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BOOTSTRAPPING GENERAL EMPIRICAL MEASURES

By EvaRiST GINE! AND JOEL ZINN2

Texas A & M University

It is proved that the bootstrapped central limit theorem for empirical
processes indexed by a class of functions % and based on a probability
measure P holds a.s. if and only if € CLT(P) and [F2dP < », where
F = sup;c &|f|, and it holds in probability if and only if ¥ & CLT(P).
Thus, for a large class of statistics, no local uniformity of the CLT
(about P) is needed for the bootstrap to work. Consistency of the bootstrap
(the bootstrapped law of large numbers) is also characterized. (These
results are proved under certain weak measurability assumptions on %.)

1. Introduction. Efron (1979) introduced the “bootstrap,” a resampling
method for approximating the distribution functions of statistics

H,(X,,...,X,; P), where the random variables X; are independent, identi-
cally distributed with commou law P [i.i.d.(P)]. Since the empirical measure
(1.1) Pn(‘”) =n"! Z 5X,-(w)

is (a.s.) close to P, one may hope that, if an, ..., X,, are i.i.d.(P(w)) Gi.e., the
X . are obtamed by sampling from the data thh replacement) then the
distribution of H (w) = H (X..,...,X,,; P(0)) is w-a.s. asymptotically close
to that of H, (Xl, .. ; P). In turn the distribution of the bootstrapped
statistic, H (o) can be approx1mated by Monte Carlo simulation. This sugges-
tive method has been validated with limit theorems for many particular H o)
by Efron (1979), Bickel and Freedman (1981), Singh (1981), Beran (1982,
1984), Bretagnolle (1983), Gaenssler (1987) and others. In this article we offer
a justification of the bootstrap for functions H, of a special type, namely for
continuous functions of the empirical measure viewed as an element of /“(%),
for classes of functions #. Such H include the Kolmogorov—-Smirnov and the
Cramér-von Mises statistics (in any number of dimensions) as well as the
statistics considered in Beran and Millar (1986).

Let (S, .7, P) be a probability space, let X,: (S, ", PY) — (S, 7, P) be
the coordinate functions [i.i.d.(P)], let P (w) be asin(1.1) for w € SN let X;’J,
JX— 1,...,n, be iid(P(w)), let P (w) be the empirical measure based on
{ 37 » le.,

njij=

(1.2) P(o)=n"1Y 63,
n Xy,
j=1
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and let % be a class of measurable functions on (S, .) such that

(1.3) F = sup |f]
fe &

is finite for all s € S. We then prove that, under some measurability on .#, the
conditions

(1.4) f F2dP < »

and

(1.5) n'?(P, — P) - Gp weakly in [*(%)

are necessary and sufficient for

(1.6) n'/2(B(0) — P,(0)) > G weakly in [*( %), w-a.s.

for a centered Gaussian process G independent of w. Then G coincides with
Gp, the Gaussian limit in (1.5).

Thus, this result completely settles, modulo measurability, the question of
the validity of the bootstrap for the CLT for empirical processes indexed by
classes of functions (or sets).

The main feature of this theorem, aside from its generality, is that no
assumptions are made on local uniformity (about P) of the CLT (1.5) for the
bootstrap CLT (1.6) to hold [this was unexpected in view of, e.g., the comments
in Bickel and Freedman (1981), page 1209]. Another new feature is necessity of
the integrability condition (1.4) and the usual CLT (1.5) for the bootstrap.

The proof relies on several results and techniques from probability in
Banach spaces. Among other such results and techniques, we use symmetriza-
tion by randomization in an essential way [an idea in Pisier (1985) has been
useful in connection with this], results of Le Cam (1970) on Poissonization and
on the CLT in Banach spaces, integrability of Gaussian processes [e.g.,
Fernique (1984)], Hoffmann-Jgrgensen’s (1974) inequality and convergence of
moments in the CLT in Banach spaces [de Acosta and Giné (1979)], results on
empirical processes from Giné and Zinn (1984, 1986) and, particularly, a result
of Ledoux, Talagrand and Zinn [cf. Ledoux and Talagrand (1988b)] on the
almost sure weak convergence of Y7 ,g,X/(w)/n'/? g, iid. with
[5(P{lgy] > tH'/?dt < = (i.e., g € Ly ). Actually, it is this last result that is
at the base of our proof. The Ledoux-Talagrand—-Zinn result uses for its proof
a recent extension of Yurinski’s decomposition as applied to E_|Xg,x;| —
E|X g, X;||. This was observed by Ledoux and Talagrand (1988a) in the proof of
one of the main results about the law of the iterated logarithm in Banach
spaces.

The above techniques (except for the result of Ledoux, Talagrand and Zinn)
are also used to obtain a similar result for the bootstrap in probability. The a.s.
results are given in Section 2 and Section 3 contains the ‘“‘in probability”
result.

