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A stationary /2-valued Ornstein—Uhlenbeck process is considered which is
given formally by dX, = —AX,dt + \/2_a dB,, where A is a positive self-
adjoint operator on 12, B, is a cylindrical Brownian motion on I?and aisa
positive diagonal operator on 2. A simple criterion is given for the almost-sure
continuity of X, in {2 which is shown to be quite sharp. Furthermore, in
certain special cases, we obtain simple necessary and sufficient conditions for
the almost-sure continuity of X, in 2.

In Dawson (1972), the following semilinear stochastic differential equation on
a real, separable Hilbert space H was considered
(0) dX,= —AX,dt + B(X,) dt + a(X,) dB,.
Here a: H — L(H) = {the set of all bounded linear operators on H]},
B: H - H, B, is a cylindrical Brownian motion on H and A is a constant
self-adjoint, positive definite operator on H. A is assumed to have a complete
orthonormal family of eigenvectors ¢, corresponding to its set of positive
eigenvalues A, £ =1,2,....

Dawson (1972) gives sufficient conditions for the existence of a mild solution
of (0); that is, an H-valued process X, which is a.s. continuous in H and adapted
to o(X,, B,; s < t), and which satisfies

X, = U(t)X,+ [U(t—s)a(X,) dB, + [U(¢- 5)B(X,) ds,
0 0
where U(t) is the semigroup on H generated by —A. In particular, Dawson
(1972) assumed that B is a globally Lipschitz mapping, and
(1)) Ap~ck'*®  ¢,8>0, ask > oo,
(1)(ii)) a*(-)o, is a continuous mapping from H into H for each %, and

le*(X)oxll < K@ +11X1),
(1)(iii)
"(a*(Xl) - O‘*(X2))¢k ” < K| X, — X,
for each X, X, X, € H, k= 1,2,..., where a* is the adjoint of a.
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CONTINUITY OF [2-VALUED 0.U. PROCESSES 69

For more recent results on the continuity of such processes, consult Kotelenez
(1984a,b) and Antoniadis and Carmona (1987).

Without loss of generality we take H = /2 and we consider a special case
of (0),

2) dX,= —AX,dt + 2a dB,,

where a is a constant, positive operator such that (¢,, Va ¢,,) = \/t—l; , (¢ Va %) =
0, ¢ # j. The diagonal system

(3) dxp(t) = =Nx,(t) dt + 2a, dB,(t), k=1,2,...,

write x, = {x,(¢)}%-, as a vector of independent Ornstein-Uhlenbeck processes,
i.e., mean zero Gaussian processes defined by

(4) Ex,(t)xy(s) = exp( Aglt — s]).

If ¥¥_,a,/A, < oo, then for each fixed ¢, x, € 1% as. [i.e, L, |xx(8)|* < o a.s.].
In this paper we are concerned with the continuity of x, in /2 and we obtain
conditions that are weaker and more general than those in (1)(i), (1)(ii) and
(1)(iii). Our main result is the following simple criterion for the continuity of x,
in 72

THEOREM 1. Let f(x) be a positive function on [x,, o) such that f(x)/x is
nondecreasing for x > x; > 0 and such that

®) ffm

Suppose also that

a
(6) Ty <w
Y
and
f(ak Vv x,;)
(7) sup —=

Then x, is continuous in I? a.s. Moreover, this result is best possible in the sense
that it is false for any function f(x), which satisfies all the above hypotheses,
with the exception that the integral in (5) is infinite.

The following simple corollaries are immediate consequences of Theorem 1.
COROLLARY 2. x, is continuous in 1% a.s. if (6) holds and

(log*a,)
(8) SUp &

for r > 1, where log* x = (log x) V 0.
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COROLLARY 3. Suppose that a,/\, is nonincreasing and that A, is nonde-
creasing with lim, , A, = co. Then if (6) holds and

a a
(9) Z k+llog+ k+1 < 0,
7 Mpi1 a

x, is continuous in 1* a.s.

