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Let T,, denote the length of the shortest closed path connecting n random
points uniformly distributed over the unit square. We prove that for some
number K, we have, for all ¢ > 0,

P(IT, - E(T,)| > ¢) < Kexp(-£2/K).

1. Introduction. The famous traveling salesman problem (TSP) requires
finding the length T}, of the shortest path connecting n points X,,..., X, of the
plane, that is, the infimum over all permutations ¢ of {1,..., n} of the quantity

”Xa(n) - Xu(l)“ + Z ”Xa(i+ S I Xu(i)”'

1<i<n
We are here concerned with a stochastic version of the problem, where the points
X,,..., X, are independent and distributed uniformly on the unit square [0, 1]%
A number of recent papers [2—4] have proved that the random variable T, is
remarkably concentrated around its mean. The objective of the present paper is
to prove the inequality

(1) P(T, - E(T,)| > t) < K exp(— /K ).

In order to make our results applicable to other problems of geometric probabil-
ity (e.g., the length of a Steiner tree or a rectilinear Steiner tree through
X,,..., X,) and to isolate the properties of the TSP that we really need, it is
suitable to state a more general result. Suppose that to each finite subset F' of
the unit square we associate a number f(F'), such that for each finite subset F
and each x € [0,1]?

(2) f(F) <f(FU {x}) <{(F) +d(x, F),
where d(x, F) = min{d(x, y): ¥ € F}. Consider independent random variables
X,,..., X, uniformly distributed over the unit square and let U, =

f(l{,Xl, cens X1

THEOREM 1. There exists a number K, independent of f and n, such that for
all t > 0,

(3) P(U, - E(U,)| > t) < K exp(~t*/K ).

+ Received October 1987; revised March 1988.
'Research supported in part by NSF Grant DCR-86-01025.
2Research supported in part by NSF Grant DMS-86-03951.
AMS 1980 subject classifications. Primary 68C25; secondary 90C10, 65K05, 60G48.
Key words and phrases. Martingale inequalities, shortest path, exponential tail, stochastic model.

1

[ ,fl’;
sl
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%:%?’)

The Annals of Probability. STOR ®
WWw.jstor.org
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By scaling, we see that if (2) is replaced by
(4) [(F) <f(FU {x}) < f(F) + ad(x, F)

for some constant a > 0, then

(5) P(U,-E(U,)| <t) < Kexp(— atTK)

In particular, the shortest tour through all the points of F satisfies (4) for a = 2.

It is easy to see that for ¢ of the order Vn , inequality (1) is optimal. Indeed, if
H denotes the event {V i<n, X;<€[0,3]?}, then P(H)=4"". We have
E(T,H) = 1E(T,) by homogeneity. We know that for some constant ¢ indepen-
dent of n, we have E(T,) > 4¢yn . Thus

P(T, < E(T,) — ¢/n) = P(Hn {T, < E(T,) — ¢/n })
= P(H)P(T, < E(T,) — c¢/n|H)
= 4~"P(T, < 2E(T,) — 2¢Vn)

by homogeneity and thus, by (1),
P(T, < E(T,) — e/n) = 4~ "P({T, < E(T,) + 2¢Vn })

4c%n

e )) > K’exp(—K’(c\/ﬁ)2)

> 4‘”(1 - Kexp(—

for some constant K’ independent of n.
We do not know whether inequality (3) is optimal when ¢ < Vn .

2. Plan of proof. As in our previous work on the topic, our method heavily
relies on martingale difference sequence methods (m.d.s.). In [3] we obtained a
bound :

P(T, - E(T,)| = t) < 2exp(—at?/log(1 + £))

for some a > 0 by interpolating between two known martingale inequalities. In
the present work, we will use only standard martingale inequalities, but we will
need a more detailed analysis and we will make use of a seemingly new principle,
that may be of independent interest. It is explained after Lemma 1. Let %
denote the o-field generated by X, ..., X;. For simplicity, we denote by E ! the
conditional expectation with respect to %;. Denoting by [x] the integer part of x,
we set m = [n/2]. In order to simplify notation, we will denote by K a universal
constant that may vary from line to line.

LEMMA 1. We have, for all t = 0,
P(E™U,) — E(U,)| = t) < 2exp(—t*/K).