The haatstranned law of the 1arse numbers, mnth easier 1d prove Yhan the
CLT, is also characterized.
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2. The a.s. bootstrapped limit theorems. Given P, a probability mea-
sure on a measure space (S, .”), we let

(2.1) p%(f,g)=/(f—g)2dP—(f(f—g)dP)z, f,8 €2(P),

(2.2) e}(f,8) = [(f~8)"dP, [, g€ £y(P)
and, given a collection % of P-square integrable functions on (S, ), we let

s ={f-g:f.g€ F,ep(f,8) <8}, 6>0,

(2.3) F = {f-g: fgcF)
and
(2.4) (7 ={(f-8)% f.ge F}.

Gp = {Gp(f): f€ F} denotes a centered Gaussian process indexed by .7,
with covariance

(25)  EGp(f)Gpl(g) = [fgdP — [fdP[gdP, f,gc F

and Zp = {Zp(f): f € 7} denotes the centered Gaussian process with

(2.6) EZy(f)Zp(8) = [fgdP, f.g€ .

We recall Hoffmann-Jgrgensen’s (1984) definition of weak convergence in
/“(F), the space of bounded functions % — R with the sup norm topology: a
sequence {Y,)°_; of random elements of /*(%) converges weakly in /(%)
if there exists a Radon probability measure y on /(%) such that for all
H: /(%) — R bounded and continuous,

lim E*H(Y,) = fde.
Then we say that %€ CLT(P) if the sequence {n'/%(P, — PXf): f€ ¥}
converges weakly in /“(%) to a Radon centered Gaussian probability measure
vp on /*(F). yp is the law of Gp which, by virtue of the Radonicity of yp,
admits a version with bounded uniformly continuous paths on (%, pp), and
(, pp) is totally bounded [see, e.g.,, Giné and Zinn (1986)]. We continue
denoting this version by Gp.

If 7 satisfies certain measurability conditions, then P, can be randomized
(i.e., we can replace §y, — P by £,6x with & symmetric, independent of X;
and satisfying certain integrability conditions) and Fubini’s theorem can be
used freely. These conditions, spelled out in Giné and Zinn (1984), are that &
be nearly linearly deviation measurable for P, NLDM(P) for short, and that
both %2 and &2 are nearly linearly supremum measurable for P, NLSM(P).
In this paper if % satisfies all of the above conditions with respect to P we
write % € M(P). To see why % € M(P) suffices we note, as in Giné and Zinn
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(1984), Remark 2.4 (2), page 935, that the measurability of the map

(Qpsevey@pyXyyenyX,) = sup{z ajf(XJ-)}

feG \j=1

implies, for example, the measurability for any M < « of the map

(x1,...,%,) > SuP{Z f(xj)IF(Xj)sM}

feG \j=1
by considering the composition of the map
(%4y...,%,) > (I(F(x) <M),...,I(F(x,) <M),xq,...,%,)

with the measurable map given by hypothesis. Actually close consideration of
the proofs shows that even weaker hypotheses suffice, but the best measurabil-
ity is not our concern here. We further note that if % is countable, or if
{P,);_, are stochastically separable in %, or more generally, if .% is image
admissible Suslin [Dudley (1984), page 101], then & € M(P).

The following proposition is the first step in the proof of the bootstrap CLT.
It is a version of Le Cam’s Poissonization lemma [Le Cam (1970); reproduced
in Araujo and Giné (1980), Theorem 3.4.8] for expectations.

2.1. LEMMA. Let B be a separable Banach space and let || - || be a measur-
able pseudonorm on B. For some n € N, let {X,}"_, be independent symmetric
B-valued random variables and let { (X))}, be their laws. Then
n n

< 2/nxndPois( y j(Xi))(x).
= i=1

(2.7) E|Y X,

1

12

[We recall that for a finite measure v, Poisv = e *®Y%_ »"/n! where
v" = v+ -+ v, that PoisCy; = (Poisv;)* -+ *(Pois v,), and that if v = 3(5,
+ 8_,) for some x € B, then Pois v = #(Nx) where N = N — N’ with N and
N’ independent Poisson real random variables with expectation 1/2; we will
call N a symmetrized Poisson random variable.] Here is a proof of inequality
(2.7): If X,; are independent, X;, = 0, £(X;;) = Z(X,) for j > 0 and N, are
Poisson with parameter 1, independent and independent of {X; ;}, then Fubini’s
theorem and convexity (E||X + Y| = E||X]| if X and Y are independent and

EY = 0) give
|

(1 _eﬁl)E”ZXi
= EN(EX“Z (N; A l)XiIH) <Ey

| <E|X (N, A DX,

T Y X,

i j=0

Ex

T Y X,

i j=0

=FE

= [lixlld Pois( L £(X,))(=).
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2.2. PrOPOSITION. Let B be a Banach space, let | ‘| be a measurable
pseudonorm, let n € N, let {x; }{‘ 1 € B, letan, j=1,...,n,bei.i.d. B-valued
random variables with Z(X, J=n"'L} .8, and let {e;}_ 1 {N} _, be,
respectively, a Rademacher sequence and a sequence of Lndependent sym-
metrized Poisson real random variables with parameter 1/2, both independent
of {X’nj}. Then