We obtain Theorem 1 as a consequence of a recent corollary due to Fernique
(1987), Theorem 3.3.3 of Talagrand’s (1987) theorem on necessary and sufficient
conditions for the continuity of Gaussian processes. Fernique’s result gives
simplified necessary and sufficient conditions for the continuity of Banach space
valued Gaussian processes with stationary increments. We define

a
(10) 02(u) = E(x,(t + u) — x,(2))" = 2}\—"(1 — e~ Mlul)
k
for the processes {x,(¢)}%-, defined in (4). For further use let us note that

2a, ) a,
(11) e_}\—(l A Nglu)) < op(u) < 2>\—(1 A Aglul).
k k

THEOREM 4. Let {x,(t)}%-, be a sequence of independent Ornstein—Uhlen-
beck processes as defined in (4) and o,(u) be as defined in (10). There exist
constants 0 < ¢, < C, < co such that

i 1/2
(zazoz(w)
172\ k=1
c,| E|[{x,(0)}]|, + sup
| El=0 (o): Wenly<170  u(logl/u)'?

< E sup |[[{x,(t)}Il
(12) rero.1] { k( } P

o 1/2
(za;iozw))
. /2 \ k=1
< C,| E|{xx(0)}],+  sup
° P (w10 u(logl/u)'?

?

where 1/p + 1/q =1, p 21, and |{a,}l, is the 19 norm of {a;}%_;.

This theorem follows from Fernique (1987), Theorems 3.3.3 and 3.3.4, and
well-known arguments [see, e.g., Marcus and Pisier (1981), Chapter 2, Theorem
3.4 and Lemma 3.6]. We present it for all I?, not just /2, since it requires no
additional effort. Later in the paper we will make some remarks about the
continuity of {x,(¢)}¥-, in I? for p < 2.

The following lemma, which generalizes some interesting inequalities of Boas
(1960), enables us to use Theorem 4 to obtain Theorem 1. We will say more on
the relationship of this lemma to the work of Boas at the end of this paper.
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LEMMA 5. Let {c,}¥-, be nonnegative real numbers such that c, is nonin-
creasinginkandc, < 1. Letl <p <2and1/p+ 1/q = 1. Then forall B > 0,
there exists a constant Cy such that

1/2
sp X 1(Eb2 )

(O}t {be}llg=<1 j=1 k

< CB( Y kﬁ‘lc,f) ( Y ef
k=1

k=1

(13)

b

)(q—2)/(2<1)

where we use the convention (q — 2)/(2q) = 1/2 when q = oo. In particular,
there exist a universal constant D > 0 such that

1/p 1/2
HEa) s £ 1‘1/2( 5 b)
(14) k=1 (B} {be}llg=<1 j=1
00 1/p
< D( Y c,f)
k=1
and constant D,>0 such that

1 w 1/2 1/2
sz( Y kﬁ_lc,f) < sup 213/2 1( Z bic )

(15) k=1 {Be): ZIbg2<1 Jj=1 k=

o 1/2
< DB( Y kﬁ‘lc,f) .

k=1

PRrROOF. Assume 0 < X¥_,cf < o and let m(n) = #{k: c¢f > 27"}. Observe
that

m(n)

w 1/2 . 1/2
£ 1(21»2) 3 ﬂw—l( 5 b)

A
3 MS

k=j 1 j=m(n-1)+1 k=m(n—-1)+1
% o omh)  p2e2-p\l/?
k*k
(16) <X a(n)( Y X W)
n= h=nk=m(h-1)+1
= a(n) (& B(h)\”
<
- ngl 2(n—1)/2 (hz=:n 2h—n ’
where
m(n)
a(n)= 3 1
J=m(n—-1)+1
and
m(h)
B(h) = y bici P,

k=m(h—-1)+1
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By the Schwarz inequality, the last line in (16)

9\ 1/2 o o
42%%(22§@

n=1 n=1h=n

17)

Since a(n) < C4(m(n)P? — m(n — 1)#/?) we have

1/2
— 2 2
) = [121)2,

B B
®* m(n)"—(m(n-1 i
(18) L<(G)’Y (n) ;i ))sq;Zkﬁ%p
n=1 k=1
Also,
00 B(h) h 1/2
I)/? = ( Z oF Z 2")
h=1 n=1