Proor. The proof is almost identical to that of [2], Proposition 6, but we
give it for completeness. We consider the m.d.s. associated to U, that is given by
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d,= E{U, — E"Y(U,), so that E™U,) — E(U,) =%, .. »d;. We note, as in
[2], Corollary 5, that ||d;||,, < K(n — i+ 1)"V/% so that |d,||,, < Kn™'/? for
i < m. Finally, we conclude by using Azuma’s inequality ([5], Lemma 4-2-3 and

Exercise 4-2-2)
P( > t) < 2exp(—t2/(2 > IIdillfo))~ O

If one tries to apply the above method to obtain a bound for P(|U, —
E(U,)| > t), one obtains only a bound 2 exp(—t2/K log n), as in [2]. This failure
is however due to the terms d; for i close to n and this motivates Lemma 1.
The idea is that we are left to control P(|U, — E™U,)| > t). This can
be done conditionally on X,,..., X,,. But knowing X,,..., X, provides pre-
cious information (at least for most of the choices of X,..., X)) on
f(X,..., X, Xpni1r---» X,,). The success of that program is described in the
following lemma, that is the essential part of the proof of Theorem 1.

rd,

i<m

LEMMA 2. For each t > 0, there exists a subset H, of [0,1]*™ with the
following properties:

1. P(X,..., X,) € H) < K exp(—t?/K).
2. If we define the random variable h by h = f({x,..., %, X 1 1,..., X,,}), for
(x,...,x,,) &€ H,, we have

P(h— E(h) = t) <2exp(—t%/K).
We conclude now the proof of Theorem 1. We observe that for (x,,..., x,,) &
H,, the relation
P(h— E(h)| > t) < 2exp(—t2/K)
means that
P(U,— E™U,)| > t|X, = x1,..., X,, = x,,) < 2exp(—t*/K).
It follows that
P(U,- E™U,) > t) <2exp(—t*/K) + P((X,,..., X,,) € H,)
< Kexp(—-t?/K).
The result follows since
P(U, - E(U,) > t)
< P(U, - E™(U,) > t/2) + P(E™(U,) — E(U,)| > t/2).
3. Proof of Lemma 2. We first observe a simple property of f. Given two

finite sets F and G in the unit square, let us call a F-spanning graph any graph
that consists of line segments between points of F'U G and that contains a path
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from any point of G to at least a point of F. From condition (2), we deduce the
following by induction over card G.

LEMMA 3. If there is an F-spanning graph of length L in F U G, we have
f(F)<f(FUG)<f(F)+L.

It is well known that a subset F of the unit square of cardinality n has a
closed tour of length < 2y/n. So, if x € F, we have

(6) f({x}) < f(F) < f({x}) + 2Vn.

On the other hand, for x, y € [0,1]2, we have

F({x}) = ({1 < 1f({x, 2}) = F({x)) + 1 ({x, ¥}) = F({y})] < 22

It then follows from (6) that for any set F with card F < n, we have a < f(F) <
a + 2(/n + V2) for a = inf{ f({x}); x € [0,1]%}. Thus we have a < f(F) < b,
where a, b are independent of F and b — a < Kyn . This shows that it is enough
to prove Lemma 2 when t < BVn , where 8 is some fixed number. Obviously, we
can also assume ¢ > 1.

For k > 1, we denote by .+, the natural collection of the 22* closed squares of
side 27* that cover [0,1]2. We denote by p the largest integer for which
27?7 > 1/t. The computational part of the proof of Lemma 2 is contained in the
following lemma, that will be proved in the next section.

LEMMA 4. For 1 <t < yn, there exists a subset H, of [0,1]*™ with the
following properties:

1. P(X,,...,X,) € H) < Kexp(—t?/K).

2. For (xy,...,x,) & H,, consider the union Z of all the squares of <, that
contain at least a point x,, i < m. Then P(X, & Z) < Kt*/n and if we set
(x) = d(x, {x},..., x,,)14(x), we have E(¢*(X,)) < K/n.

The idea is that condition E(¢* X,)) < K/n will provide the crucial control
over the points in Z, as will be shown in Lemma 6. But we proceed first to show
that the condition P(X, ¢ Z) < Kt?/n implies that the points that do not
belong to Z are unimportant. We fix (x,,..., x,,) € H,. We set

(7) v=f({xlr""xmyXm+17'--an}nZ)‘

The next lemma shows that v is a small perturbation of & and thus that it will
be sufficient to study v instead of h.

LEMMA 5. For some universal constant K ,, we have

v<h<ov+ Kyt

ProoF. For k < p, consider the collection ¢J, of squares of %, that contain
no points (x;), i < m. Denote by I, the collection of squares of <J, that are
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contained in no square of oJ; for any / < k. Let
F={x,...,%0, Xpni1,.., X, NZ

b m?
and
G= (%, s Xy Xppi1r--+» X} \ Z.

Each point of A € I, is within distance V22 k+10f g point of F. There is a tour
through the points of A N G of length < 27 **Y(card(A N G))/2. It follows
that there is an F-spanning graph of F U G of length L such that

L< Y K27*(1 + (card(A N G))"?),

where the summation is over all 2 <p and A € I,. Set Y, = U{A; A € J,}.
Using the Cauchy—Schwarz inequality, we have

Y (card(A N G))* < (card I,)"/*(card(Y, N G))"*
Ael,

so that, by Cauchy-Schwarz again

L< Y K2 *ard I, + K2 *(card I,)"*(card(Y, N G))"*
k<p

1/2
< K2”( Y. 27 %*card Ik) + K( Y 2 %card I,| (card G).
k<p k<p
Since T, _ ,27 **card I, = P(X, & Z) < Kt*/n, we have
L < K2Pt/n + K(t2/n)l/2n1/2 <K(@2P+t) <Kt
by definition of p. The result then follows from Lemma 3, since v = f(F) <
f(FUG)=h<f(F)+L=v+ L. O
It follows from Lemma 5 that
P(lh— E(h)| = (2K, + 1)t) < P(lo — E(v)| > ¢).