]_ n n n ~
(2.8) —(1 - e_l)E Z Eixi E; E Z N
\/g i=1 j=1 ’ i=1
Proor. We can write
an = ‘;1xlIA”’
where, for each j, the sets A;;, A,;,..., A,; are disjoint, the sequences

{A)-, J=1,...,n, are independent, and PA;; = 1/n,1,j =1,...,n. Let

{¢;;} be a Rademacher array independent of {A;;}. Then, by disjointness, the
vectors

sj(xIIAU,...,xnIAM) and (slijIAlj,...,enjxnIAnj), Jj=1,...,n,

all have the same distribution and, of course, they are independent for
different j’s. Moreover, by independence of {e; J} and independence between
{e;;} and {A,}, the vector (C5_e1;1, ..., Ej-18,,la, ,) is symmetric. Let {e/}
be a Rademacher sequence 1ndependent of {s, J} and {A ;1. Then these two
observations give

E ZEX E ZEJZxIIA =E Z ZgijinAi'
j=1 j=1 i=1 j=1li=1 ’
(29) “B|E £t x) - B 2 e ([ £ et
i=1\j=1 i=1 Jj=1
=E Z Z gijIAij X
= j=1

We now notice that by Khintchine’s inequality [see Szarek (1976) or Haagerup
(1981) for the best constant]

Hence, by Jensen’s inequality and (2.9), and since E|L}_s¢;;14 | does not
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depend on i,

E

)

]_ n
>—=(1-e YHE Ix;
RS PR

n
) stnj
j=1

which is the first inequality in (2.8). This proof is essentially taken from Pisier

[(1975), proof of Proposition 5.1].
Let e4,..., e, be the canonical basis of R” and for @ = Y a,e;, let ||a ||| =
I|IX a@;x;|, which is a pseudonorm on R”. Consider now the random vectors

13'= ZEUIAUei, j:].,...,n,
i=1 _
which are independent, symmetric and
1 n
(2.10) AX) ==X (5, 45..)
zn io1 i i

(i.e., Y; takes the values te;, i = 1,...,n, each with probability 1,/2n). Then,
IZ 75 1ei;1a, )2l = IIZ5-1Y; I This, (2.9), (2.10) and Lemma 2.1 give

E =E

& X,;
1

<2[il=l| dPois(% > (8., + 6el))(x)
i=1

™=

XY
j=1

J

=2E =2E

)

n -~
Z N;x;
i=1

)y Niei
i=1
which is the right-hand side inequality in (2.8). O

What is needed from the result of Ledoux, Talagrand and Zinn is the main
part of their proof, namely Lemma 5 in Ledoux and Talagrand (1988b). In the
empirical case one needs to complete the proof of tightness in a way different
from the original; we incorporate this in the proof of our theorem. First, the

lemma:

2.3. LEmma. Let (S, ., P) be a probability space, % an NLDM(P) class of
functions on S with ExF2 <, || - || any of the pseudonorms || - |, || - .5
8>0, X;: SN > S the coordinate functionals and {¢£;} a sequence of i.i.d.
symmetric real random variables with E¢? < «, independent of {X;} (actually
defined on another probability space). Let E, denote integration with respect to
only the variables {¢;}. Then,

(2.11) a.s. limsupn~'/?E,

n

£

i=1

glfiXi(w)

< 4limsupn~1/2E
n
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The bootstrap CLT is as follows.

2.4. THEOREM., Let € M(P) and let P be a probability measure on
(S, #). Let P,, P (w), w € SN, and Gp be as defined in (1.1), (1.2) and (2.5).
Then the following are equivalent:

(a) [F2dP < © and % < CLT(P).

(b) There exists a centered Gaussian process G on & whose law is Radon in

¢(F) such that, PN-a.s., n'/%(P () — P(w)) = G weakly in I"(F).

If either (a) or (b) holds, then G = Gp.

Proor. (a) = (b). Obviously, if N is a Poisson real random variable, then
J¢(P(N > t})*/?dt < . So, Lemma 1.2.4 in Giné and Zinn (1986) holds for

g, = N,, a sequence of i.i.d. symmetrized Poisson real random variables with
parameter 1/2; hence, their Theorem 1.2.8 [(a) = (e)] gives

(2.12) (&, ep) is totally bounded
and
no ‘
(2.13) lim limsupE| Y N6y /n'/?| =0.
50 n - ' Fy

[Here {X,} is independent of {N}}, and is as defined in the introduction, i.e., for
i € N, X, is the ith coordinate of (S™, /N, PV).] Let Ey denote integration
only w1th respect to {N,}. Then, (2.13) and Lemma 2.3 give

= 0.