(19)

0 /91 o (9—2)/(2q)
< Lu) (Ll
1

since ((2 — p)q)/(g — 2) = p. Using (16), (17), (18) and (19), we see that the

left-hand side of (13)
00 1/2 00 (9—2)/(2q)
< CB( Y nﬁ_lc,{’) ( Y c,{’) .
n=1

n=1
This gives us the right-hand side inequalities in (13), (14) and (15).
We now obtain the left-hand side inequality in (14). Set
o0
bi=cp/ Y cf, VEkx>1.
k=1

For this choice of {b,} the term in the center of (14)

0 1 © 1/2 0 -1/q
| E[5E#) |[Z«]
j=1 J k=j k=1
00 1 2]—1 1/2 00 _1/(1
2| E(5E ] |[£e]
j=1 J k=j k=1
00 00 -1/q 1 00 1/p
> Zcé’j_l)(Zc,f) 25( c,{) .
j=1 k=1 k=1

It is clear that the left-hand-side inequality in (14) also holds when ¥¥_,cf = .
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We obtain the left-hand-side of (15) in a similar fashion. Assume that 0 <
©_kP7lc? < o0 and set

kﬁ—1c2
b= ————, VEk>1.

PR
k=1

For this choice of {b,)¥_, the term in the center in (15)

( : (jH i.k’g“‘c;‘t)w)(glkﬁ—lcg)_m

J=1 k=j
1 . 2j-1 \V?\/ & -1/2
2T-A)V 0 PPN o Y kPTG
k=j

k=1
1
2(1—ﬁ)V0(

|\

s

I\

0 -1/2
1‘*)( » kﬂ-lc,%)
k=1

108

J

\%

1 o 1/2
B-12
2[?\/2( P cj) :
J=1
The result follows. As above, the inequality under discussion also holds when
TX_ kPl = 0.0

LEMMA 6. Let x, = {x,(t)}5-, be a sequence of independent
Ornstein—-Uhlenbeck processes as defined in (4). Define the sets of integers
(20) I,={k: A, <1} and I,={k:2P" <X, <27}, Vp>1.
Let

(21) b, = Sup ay (b, = 0 if I, is empty)
and
b,
(22) = fg}; o
Then
© q, 1/2 0o 1/2

(23) E sup |{xx(8)}|,=C ( Y ]t Y cf,) ,

te[0,1] k=1"k p=1

where C is a universal constant. Moreover, when the sums in (23) are finite, x,
is a.s. a continuous function in 12

PROOF. In what follows C stands for a universal constant but not necessarily
the same one at each step. Let ©_,a2 < 1, where {a,}¥_, is a sequence of real
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numbers and set B = X af. Let

S({a,)) = fl/z(glaioz(u))l/z

u(log1/u)"*

Since E||{x4(0)}]ls < C2_,a,/A)/? it is clear from (12) that what we must do is
find an upper bound for

(24) sup  S({a}).

{ap): T2 <1

We have

o 1/2
| £ £ e
(25) S({e)) < ¥ —

J=1

j1/2

which by (11), (20) and (21)

<CY =y (z Laios+ T L oo )1/2

1-11 p<j kel, p>j kel,
1/2
(26) = Cz 1/2( _Jpzs:j » T pz;rj P2p)
o 9=J/2 1/2 | b 1/2
cof Sl zm) ok ol
pP<Jj Jj=1 p>J
(27) = A + B.

