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ON THE LIMIT DISTRIBUTION OF MULTIPLICATIVE
FUNCTIONS WITH VALUES IN THE INTERVAL [ -1, 1}

By JESUs DE LA CAL

Universidad del Pais Vasco

The proof of the existence of a limit distribution for arithmetic multi-
plicative functions with values in the interval [~ 1, 1], and characterizations
of degenerateness and symmetry for such a distribution, can be obtained in
a simple manner by combining the famous mean-value theorem of Wirsing
with the method of moments of probability theory.

1. Introduction. A real-valued function g defined on the set N of natural
numbers is called multiplicative if it is not identically 0 and g(mn) = g(m)g(n)
whenever m and n are relatively prime. Such a function has a probability
distribution P,g~! with respect to the probability measure P, on N, assigning
the weight 1/n to each k£ < n. If the sequence (P,g~ ') converges weakly to a
probability measure u on the real line, then p is called the limit distribution
of g.

A well-known three-series theorem, early proved by Bakhstys and Galambos
in the case g is strongly multiplicative, and later extended to general real
multiplicative functions by Levin, Timofeev and Tuliaganov [see Elliott (1979)],
provides both necessary and sufficient conditions for the existence of a nonde-
generate limit distribution. Moreover, the symmetry and continuity of this
distribution are characterized. However, if we except the question of continu-
ity, the proof is very involved, making extensive use of the Mellin-Stieltjes
transforms and mean-value theorems for complex multiplicative functions.

The aim of this paper is to show that if we reduce to the case of multiplica-
tive functions with values in the interval [ -1, 1], things are easier and we can
go further into the question of degenerateness. More precisely, we shall give a
simple proof of the following net result.

THEOREM 1. Let g be a multiplicative function with values in the interval
[—1,1). Then the limit distribution of g always exists. Moreover:

(a) If the series
1-g%p)

(1) g -

diverges, then the limit distribution is degenerate at 0.
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(b) If the series (1) converges, then the limit distribution is not degenerate
at all (the case g = 1 excluded), and it is symmetric if and only if either

() g(2*) = —1 for every positive integer k, or

(ii) the series

1-g(p)

(2) Y ————
P p

diverges.

(In this statement and others below p ranges over the set of prime
numbers.)

2. The tools for the proof. The proof is based upon the following two
results. The first is a theorem of Wirsing, later extended to complex functions
by Delange and Halasz [see Elliott (1979) for proof, history and background].

THEOREM 2. Let g be a multiplicative function with values in the interval
[—1,1]. Then the mean value

M(g) = 1131;1—1 Y. g(m)

m=<n

always exists. Moreover, M(g) # 0 if and only if

(a) there is at least one positive integer k so that g(2%) # —1, and
(b) the series

> 1-g(p)

P b

_ converges.

When these conditions are satisfied the limit has the value
i g(p™)

oz}

p p m=0 P

The second result is merely the version that we need of the method of
moments of the probability theory. This method has been used with success
in other problems of the probabilistic theory of numbers [see for instance
Billingsley (1974)].

THEOREM 3. Let (u,) be a sequence of probability measures on the real line
concentrated on the interval [—1,1], and for k = 1,2, e et

— k

the kth moment of w,. If the limz:ts

o, = lima;n), k = 1, 2,. ey
n
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there exist, then (u,) converges weakly to a probability measure concentrated
in [—1,1] and whose moment of order k is «a,.

We recall that a probability measure on the real line concentrated in a finite
interval is determined by its moments and, in this case, the probability
measure is symmetric if and only if its moments of odd order are null.

3. Proof of Theorem 1. Put p, = P,g~" and let E,, be the mathematical
expectation with respect to P,. Then (with the notation of Theorem 3) for
k=1,2,... we have

ol =E,(g")
=n"1' ) g*(m).
m<n
Since g* is also multiplicative and takes values in [— 1, 1], Theorem 2 guaran-
tees the existence of the limits

a; = limag‘), k=1,2,...,
n

and therefore, by Theorem 3, g has a limit distribution u whose %2th moment
is a,. Furthermore, Theorem 2 informs us about the form of these moments.

(a) If the series (1) diverges then we deduce from Theorem 2 that a, = 0
and consequently u is degenerate at 0.

(b) Suppose that the series (1) converges. In this case a, # 0 and u is
degenerate if and only if a, = (a,)? i.e.,

R

P P) \m=0 P p PJ\mz0 P
Let p be a fixed prime number. By the Cauchy-Schwarz inequality
2 ;
g(p™) 1 g%(p™)
m=0 P m=0 m=0 p

(4) o o)
_(y_ 2 8°(p
(1 p) (mZZO pm

and therefore equality (3) is only possible if for every prime p we have the
equality in (4), i.e., if the sequences (1,1,1,...) and (1, g(p), g(p?),...) are
proportional. Consequently, equality (3) implies g(p™) = 1 for every prime p
and m = 1,2,..., or, in other words, g = 1.

Finally, we deal with the question of the symmetry. By taking account of
Theorem 2 and the observation at the end of the preceding section we have
that, if neither of conditions (i) and (ii) is verified then a, # 0 and p cannot be
symmetric. Conversely, if (i) holds then

(5) g¥#l(2") = -1, km=12,...,
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and if (ii) holds then

(6) Yy ———— " =, k=12,...,

because
1-g%"(p) 2 min(1 -g(p),1).

Now any of conditions (5) and (6) implies a,,_; = 0 for every positive integer
k and hence p is symmetric. This completes the proof. O
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