(2.14) PM.as. lim lim sup E
550, .
8

Z Z\?1‘5)(,(“,)/’7'1/2

i=1

~ (2.14) and Proposition 2.2 then give (letting E, , denote integration only with
respect to {e;} and {4, })

n

1/2
Z gja}fnj(w)/n /

Jj=1

=0
Gy

(2.15) PN.a.s. lin}) limsupE, 4,
5 n '

and by symmetrization [we will use without further mention that for
{U.} independent, independent of {e;}, E|XZ(U; — EU)| < 2E|Z¢;U;|| and
E|ZeU; — EUYIl < 2E|2(U; — EUYI,

(2.16) PMas. ;in}) limsupE,||n/?(B,(w) — Py(®))lls =0
e n

If € CLT(P), so does .’ € CLT(P). Then, Theorem 1.4.6 in Giné and Zinn
(1986) gives sup; ¢ +|(P(w) — PXf?)| - 0 and sup, , c +|(P(w) — PXf — g)I
— 0 in probability. Since fF 2dP < o these limits hold a.s. [e.g., by a reverse
submartingale argument as in Pollard (1981)]. Therefore

(2.17) sup |(P(w) —P)(fg)|— 0 as.
f,.ecs
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and of course

(2.18) |P,(w) = P|-—0 as.

[We should note here that the proof of Theorem 1.4.6, loc. cit. contains a
typographical error (which in the end, is of no consequence for its validity):
The relation between entropies should read N, ,(¢, F(1)?) <

N, 5(¢/2A, (2)).] Call the subsets of " where (2.17) and (2.18) hold,
respectlvely, Q, and Q,, and let Q, be the intersection for all a« > 0 rational
of the subsets of .~ for which eventually max;_, F(X,(w)) < an'/2 It
follows from the Lindeberg-Feller theorem [as, e.g.,, in Singh (1981)]
that for o € Q; N Qy N Q1A P (0) — PL0E grite@; f) = Za;Gp (f)
weakly, for all {a;} C R, {f;} € Z. Thus, (2.16) and (2.12) imply the bootstrap
CLT (b) with G = G by, e.g., Theorem 1.1.3 in Giné and Zinn (1986) (which,
although given for the i.i.d. sequence case, holds, with the same proof, for
triangular arrays as well). ,

(b) = (a). We show first that if (b) holds then [F2dP < ». Note that the
convergence in (b) is actually weak convergence of Radon measures (for each
for which there is convergence) and therefore the CLT theory for separable
Banach spaces applies. The system {Y,, (w) = n =125y Xu, } is infinitesimal w-a.s.:
PM-as., for all &> 0, P{||f(X)|s> en'/? = I(F(X(w)) > en'/?)/
n — 0 by the law of large numbers (by monotonicity, 1t is enough to consider
rational £ > 0). Hence, since w-a.s. the sequence {Z‘, 1Y, (w)} is shift conver-
gent in law to a Gaussian limit, it follows from, e.g., Araujo and Giné (1980),
Theorem 3.5.4 that

nP I f(Xe)ls> 1'%} >0 as.,
that is,
(2.19) Y I(F(X,(w)) >n'?) >0 as.
i=1
Since if =™ I(F(X,(0)) > n/?) < 1 then L I(F(X(w)) > n*/?) = 0, (2.19)
implies that w-a.s. there is n(w) < « such that for n > n(w),

F(X,(»))/n'? < max F(X,(w))/n'? < 1.

This and the Borel-Cantelli lemma give ¥ P{F(X,) > n'/?} < «, that is,
(2.20) EF2(X,) < o.

Let fe 9 U . Then by hypothesis Z(n'/%(P, f - P,f)) =, L(G(f))
and by the converse CLT in R for triangular arrays, together with (2.19), we
have

lim ( £ 0 n = L fx)/m) | - ECGCH)

But, by (2.20) and the law of  large numbers, this limit is E(f(X,)* —
(Ef(X,))% We have thus shown

(2.21) G = Gyp.
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Moreover, since G, hence Gp, has a Radon law and since (2.20) holds, we also
have that (7, ep) is totally bounded. .

Next we prove PN-a.s. uniform integrability of {||n*/*(P (w) — P (o))l 5} -1-
By Theorem 3.2 in de Acosta and Giné (1979) it is enough to show
(2.22) sup E, max||d ., — P(w)||%/n <~ as.,

n J=n

where E, denotes integration with respect to {I Aij}‘ But the random variable
in (2.22) is bounded by

1
supE 40z — P,()|%= sup w > 16x,c) — P(o)|%
n n i=1

1 n
<4sup— Y, FYX,(»)) <> a.s.
n Mo

(by the law of large numbers, since [F 2dP < »). We thus have, by uniform
integrability,

Ey|n*?(P,(0) — P,(0))| -~ ElGel
(2.23) PMas., Al . 2( ; ) P70 foralls > 0.
Ey|n2(B(0) — P(0))| s = EIGpls
Denote by ||| - ||| any of the pseudonorms || - ||, § > 0, or || - |5 By Proposi-
tion 2.2 we have, with ¢ = (1 + e 1)/V2,
n n
PMas., CE|| L &dxw)/n || <E. a Y &;030 /nt/?
i=1 j=1 !
n

< Es,A Z 8‘](6}?% - Pn(w))/n1/2

(2.24) j=1
n
(o] emfJuzcorn
i-1

< 2E,||n*4(B,(0) — P(@))|| + ]| Pu(@) -

(2.23) and (2.24) give
noedy 1 noedy
lim supPr{|f Y. 1/);‘ >M) < —limsupE|E.|| ) 1/};‘ AM
n—o i=1 n M n—o i=1 n
1 . n 3i5xi
< I—W—Ehl‘:l_il:pEs i§1 7 AM
E|| o + 2E |G
< Il 6, I I1Gp i 50 as M — .
cM

The above inequality, by Hoffmann-Jprgensen’s inequality and EF4(X,) < o,
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implies
n

x 8i5xi/n1/2

i=1
In particular E|X7_e;6x /n|l5+— 0, hence E||P, — P|| - 0, or
NP, —PlJ| -0 a.s.