By changing the order of summation we have

o 9=J/2

A<CE —r L Bb”
1) psj
© 9-p/2
(28) <C Z Wﬁpb}a/z + Bob(l)/2
p=1

[~<)
<CY 277/8,b”

Therefore

0 1/2 0 a 1/2 © g 1/2
(29) sup A< c( Y —”) < c( Y —5) < c( —") .
{By}:ZBy<1 p= p=0kel, Ak k=1 "k
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Also we see that
1/2
(30) sup B< sup CE 1/2(2 ) ,
{B}:TBE=1 {Bp}:ZBi<1 J= 1/ p2j

where c, is defined in (22). Since c,, is nonincreasing we have by (14) of Lemma 5
that the second term in (30)

w 1/2
(31) < C( Y cﬁ) .
pr=1
Finally, we note that
(32) sup S({ex})< sup A+ sup B.
(o4} Caf <1 (B):EBIs1  (B):IAPs1

Thus (23) follows from (32), (29), (30) and (31). .
Suppose that the sums in (23) are finite. Define x/ y = {x}(¢)}¥-,, where

xp(t) = { (1), z:?\f N,

Consider x, = {x,(t)}¥-, and assume that lim,_ A, = co. Given an integer
M > 0, one can always choose N such that A, > 2M~1 k> N. Now consider
x{ x and the numbers b, and c, given in (21) and (22) for this process. Since
b, = 0 for p < M we see that for x; y,

Cp = Car p=1...,.M-1,

and therefore

(=]

(33) Y cE=Mcy+ ) i
p=1

p=M+1

Since ¢, is nonincreasing and, by assumption, X%_ 10;‘; < o0, we see that both
terms on the right-hand-side of (33) go to 0 as M — . Therefore there exists an

N(e) such that
(34) E sup let Nellz < €

te(o,

since, of course, limy _, X% ya,/A, = 0.
Now suppose that sup,A, < c. Since (6) holds we see that lim, ,  a, = 0.
Consider x/ y in this case. It is obvious that

0
(34a) z cZ < sup a,.

This last inequality and (6) show that (34) also holds when sup,A, < co.
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Note that for any p > 0 and § > 0,

P sk, = x> 3)
(s—t)<¥6: s, te[0,1]
A2
(35) <Pl s (T ne)-sOf] >
(s—t)<8:s,t€[0,1] \ k< N(e)
L2
+ 2P sup( Y |xk(t)|) >pl.
t€[0,1] \ k> N(e)

Given ¢ > 0, we see from (34) that the last term in (35) can be made arbitrarily
small by choosing N(¢) sufficiently large. The first term on the right-hand side of
the inequality in (35) goes to 0 as 8 —» 0 because the Ornstein—Uhlenbeck
processes are continuous. Thus we see that for all p > 0,

lim P( sup llxg = 2|0 > 3p) =0
820 \(s-t)<é: s, tef0,1]

which gives us the a.s. continuity of x, in {2 O

Proor oF THEOREM 1. Suppose sup,A, < co. Using the notation of Lemma
6, we see, as in (34a), that

o0
Y. ¢2 < supa,
p=1 k>1
which is finite since (6) holds. Thus it follows from Lemma 6 that x, is a.s.
continuous in /2 in this case.

Suppose inf A, > (f(x,) V 1). By (7), m = sup, f(a, V x;)A;' < . Replac-
ing f by f/m, in case m > 1, we may assume, without loss of generality, that
flap VvV x)A;' <1, V k&, ie, that a, V x; < f"%(A,), V k. In the notation of
Lemma 6 and using the fact that f~!(x)/x is nonincreasing for x > f(x,), we
have V r > p,

b wmva N @) )
Therefore

,  [7'(@2?)

%<

00 2 :
and so, X5_,c, < oo if

(36) j‘l/f(xl)f—l(%) du < .
0

The equivalence of (36) and (5) follows from integration by parts. We now use
Lemma 6 to see that x, is a.s. continuous in /2 when inf A, > (f(x,;) V 1). This
completes the proof of the first part of Theorem 1 since, in general, we can prove
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éontinuity separately for those terms in which A, < (f(x;) V 1) and for those in
which A, > (f(x,) V 1). The proof of the statement that this result cannot be
improved will be given in Remark 9. O

PROOF OF COROLLARY 2. Let f(x) = x(log* x)", r > 1,in (5). O

It is clear that f(x) can be taken to be smaller than x(logx)” for r > 1.
However, Corollary 2 is false if r is taken to be 1. To see this, note that a
necessary condition for {x,(¢)}¥_, to be continuous in [%? is that
SUPy, 5 £, B SUD;  [0,1)1%x(2)| = 0 as ky = oo. It follows from Fernique (1975), The-
orem 7.2.2, and Marcus and Pisier (1981), Chapter 2, Lemma 3.6, or from the
left-hand-side of (12) that for A, > 4,

1/2 Ok(u)
E sup |x,(t)]=C ————du
te[o,lll A0 (fo u(log1/u)"? )

1/2

a, 1/2 du
37 >C|— _—
(37) (%k) fl/xku(logl/u)l/2

a, )2
2|2 orng”
}\k

where C > 0 is a constant independent of k, not necessarily the same for each
occurrence.