Hence [changing ¢ into (2K, + 1)¢] Lemma 2 is a consequence of the following.

LEMMA 6. If v is given by (7), wé have
P(v— E(v)| = t) < 2exp(—t%/K).
PROOF. It relies once more on m.ds. Let d, = Ei(v) — E‘"(v), so that
v—Ew)=%,.;.,d; Fori>m,let
N 0; = F({X1seees Xy X1 ver Xim1s Xis1s--or X} N Z).
If X; & Z, we have v; = f. Otherwise, from (2), we have
v;<v<v,+d(X;,{x,...,x,})
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so that we have v; < v < v; + ¢(X,), and hence
EY(v) < E(v) < EY(v;) + ¢(X,),
E"Y(v,) <E"Y(v) < E*Y(v;) + E((X))).
Since v, is independent of X;, we have E¥(v;) = E'"(v;), so that we have
ldil < (X)) + E(¢(X5))-

If x ¢ Z, we have ¢(x) =0. If x € Z, then x is within distance y227? of
{(xy,...,%,,}. Thus |¢(x)| < V2277 < K/t and hence |||, < K/t. It follows
that ||d;||,, < K/¢t. Also, we have E(¢*(X,)) < K/n and thus ||E*"Y(d?)||,, <
K/n. (It is to obtain that crucial property that we reduced the study of 4 to
that of v.) It is shown in [1], Proposition 3.1, that for a m.d.s. (d;), _,, such that
Id;]l, < M, we have

n

2 d;

i=1

) ¢ - Mt
e I B BV et EON L PR TI  §

(This is a martingale version of Prokhorov’s inequality.) This implies the result.
O

P

4. Proof of Lemma 4. Since we try to obtain a smallness condition on ¢,
the obvious idea is to try to make x,,..., x,, rather uniformly spread. We define
q as the largest integer for which 2729 > (1/m)log(em/t*). We fix a number a
such that x/2 > logex? for x > @ and we define r as the largest integer for
which m2~%" > «. As we observed, it is enough to prove Lemma 3 when
* ¢ < BVn, where B is universal, so we can assume that a/m < (1/m)log(em/t?) <
1/t sothat p < g <r.

We set

a,=(2+k—p+1)22/m, ifp<k<g,
a;, = 2% /m?, ifg<k<r.
For p <k <r weset s, =[a,] and
V. = {(xy,..., x,,); at least s, + 1 squares of %/, do not meet {x,,...,%,}}.
We set H,=U,_,.,V, and we fix (x,,..., x,,) € H,. Then
P(X,€Z) <27 %s, < t’/m < Kt2./n.

We -observe that if ¢(X,) > 27**1 then clearly X, belongs to a square of 7,
that does not meet {x,,..., x,,}. So

P(¢(X,) > 274+1) < 27%g,,
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Since, as we already observed, |¢| < 277*1, we have
E(¢2(X1)) < Q-2r+2 4 Z 2_2k+4P(¢(X1) > 2—k+1)

p<k=sr
<2746 Y 27+ k-p+1)/m+4 Y 2%/m?
p<k<g g<k<r

<K(1/m+ 272P¢2/m + 2" /m?) < K/n
since, by definition of p and r we have 272" < K/m, 22" < Km, 277t < 2. So it
remains only to prove that
P((X,,..., X,,) € H,) < Kexp(—t*/K).

To simplify notation, fixing p < k < r,weset N = 2%% s =5, + 1,50 5 > a,.
We have

P((Xy.., X,) € V) < (V) - s/m)"

< (eN/s)’e™*m/N = exp(—s(m/N — log(eN/s))).

CasEl. p <k <gq.Then eN/s < e2%*/a, < em/t?, so that
log(eN/s) < log(em/t?) < m2729 < 2722
since k < q. Since m/N = 2"%*m, s > a,, we have
P((Xy,..., X,) € V,) <exp(—2"%*"'ma,) < exp(— (2 + k — p + 1) /2).
CasE 2. q <k <r.Then eN/s < e2?*/a, = e2~**m2 Since k < r, we have

272*m > « by definition of r, so that log(e2~**m?) < m2~2¥~! by the choice of
a and hence log(eN/s) < m2~2*~1, It follows that

P((X,y-s X,) € Vy) < exp(—2-%ma) = exp(—2%~1/m).
To conclude the proof, we observe that
> eXP(—(t2 +k—p+ 1)/2) < Kexp(-t%/2)
k>p
and that
Y. exp(—2**71/m) < K exp(—2%"1/m).

k>q

Now we have

249/m > m(log em/t?) " > t*/K. |
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