< oo,

(2.25) supE

n

[cf. Pollard (1981)]. Hence,

. . 2
(2:26) lim lim || P,(0) |5 = lim | Ef(X,)]5, < lim | EF*(X,) [ = 0.
Using (2.26) in (2.24) we obtain that, PNas.,

n

1/2
Z 5i5X,(w)/n /

<(2+c)c ! lim E||Gp| 5, = 0.
i=1 5—-0

(2.27) lim limsupE,
550 .
8

n

Bounded convergence and Fatou’s lemma then give

hm hmsup E(HZ &:8x, /N 5 A M) =0
i=1

for all M >0, which, by Theorem 1.2.8 in Giné and Zinn (1986), implies that

Fe CLT(P). O

2.5. REMARK. A corollary of Theorem 2.4 is that if X, are i.i.d. B-valued

random variables, B a separable Banach space, then
n

E|X,* <~ and X, €CLT » ¥ (X,;-X,)/n'/? > Gy weakly a.s.
j=1
Actually the proof of this result is somewhat simpler than that of Theorem 2.4
since in this case E|X;| < « already implies ||P, — P|| — 0 a.s. [see the
material following (2.25)].

The law of iarge numbers has a proof similar to that of Theorem 2.4 but
simpler since, in this case, the lemma of Ledoux, Talagrand and Zinn is not
needed and some further simplifications are also possible.

2.6. THEOREM. Let . be NLDM(P). Then the following are equivalent:

(a) deP <wand ||P, — P|ls— 0 in probability.
(b) PMN-a.s., |P(w) — P ()|l — 0 in probability.

Proor. (Sketch). [FdP <, |P, —P||sz— 0 pr.= ||P, — P||l&=— 0 as.
le.g., Pollard (1981)] = ||X7_,e,6x /n|l+— 0 a.s. [Giné and Zinn (1984), page
980] = E|T7_, N, 8x,/nlls— 0 [as noted in Giné, Marcus and Zinn (1990),
by a proof similar to that in Lemma 2.9 of Giné and Zinn (1984), since
E|N| < ©] = |Z7_,N, 8x/nll+— 0 as. [by, eg., a reverse martingale argu-
ment as in Pollard (1981)] = PMas. |7 N6y (/s 0 as.
(Fubini) = PM-a.s. Ey|L?_ N6y @)/ &= 0. (To see this we use Hoffman-
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Jorgensen’s inequality [Hoffman-Jgrgensen (1974)] to reduce to showing
Ey max; _,|N)| 18x ()l 5/n — 0, PN-a.s. But, for any ¢ > 0
n

+Ey Z |Ni|I|1\7,-| >c

n i<n n i=1

18x,(w)/ M|l 110 ¢l 10, (ll &
— < cmax—————— —_ .

Ey max|N]|
1<n

The first term goes to zero since F € L, and the second equals

(ZL1||6Xi(w)||g/n)E|Z\~’|I|N|>s. But the first term in this last quantity is

PN-as. bounded by the strong law of large numbers and the fact that

F € L,. The second can be made arbitrarily small by taking c large.) = PMas.,

E, 4IL}_18;8%s /nlls— 0 (Proposition 2.2) = PM-as., E,|P(w) — Pw)|s

— 0 (desymmetrization).
For the converse, observe first that, as in Theorem 2.4,

||13n(w) - Pn(w)||9—> 0 w-a.s.= deP <o and

E,| P (0) — P(w) ||g—> 0 w-a.s.
But, by symmetrization, as in (2.24),

n

Z g;/n

Jj=1

E ”Pn(w)“.7

n
Es,A” lejSX,U/nHFS 2EA“Pn(w) - Pn(w) ||g+
j=
and these two variables tend to zero a.s. (note that, since [FdP < , || P (@)|| 5
is a.s. bounded). Hence Proposition 2.2 implies E,|Z}_,¢;8x /n|ls— 0 a.s. So
for all M > 0, E(|C7_1,8x /nllsA M) = 0, ie., |E7_1£,8x,/n|s— 0 in pr.,
which, since [FdP < o, implies ||P, — P||— 0 a.s. [Giné and Zinn (1984),
page 980]. O

3. The bootstrapped (in probability) limit theorems. We first give
the appropriate notion of bootstrap in probability in the context of empirical
processes and show how it can be used.