Now let {a,}¥-, and {A,}¥_, be such that (6) holds and inf A, > 4. Then,
since @, < A,, V k > k, sufficiently large, we see by (37), that
ap
Ak
implies that {x,(¢), t € [0,1]}%_, is discontinuous in /2. On the other hand, we
see from (8) that for r > 1, '

limsup( )(log a,) >0

k— o0

ag r
sup(— (loga,) <
B\ Mg

implies that {x,(¢), ¢ € [0,1]}%_, is almost surely continuous in /2.

x, is almost surely in /2, for ¢ fixed, if ¥¥_,a,/A, < oo but as seen above it
may be discontinuous. The following example illustrates some curious path
behavior for such an /2-discontinuous process.

ExXAMPLE 7. Let x, = {x,)%_, be as defined in (4) with
a, 1 1 ( k%x?

(38) =— and A,= —exp 5

, Vik>1.
A k2 )
Then

lim sup |x,(¢)|=x, as.
k= 0g<t<T
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ProoF. The following inequality is due to Newell (1962): For any x > x,,

A\ 12
—k) x, AT
Qayp

b

P( sup |x,(¢)] > x) =1-F
0<t<T

where F(z,s) = [exp(—A(2)s)](1 + O(&(2))) + O(e(2)exp(— Ay(2)s)) is given
in Dawson (1972) and where

1 7\1/2 22 1+1+3+
Al(z)~(2) P (z 23 28 )’

2 1/2 22
e(z) = (—) 2zexp(——
T 2

(log z + O(1)),

Ay(2)>2

(all O terms are uniform in s as z = o0). In particular, &(z) = O(exp(—22/4)).
For x > x,,

P( supT|xk(t)| > x)

0st<
AL\ V2 AL\ V2 A
<1-(1+0fe (—k) x)) exp —K(—,f) xexp(——kxz)AkT
a, a, 2a,,
}\ 1/2
+ Ole (—’1) x)exp(—2}\kT)
ap
1A, A\ A,
- - _ 2|2k 2 2 Zk _ Dk o
<1 - exp KxTexpl 2(ak(x xo))])\k( ak) exp 2akx0)

A
+ O(exp( - —kx2))
4a,
for some constant K. Using the hypothesis and the fact that Xa,/A, < oo, we
see that the right-hand side of the inequality is summable in k. [Note: if ¢, > 0

and ¥1/c, < oo, then L¥_ (1 — exp(—e %)) < ¥y e * < X¥_1/c, < o0.]
Therefore, by the Borel-Cantelli lemma,

P( sup |x,(¢)|> x i.o.) =0.
0<t<T

Similarly, for x < x,, we use Newell’s expansion for P(sup, _, . 7/x,(¢)| < x) and
show for each k that this probability is dominated by a term in a convergent
series. Hence

P( sup |x,(¢)]| <« i.o.) =0.
T

0<t<

Consequently, lim,, _,  sup, ., . 7|x.(2)| = x, as. O
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PrOOF OF COROLLARY 3. If sup,a, < oo, then the corollary follows from
Lemma 6. Otherwise let a; = sup;_,a, and let {a, )32, be the largest subse-
quence of {a}}¥_, such that a,; is strictly increasing and such that, if there are
two or more candidates for a k(j)» We choose the one with the smallest subscript.
Define, for x > a,,

