:

(16) If I(A\) = + o0 and ! > 0 is arbitrary, then there exists N,, a neighborhood
of A, such that

limsup N~ 'h(N)log B, ,(Dy,, € N,} < —L.

N-oo
(17) If I(A) < oo and & > 0 is arbitrary, then there exists N,, a neighborhood of
A, such that
limsup N~*2(N)log B, ,(Dy., € Ny} < —I(A) +e.
N-oo

We now prove (16) and (17) for 8 > 0. The case when B = 0 requires obvious
modification and is omitted. If I(A) = oo, then there exists x, y € X and § > 0
such that A(x)a(x,) — AM(xy)a(x;) > 8 > 0. Let N, = {¢: o(x))a(x,) —
#(x5)a(x,) > 8}. Using Vi V(x)) = —0a(X,), V(x,) = 0a(x,) and V(x) =
otherwise, in the formula (CG), it follows from Chebychev’s inequality that if 6
" is sufficiently large,

lim sup N 'A( N )log F(a){DN €N} < V-06=0-0686< -1
N- oo
This is (16).

To prove (17), we assume A(-) = ba(-) > a(:). The case when A(-) < a(-)
can be similarly proved and the case when A(:) = a(+) is trivial. Let N, =
{¢: ¢(x,) > (b — 8)}. Using V(x) = Ox,(x) in the formula (CG), it again follows
from Chebychev’s inequality that

limsup N~'A(N)log B, ,{Dy, , € N,}

N-ow
< inf [ﬂa(xl) j 1f,g(aﬂ(m(x)) da — 6(b—8)|,

which, due to the lower semicontinuity of Ig(+), is less than —I(A) + & when 8 is
sufficiently small. This completes the proof of (17). By using (16), (17) and a
standard method developed in [3], the inequality (UB) holds for compact sets
and it also holds for closed sets if there exists a sequence of compact subsets
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{K,} such that
(18) lim sup limsup N~%(N)log B, ,{Dy , € K¢} = — 0.

r—oo N- o0
We construct {K,} as follows. Choosing £(x) > 0 for all x € X such that
Yoexé(x)=1and

1
Y £(x)a(x)f0 fs(afa(x)) da < oo,

XEX

we let K, be
{A(-) & M: TEOA) < r}.

It is clear that K, is compact in M. From the convexity of the cumulant
generating function we have that -
lim sup N~ 'A(N)log En(a){exp[ Nr™Y(N)Y &(x)Dy, n(x)] }

N- oo

< limsup Y, é(x)N~'h(N)log E”(a){exp[Nh‘l(N)DN’ n(x)]}

N-ow zxeX
_ 1
<y g(x)a(x)/o fo(aPa(x)) da < oo.
xeX
This, by Chebychev’s inequality, implies the desired property (18). When 8 = 0,
the modification needed is obvious. O

3. Lower bounds (Theorem 3).

TuEOREM 3. If G is an open subset of M and h(t) = t*U(£)T(B + 1) is as in
(RV2), then
(LB) liminf N"'h(N)log P, ,{Dy , € G} = - Jnf L(M).
(=3

N- o

ProOF. In view of the topology M, we need only prove, for N, = {n:
In(x;) — M(x;)| <e¢, for 1 <1<k}, with some ¢ > 0 and some k& € N, that
liminf N"h(N)log B,,{ Dy, , € N\} = —I4(N).
N—-o
Moreover it suffices to consider N, ., because I(A) = +oco when A(-) is not a
constant multiple of a(:). Let N be the vector (A(x,),..., A(x;)) and N, be a
neighborhood of N. We therefore need only prove that

(19) liminf N~'A(N )log( 2, ., °Dx*) (Nyo} = —Iy(ba).
N-oo

For this finite dimensional situation we shall use a general standard result, which
we state as a lemma (see, e.g., [5] for a proof).
LEMMA 3. Let {vy} be a family of probability measures on R*, a(N) -
be a sequence and let My(8) = [exp[a(N)8 + Y] dvy(Y) < o for § € R*.
Assume also that limy_, a~'(N)log My(0) = ¢(8) < oo exists for § € R*
and that ¢(0) is continuous differentiable and closed in {6: ¢(8) < o0}. If
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o € R* is such that (V$)(0,) = o for some 0, then
liminfa™ (N )logy (n,} = — [0+ 0x = 6(0,)],
N- o

where n, is a neighborhood of o.