In Giné and Zinn [(1986), theorem 1.1.3], we give a natural and short proof
of: < CLT(P) iff (&, pp) is totally bounded and the usual eventual equicon-
tinuity condition holds. This proof actually shows that & & CLT(P) iff & is
P-pre-Gaussian and
(3.1) sup  |E*H(n'/%(P, - P)) — EH(Gp)| > 0,

HeBL (/)
where BL(/(F)) = {H: /() > R, |H(x) — HY)| <|lx = yll&, I1H|l. < 1}.
With some abuse of notation, we may call the quantity in (3.1),

dgp(Z(n3(P, — P)), £(Gp))
as in the case when these are true probability laws [#!/%(P, — P) may not be
measurable as an <*(%)-valued random element]. The above observation

extends also to more general limit theorems (e.g., non-i.i.d., different norm-
ings). In particular n'/%(P(0) — P(0)) = Gp weakly in ¢(F), w-as. iff

(3.2) dppo(Z£(n3(B(0) = Py())), £(Gp)) > 0 as.
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So, it is justifiable to say that the bootstrapped CLT(P) holds in probability
iff the limit (3.2) takes place in outer probability.

To see the usefulness of this notion, suppose that || P, — P|| s is measurable,
that ||Gpll~ has a continuous distribution and that .7 satisfies both the
CLT(P) and the bootstrapped CLT(P) in probability. Since H=Ho || ||4€<
BL (¢*(%)) if H € BL(R), we have

(33)  dpp(L (0B (0) - P(0)l5), Z(IGsll5)) = 0 inpr.

By passing back and forth to a.s. convergent subsequences, since d g« metrizes
weak convergence in R, we get from (3.3) that

(3.4) fgg|Fn1/2||ﬁn<w)—Pn<w)||y(x) ~ Figp (%)l > 0 inpr

(where 7; denotes the distribution function of the real random variable ). By
the assumptions, we also have

(3.5) Suganl/zlan—P"y(x) - FIIGPIIy(x)l - 0.
xe
So, if ¢,(a) = ¢,(a, ») is defined by
cal@) = inflt: Fmp wy-p oy (1) = 1 - a},

then (3.4) and (3.5) give

(3.6) Fomp _py,! c,(a)) >1—a inpr
and also
(3.7 Pr{n'/?|P, — Pllg<c,(a@)} > 1 —a.

In conclusion the bootstrap in probability as described above allows the
construction of asymptotic confidence regions for P.

3.1. THEOREM. Assuming % < M(P), the following are equivalent:

(a) € CLT(P).
(b) There exists a centered Gaussian process G on & whose law is Radon in
((F) such that

(3.8) dBLl*(,/(nl/z(PAn(w) - Pn(w))),,/(G)) — 0 inpr*.

If either (a) or (b) holds, then G = Gp, i.e., F satisfies the bootstrapped
CLT(P) in probability.

Proor. (a) = (b). Using the decomposition (1.13) in Theorem 1.1.3 from
Giné and Zinn (1986) of

E*H(n'*(B,(w) - Pn(;o))) — EH(Gp), H e BL(/(F)),

and the bootstrapped CLT in finite dimensions, it follows that, in order to
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establish (3.8) it suffices to prove that
(3.9) ;in(l) lim sup Pr*{ E,[|n"/?(P (o) — P(0))lls > e} =0 forall e > 0.
- n

Symmetrization and Proposition 2.2 give

n

Z 8j6)2$j/n1/2

Ey|n'2(B(0) — Py(w))| s, < 2E, 4
Jj=1

gzy

n
<4Ey| ¥ NiSX,(w)/nl/z
i=1

5;'8/

Now, by the multiplier Lemma 1.2.4 and Theorem 1.1.8 in Giné and Zinn
(1986), the above inequality yields

;in}) limsup EE,||n'/?(P,(w) — P())lls

n

)Y €;0x /n'/?

i=1

= 0.
Fy

< 4||Nlly., ;in% lim sup E
- n

This gives (3.9), hence (3.8) with G = Gp.
(b) = (a). If (b) holds, for every subsequence of N there is a further subse-
quence, say {n,} such that

(3.10) dm*(,/(nw(ﬁnk(w)—Pn(w))),,/(a))ao w-as.

Then, by infinitesimality and Gaussian limits, we have, as in the proof of
Theorem 2.4, for all § > 0,

©(3.11) g I(F(X;(0)) > 8n¥?) > 0 as.
i=1
(= 0 eventually a.s.). This implies
Xn: I(F(X,(w)) > 8n%) > 0 inpr.
i=1
Now, previous arguments show that this limit holds in expectation, i.e.,
(3.12) n Pr{F(X) > én'/?} - 0.

For every subsequence {n,} for which (3.10) holds, we can use (3.11) and the
converse CLT in R to obtain, as in the proof of Theorem 2.4,

L f(X)° (z;zlf(xo )

ng

lim =E(G(f))® as.

n,

forall fe 5 U .. Hence thfs limit holds for the whole sequence N in
probability. If Ef%(X) < « the limit is actually E(Gp(f))? by the law of large
numbers. If Ef%(X) = « then, by Lemma 2 in Giné and Zinn (1989), the
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empirical second moment dominates the square of the empirical first (ab-
solute) moment, and we get

lim Y. f2(X,)/n = E(G(/))? inpr.