(38a) f(x) = M, Uiy <X < Apary Vi1,
k(j+1)
and note that f(x)/x is nondecreasing because A,/a, is nondecreasing by
hypothesis. Also note that, by construction, if a, ;) < @, < @), then k > & i+
80 @/} < @ ji1y/Apj+1)- Thus the function f defined in (38a) satisfies (7).
Since a,;, = a,, we have

o f(x) 2 Mgandag,

f°° dx _ i Apiir akmuﬂ

(39)
[ee] oo
Arj+1 Qg Qpi1 a,
= Z U+ )log (J+1) < Z + log* +1
j=1 MG+ Ak ) ko1 Meat ay
since, for j > 1,
k=k(j+1 k(7+1
Vay @y MO a,
Y log >—— Y log
k=k(j)+1 ’\k Ap-1 )\k(j+1) k=k(j)+1 Ap_

_ Qi+ log Qrij+1) .
Arian k)
By (9) and (39) the function defined in (38a) satisfies (5) and (7). Since (6) holds
by hypothesis we see from Theorem 1 that x, is continuous in /% a.s. O

The upper and lower bounds in (12) are equivalent. Therefore, under sufficient
smoothness conditions on {a,/A,} and {)A,}, the right-hand side of (23) is also a
lower bound. Nevertheless, we will not systematically develop necessary condi- "
tions for the boundedness of x, in /* but will instead present some broad classes
of examples in which we have sharp estimates for E sup, 10, 17/1%¢ll2- We will also
give some results in [? because they follow so easily from Lemma 5.

THEOREM 8. Let x,= {x,(t)}¥_, be a sequence of Ornstein—Uhlenbeck
processes, where x,(t) is as defined in (4). Let a;, and \,, k > 1, be as defined
in (4) and assume that a,/\, is nonincreasing in k.

(i) Let A\, < 2%,V k> 1 (resp. A\, > 2%", ¥ k > 1), B > 0. Then there exist
constants 0 < cg, Cy < oo depending only on B such that

. 1/2
CB( y k(ﬂl)voﬁ) <
>\k

k=1

E sup || {xk( t) } ”2
(40) tef0,1]

w a, \ 2
< c,,( k<ﬂl>V°—k) .
k=1 >\k
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(i) Let A, < 2%,V k> 1(resp. A\, > 2K,V k > 1),1 < p < 2. Then there exist
constants 0 < c,, C, < oo depending only on p such that

w [s{£(2)7)"s

ProoF. Define

tef0,1]

% p/2\1/P
B s Il <ol £ (2]

o 1/2
(42) o(u) = ( )y a?of(u))
j=1
and observe that ®(u) is increasing in u. We see that for 8 > 0,
D(u
(43) I(®) = fw% du = /log2 Bf°°c1>(2—°”)uﬂ/2-l dv.
0 1

u(logl/u)

We can find constants 0 < g, G, < oo such that ggk?/?~! < (k — 1)#/*71 for
k> 2and (k+ 1)??71 < Gy k/"'/2 2 for £ > 1. Thus there exist constants 0 < d,
D, < oo such that

(44) dy ¥ EPP0(27%) < (@) < D T kP27 10(27F).
k=2 k=1

Note that for A, < 2*°,

o(u) < 2>\—2k u for u2® <1,
k

and

of(u) <2>\ for u2*’ > 1.
k

Under the alternative hypothesis, if A, > > 2 then, by (11)
a
o(u) = (Z))\—: for u2*’ > 1.
Let ¢ = a,/\,. We see that

r_1 1/2
(45) o(27%) < (2 Y aZc22/’ok ) +

o 1/2
2.2
J=1

i=k

and, under the alternative hypothesis, that

1/2
2

(46) o(27%) > (; )y af.cf) .
=k

It follows from (44), (45) and (46) that there exist constants 0 < dj, Dj < oo
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such that