Application of the preceding lemma in our situation:

It is clear that »y, a(N) and ¢(08) will be (ﬁu(a)
(0 - @)[3fz(a”8 + @) da, respectively.

Also we have a key fact, {(V¢)(8): 0 € R*} = {ba: b > 0}, which is easy to
check.

It then follows from the preceding lemma that there exists 8, such that

liminf N~'A(N)log B, ,{Dy € Np,} > —[ba 0, — ¢(8,)]
N-oo
—sup [ba + 0 — ¢(8)]
[}

oDyY), Nh"Y(N) and

\%

— sup [bc - cj(;lfﬂ(aﬁc) da]
—Iy(ba),

which is (19). The proof is complete. O

4. Generalization to other types of Markov processes (Theorem 4). We
now generalize Theorems 1-3 to Markov processes with continuous time parame-
ter and/or continuous state space. A compact subset of the state space is
obviously the correct substitute for a finite set and a Poisson field is that of
independent Poisson variables. The following notational modification should, of
course, be made: If K is compact, then

(RV1) ['p(7,%,K) dr ~ a(K)tF(t) ast— oo,
(RV2) fooe‘s‘p(t,x,K)dt~ a(K)h(s™') ast— oo.

Note again that A(t) = tPl()T(B + 1).
(ED) D, (A)=t"! fthA(wi(s)) ds for measurable subsets A,
0

where w;(s) is the trajectory of the ith particle. The Bessel processes, for
example, satisfy (RV1) and (RV2) [see (3)]. We can then go through the same
kind of arguments to establish

THEOREM 4. If the Markov process of a single particle is null recurrent and
satisfies a regularly varying property (expressed in appropriate notation), then
we have (t € Rt or N):

N lim £ (¢)log E;(a){exp[th‘l(t) / V(x)Dt,w(dx)}
(cG) e
= V[ is(a"V) da,
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where V is compact supported, V = [V(x)a(dx) and B is the exponent appear-
ing in h(t).
(UB) limsup¢~'h(t)log B, ,{D, , € C} < — jnf Iﬁ(}\),

t— o0
where C is open in the topology induced by continuous functions with compact
support and Ig(A(+)) < oo is as in (14) and (15).

(LB) liminf¢~'h(t)log B, (D, , € G} > — }\ing I(N),
[

t—>o0 -

where G is open and B, I, are as in (UB).

5. Large deviations of a system modified by time change (Theorem 5).
It should be noted that our large deviation result involves only an invariant
distribution a(-) and an index S related to the occupation time (see Lemma 2),

j;tp(a-, x, K)dr ~ a( K)tPl(2).

This radically differs from the results (see, e.g., [4] and [6]) in transient cases
where the kernel G(x, K) = [;°p(¢, x, K ) dt is finite and plays an essential role
in rate functions. This also shows that our large deviation result is rather
insensitive to the underlying evaluation of each particle. We now explain this
point. For a discrete time Markov process, let us replace, as explained in (2), the
rigid time steps by exponential waiting times of mean 1. The resultant process
has the transition probability p_ (¢, x, ¥) = 2_,e”t™/m!. We then have

THEOREM 5. If m, , satisfies (RV2), then p,(t, x, y) satisfies (RV2) with the
same h(-) function. Thus, the system associated with p,(t, x, y) shares the same
large deviation rates with that associated with w(x, y).

Proor. The proof is a direct calculation,

fo e oip,(t, %, y) dt = f ““‘ Z

—-st —tym
0 ' xy

(1 +5) "Dy

—-tm

7rx(;,”) dt

-0

Ms ipgs ©

m=0
(1 +8) "a(y)h(log™}(1 + 5))
a(y)h(s™")
~ Y el ass -0,
m=0

where the interchange of summation and integration is justified by the Fubini
theorem. O

l

l



LARGE DEVIATIONS FOR PARTICLE SYSTEMS 57

Cox and Griffeath [1] have studied the large deviation for occupation time of
Poisson systems of the independent random walk. As a consequence of Theorem
5, the same results hold for systems of independent random walks on Z! (or Z?2).
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