Then, by the converse CLT (centering part), the truncated centers must
converge, ie., Ef(X)I(|f(X,)| <Vn) converges, implying Ef*X) <, a
contradiction. We have just proved Ef%X) < o, f € %, and

(3.13) G = Gp.

Consider now a subsequence {n,} for which (3.10) holds. Then, for any
p>0anda>0,

P
E, Jmax(ll&&;;! - Pnk(w)||g/n;/2)
<n,

< 2P max (F(X,(0))/n¥?)"
J=n,

< 2”[a + Ek [F(X(w))/ny?|I(F(X;(w)) > an}/? }

i-1
and by (3.11) this last quantity is eventually (2a)” a.s. Hence

supE,max||6g. — P, (w)||%/nP/? <» a.s.
k Jj<n, nkJ k

This allows us to follow for {n,} exactly the same steps as in the proof of
(b) = (a) in Theorem 2.4, from inequality (2.22) on, to conclude that

np
dBLI*(»/( )y 8i6X,/n}z/2)’ j(zp)) - 0.
i=1
Hence, since every subsequence has a further subsequence {n,} for which this
limit holds, we obtain

n

dBLl*(j( > 3i5x,/n1/2), =/(ZP)) -0,

i=1
ie, e CLT(P). O

3.2. REMARK. A similar result holds in the case of normings a, # n'/? and
Gaussian limits: &% € CLT(P;a,) with limit G iff AX}_(f(X;) -
P (o)X f)/a,: fe F}—-, -£(G) in probability. The proof is analogous to
that of Theorem 3.1 and is omitted. However, such a résult cannot hold in the
case of a stable non-Gaussian limit [Giné and Zinn (1989)].

3:8. REMARK. Note that the proof of Theorem 3.1 is more elementary than
the proof of Theorem 2.4: The deeper Lemma 2.3 is not needed for the
bootstrap in probability.
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3.4. REMARK. Beran, Le Cam and Millar (1987) show that whenever a
bootstrapped limit theorem holds in probability, then the empirical distribu-
tions of the bootstrapped laws also converge weakly in probability. This
justifies using Monte Carlo simulation to approximate the bootstrapped distri-
butions. Concretely, our Theorem 3.1 and the corollary in Section 4 of their
paper give:

Let #° = n'/%(P (w) — P,(w)), which is an ¢*(% )-valued random variable,
and for j, — o consider i.i.d. copies of 7}, say {7, ; ;;1. Then, if ¥ < CLT(P),
we have

Jn
dpi| — X 85w ,-2(Gp)| = 0 in probability

n j=1
[in probability refers to (. (#*))’» ® Pr, for each n].

Finally we show that the weak law of large numbers for empirical processes,
can also be bootstrapped in probability. It may be worth mentioning that an
example of % and P for which the WLLN holds but the strong law does not
hold is: P = uniform distribution on [0, 1] &= {w(¢)], RAS 0, 1/2]} with w
decreasing tw(¢) — 0 but [}/?w(t) dt = x, i.e., the weighted empirical process
[Theorem 7.3 in Andersen, Giné and Zinn (1988)]. Some additional notation
for Theorem 3.5: Given random variables ¢, 7, d,, denotes their
Ky Fan distance, which metrizes convergence in probability, d olé,m) =
inf[e: Pr{|¢ — n| > &} <el. If the random variables involve X, ¢;, N;, then
dpep Ay, , and d . indicate that the distance d , is taken with respect to the

conditional probability given X (w),..., X (o).

3.5. THEOREM. Let % be NLSM(P). The following are equivalent:

@) £ (f(X;) = PfI(F < n))/n||s— 0 in pr.
(i) dp (IE}-(8%2. — P(w))/n|| 5, 0) = 0 in pr.

and if (i) or (ii) holds then also

E, -0 inpr.

F

. (o1, = Puw)/n

Proor. (i) = (ii). (a) We first show (i) = |[X}_,¢,6x /1|5~ O in probabil-
ity. To this end we note that

— 0 inpr.
T

Y (f(X;) — PfI(F <n))/n
i=1
implies

— 0 inpr.
T

Z:(f(Xi) - f(Xi'))/n

by the triangle inequality for |- |5, where {X;, X/}’ ;_, are iid., and this
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implies [see the proof of Corollary 2.13 in Giné and Zinn (1984)] that
n Pr(||5x1 = Oxll &> n)—>0 asn— o,
But then
n Pr(||dg,ll5> 2n)Pr(Ixlls<n) >0 asn —
and hence
tPr([ox,)l+>t) > 0 ast— .

Also, from symmetrization procedures [Lemma 2.7, Giné and Zinn (1984)] we
know

;n g(f(X;) — PfI(F < n))” > sn}

Pr{
i=1

k en
S2l‘]:1aXPI‘{ Yy (f(Xi)—Pﬂ(an))‘ >——2—}
=r i=1 K
+ 2 max Pr{ ﬁ(f(Xi)—Pﬂ(an)) >2}
r<k<n i=1 e 2

The first term on the right goes to zero since n — . The second term can be
made less than any ¢ > 0 if r (and therefore k) is large enough, since the
WLLN [ie, ()] is assumed to hold. Further, since ¢Pr(||ox|l5+>¢) — 0
ast — o«

|PfI(F < n)| < mer(|f(x)|I(F(X) <n)>t)dt <1+ f:?dt <K'lnn,
0

where K and K' are fixed constants. But then

% g, PfI(F<n) , 1XT1]

i=1 (n/Inn)’

which converges to zero a.s. by, e.g., the Marcinkiewicz—Zygmund SLLN.