0 0 1/2
[d,ng kB/H( > afc}) s]I(cb)
=1

j=k
(47)
0 k—1 5 s 1/2 ©0 00 1/2
<Df| YR X afel2727F |+ ) k/’ﬂ—l( > af.cf)
k=1 Jj=1 k=1 j=k
Note that
% k-1 . 172 & k-1 . ,
- o — k 2 B /20— kP /2
YRR Y afei2l2 < L RPATY N aje2l 2k
k=1 J=1 k=1 Jj=1
0 o0
=Y ajcj2f”/2 Y gP2-1g-k 2
Jj=1 k=j+1 .
(48) "
<Kg) ayc;jh”
j=1
00 /91 & 1/p
= Kp( )y |aj|q) ( > cfj_ﬂpﬂ) )
J=1 J=1

where 1/p + 1/q =1 and K, is a constant depending only on S. This follows
since kB/2-12-#/2 ig decreasing for k > j for j big enough, so we may use an
integral comparison. We can now obtain upper bounds for
sup  I(®)
{ar}: ll{ap}llg=1

by using (47), (48) and Lemma 5; and, under the alternative hypothesis, lower
bounds by (47) and Lemma 5. Using these bounds and the fact that

1/p

o et = mmo = £ ot

k=1

for constants, 0 < ¢/, < C; < o, in (12), we get Theorem 8. O

As an application of Theorem 8 consider the sequence {x,(¢)}¥_, given in
Example 7. Although

(49) lim sup |x,(¢)] =%, as.,

k=0 g<t<T

it is not clear from the methods used in the example whether, in the case when
x, # 0, we have

(50) sup [{x4()}], = o as.
0<t<T
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That (50) is true follows from Theorem 8. Note that in Example 7

2
1 ((nkxo) ) g
S0 S

A nk = ﬁexp
for k& > k, sufficiently large and for x, > {/2log2 /n, V n > 1. Thus for x, >
V2log2 /n we see from the left-hand side of (40) that

(51) Eoggngl{xk(t)} l, = oo-

(Note that the value of 0 < T < oo is immaterial so we can take it to be 1.) It
follows from (51) and Jain and Marcus (1978), Chapter 2, Corollary 4.7, that (50)
holds for x, > {/2log2 /n and, since n can be taken as large as we want, it holds
for all x,.

REMARK 9. Theorem 1 is best possible in the following sense. Suppose that
we can find a function f,(x) that satisfies the hypotheses of Theorem 1 except
that instead of (5) holding we have

(52) I fl(x>

Now let us consider a sequence of independent Ornstein—-Uhlenbeck processes
{x,(2))2, defined as in (4) with A, = 2¥" and @, = f{{(A,) A Ak 75,1 <8 <.
As we remarked at the end of the proof of Theorem 1, (52) is equivalent to
-1 2k
g )

k 2*

which, by a change of variables, is equivalent to

1 2k3
(53) Zk” 1f12( ) _ %.
However, (53) and the deﬁmtlon of a, imply by (40) that

E sup [[{x(t)}ll, = oo
te[0,1]

which, as we remarked following (51), implies that sup,¢ o 1;[{x.(¢)}ll5 is un-
bounded a.s. Therefore Theorem 1 is false if (5) does not hold.

The right-hand-side inequalities in Lemma 5 generalize some interesting
inequalities of Boas (1960). One of these which plays a role in the study of
Gaussian processes [see Jain and Marcus (1978), Chapter 4, Lemma 2.2] is the
following: Let {c,}¥_, be a nonincreasing sequence of nonnegative real numbers.
Then there exists an absolute constant C such that

£ on{ £ "<o[ £.)

j=1 k=1
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This inequality is given by (14) with p = ¢ = 2 and with the specific sequence
b2 = c}/xP_,c2, V k > 1. Of course, in (14), we show that the inequality is valid
for all sequences {b,}¥-, satisfying ||{b,}|], < 1. The interested reader can
check that (13) generalizes several of the inequalities given by Boas (1960),
Theorem 2, (4).

Finally, let us note that whereas a great deal is known about
Ornstein—Uhlenbeck processes we only used the fact that they are Gaussian
processes with a particular covariance function. Our methods can be equally well
used to study the a.s. continuity in /P of sequences of independent Gaussian
processes with stationary increments. For example, let {Z,, (¢)}%-, be a sequence
of independent mean zero stationary Gaussian processes satisfying

(54) EZ, (8)Z, [t) = exp( Ails —¢%), O<ax<2.