Hence, for all ¢ > 0, Pr(|X7_,¢; f(X,)|| s> en) —» 0 as n — .
(b) Le Cam’s Poissonization lemma [Le Cam (1970); see also Araujo and

Giné (1980) Lemma 3.4.8] in probability gives
Z SJBX:J/n ,0).
F

dp,E,A( ,0) < ZdP,N(
Jj=1 F

(¢) If |[X7_18:8x /n|ls— O pr. then, as pomted out in Giné, Marcus and
Zinn (1990), Remark 4.2, |[£7 _1N;8x /n|=— 0 in pr. because EN'*® < w,
Hence, by (a), for all ¢ > 0

n

n
Z IVL 6Xt(w)/n

i=1

(3.14) Ey PrN{ > e} - 0.
F

2 Niaxi(w)/n
i=1
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But, 4, (X ?=1Ni5xt(w)/ﬂ|9’ 0) <&V Pryf|E ?=1A7i6X,(w)/n”57> e}, for all
& > 0 by definition of the Ky Fan distance. Therefore (3.14) implies

n
EXdprN( Z NiSXi(w)/n ' ’0) - 0.
i=1 7

Now, (b) and (c) give
n
2815)2:»/11, ,0)_)0.
i-1 ! 7
(d) Now we must desymmetrize in (3.15). For every subsequence of N, there
exists a further subsequence {n,} such that

(3.15) Exd,, |

np

)y 5,‘32%1 /oy
i=1

Hence L7t I(|| X;|| > an,) = 0 eventually a.s., for all a > 0. Therefore,

— 0 inpr, 4, w-a.s.
F

18 [l

E, max -

o "k
<a+ [ LI(IX||>n,t)dt <a eventuallyas.
ank nk a 1

= E,max|[6go ||&/n, >0 w-a.s.
j<n, k)

ny

> EjSX,‘;’kJ/nk
Jj=1

-0 w-a.s.
Y

=E6A

[by (3.15) and Hoffman-Jgrgensen’s inequality|

-0 w-a.s.
F

np
= Ey| 2 (5)23“ - Pnk(w))/nk
j=1

[see the inequalities following (2.15)]

n

= E,| 2 (SXgJ _Pn(w))/n

Jj=1

which is even more than the actual statement (ii).
(i) = (i). If (i1) holds, we obtain as in the CLT that

(3.16) nPr(F>n) - 0.
Recall that for any {n ,} for which dprA(”Z;il(SX,‘;'kj — P, (0))/n;ll&0) > 0as.

— 0 in probability
F

g .
(3.17) Y I(F(X;) >an,) =0 eventually, a.s.

i-1
So, as above E, max; _, [|8zy /nlls— 0 as. Also, |1 P, (@)/nlls=IZ ;-
1n, f(X;)/n%||#— O (since, eventually, this norm is less than or equal to a).
So, E, max;_,, |6z — P,(w))/n,lls—> 0 as. Hence, by Hoffmann-
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Jegrgensen’s inequality,
7k= 1(6)2,“,’,21 - Pnk(w))
ny,

-0 a.s.

(3.18) E,

Now, as in (2.24),

ny ’
cE, )y gdx/n,| =< 2EA”(Pnk(w) - Pnk(w))”g"' ||Pnk(w)”§/ni/2,
i=1 T
S0,
kg, 1 R
lim sup Pr{ Y nX' > s} < —lim sup E[(Zc‘lEA”Pnk(w) - Pnk(w)ug)/\ e]
i=1 e || & €

+ZE
£ ny/®

1 (C'llank(w)lly N 8)

It

(I) + (1II).
(I) » 0 by (3.18) and the dominated convergence theorem, and (II) —» 0 be-
cause, by (3.16), X *_,F(X,)/n®? — 0 in probability. Hence,

n
Y &0x/n| — 0 in probability.
i=1 i
Finally, (i) follows by a standard desymmetrization:

n

Y I(F(X,) >n)dx /n|| —0
i=1 5
in probability by (3.16), hence we can truncate in (3.19) and then take
expectations and use the symmetrization inequalities given immediately after
(2.15) to obtain E|L? (f(X)I(F(X,) <n)— PfI(F <n))/n|+— 0. Again,
using (3.16) we obtain (i). O

(3.19)

3.6 REMARK. The weak law of large numbers with normings other than n
(i.e., n/? or even more general a,’s) can also be bootstrapped in probability,
in complete analogy with Theorem 3.5. [See, e.g., Andersen, Giné and Zinn
(1988) for examples of Marcinkiewicz-type laws of large numbers for empirical
processes.]
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