All the results we have obtained 1mmed1ately extend to these processes because
of the following simple consequence of Theorem 4.

THEOREM 10. There exist constants 0 < ¢, , < C, , < oo depending only on
0<ax<2andl<p< o such that

o pE 300 [{Z0 (D} < B sup |{Z o}, < CopB s9p [{Zes(D} s

)

where {Z,, (1)} is a sequence of mdependent Ornstein—Uhlenbeck processes.

PROOF. Define

a
0} o(u) = 255 (1 = M)
k
and

2,(u) = (i())/

For I as defined in (43), we have

_ L e O (u)
1(e.) = \/;j;) u(log1/u)"* du

f2 a ®,(u)

o u(log 1/u)1/2

This is the I function for the Ornstein-Uhlenbeck process with a minor change
in the upper limit of integration. The upper limit can be brought back to 1/2 by
altering the domain of the process, i.e., by considering {Z, (B¢)}¥-, where
B = 2'71/% and then, by stationarity and the triangle inequality, extendmg the
domain, 1f necessary, back to [0,1]. [Note that we use the monotonicity of
o4 (1) very strongly.] O



84 I. ISCOE, M. B. MARCUS, D. MCDONALD, M. TALAGRAND AND J. ZINN

REFERENCES

ANTONIADIS, A. and CARMONA, R. (1987). Eigenfunction expansions for infinite dimensional Orn-
stein—Uhlenbeck processes. Probab. Theory Related Fields 74 31-54.

Boas, R. P., Jr. (1960). Inequalities for monotonic series. J. Math. Anal. Appl. 1 121-126.

DawsoN, D. A. (1972). Stochastic evolution equations. Math. Biosci. 15 287-316.

FERNIQUE, X. (1975). Régularité des trajectoires des fonctions aléatoires gaussiennes. Ecole d 'Eté
de Probabilités de Saint-Flour 1V-1974. Lecture Notes in Math. 480 1-96. Springer,
Berlin.

FERNIQUE, X. (1987). Fonctions aléatoires a valeurs vectorielles. In Proc. Sixth Internat. Conf.
Probab. Banach Space. Progress in Probability. Birkhiuser, Boston. To appear.

JaIN, N. C. and Marcus, M. B. (1978). Continuity of sub-Gaussian processes. In Probability on
Banach Spaces (J. Kuelbs, ed.) 81-196. Dekker, New York.

KOTELENEZ, P. (1984a). Continuity properties of Hilbert space valued martingales. Stochastic
Process. Appl. 17 115-125.

KOTELENEZ, P. (1984b). A submartingale type inequality. Stochastics 8 139-152.

MaRcuUs, M. B. and PISIER, G. (1981). Random Fourier Series with Applications to Harmonic
Analysis. Ann. of Math. Studies 101. Princeton Univ. Press, Princeton, N.J.

NEWELL, G. F. (1962). Asymptotic extreme value distribution for one-dimensional dlffusmn pro-
cesses. J. Math. Mech. 2 481-496.

TALAGRAND, M. (1987). Regularity of Gaussian processes. Acta Math. 159 99-149.

1. IscoE M. B. MARcuUS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
CASE WESTERN RESERVE UNIVERSITY TEXAS A & M UNIVERSITY
CLEVELAND, OHIO 44106 COLLEGE STATION, TEXAS 77843

M. TALAGRAND

D. McDoNALD EQUIPE D’ANALYSE, TOUR 46
DEPARTMENT OF MATHEMATICS U.A. AU C.N.R.S. N° 754
UNIVERSITY OF OTTAWA UNIVERSITE PARIs VI
OTTAWA, ONTARIO 4 PLACE JUSSIEU
CaNADA K1N6N5 75230 PARr1s CEDEX 05

FRANCE

AND
J. ZINN DEPARTMENT OF MATHEMATICS
DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY
TEXAS A & M UNIVERSITY 231 WEST 18TH AVENUE

COLLEGE STATION, TEXAS 77843 CoLuMBUS, OHIO 43210



